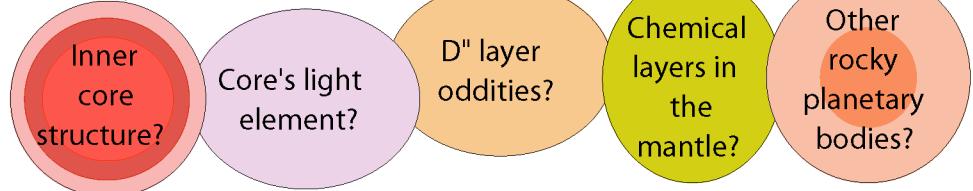


An Fe-Si-Ni solidification model for the Earth's layering

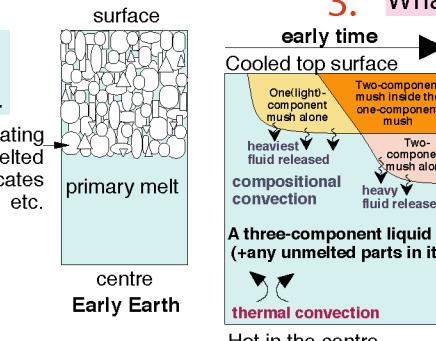

Dr Anneli Aitta

A.Aitta@damtp.cam.ac.uk

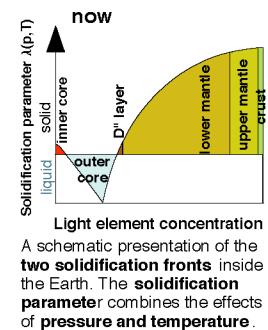
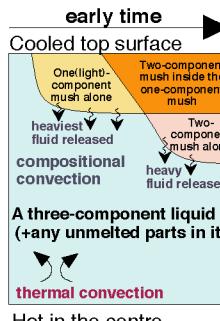
<http://arXiv.org/pdf/physics/0211069>

Institute of Theoretical Geophysics
 Department of Applied Mathematics
 and Theoretical Physics
 University of Cambridge

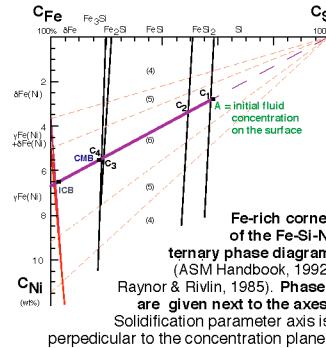
1. Are you interested in ...


Have a look how solidification from a multicomponent fluid produces layers!

2. What fluid?

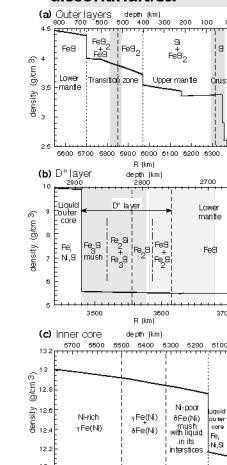


The primary partial melt which allowed the core differentiation to happen.

What are its main components?


Fe and Ni to descend to the core but also Si to rise up.

3. What layers?

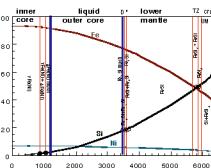
4. Layers' chemistry from the Fe-Si-Ni ternary phase diagram


A narrow peritectic region in the Fe-Ni axis has been linearly continued to the point $(\text{Si}, \text{Ni}) = (0.04, 0.11)$ where it changes to a coticot line. The residual fluid concentration evolves from A along the tie line towards C_1 as the Si-mush is solidifying. At C_1 a coticot mixture of Si and FeSi_2 is solidifying. Ni/Fe ratio is assumed to stay constant due to convection. Thus after C_1 the residual fluid evolves along the same tie line towards C_2 , C_3 , C_4 and on to the CMB (core-mantle boundary), solidifying between them a mushy compound and on each C_j a coticot mixture of the neighbouring phases. The inner core has been assumed to have started to solidify from the other end of this same line and the residual fluid concentration on its solidification front has now crossed the peritectic region and has reached the ICB (inner core boundary). The liquid line of descent through A corresponds to an $\text{Ni}/(\text{Ni}+\text{Fe})$ ratio of 0.067.

For different planetary bodies the slope of the liquid line of descent ($\text{Ni}/(\text{Ni}+\text{Fe})$ ratio) could vary and the five possible regions are separated by dotted lines with different selections of the crossed phase boundaries, the number of them being shown in brackets.

5. Model:

- Phase boundary equations (k_j and b_j from the graph): $C_{\text{Ni}} = k_j C_{\text{Si}} + b_j$, $j = 1, 2, 3, 4$
- $C_{\text{Ni}}/C_{\text{Fe}}$ is constant: $C_{\text{Ni}} = k(1 - C_{\text{Si}})$
- Si-concentration $C_{\text{Si}} = a R^2$ where R is the distance from the centre
- a is solved numerically by changing k in steps of 0.001 and finding the best fit by using the four coticot lines.


R-value interpretation from PREM's density discontinuities:

Shaded R-regimes are used to guide the numerical fit. Dashed lines are the results from the fit (a and b) or predictions from this model (c). Dashed-dotted lines (in b) are only estimates.

7. Results:

Fluid concentrations C_{Si} , C_{Ni} and C_{Fe} versus the radius.

The open circles are the Si-concentrations on the four coticot lines with their R-value interpretations from PREM. The two solid dots indicate the Si-concentrations and radii of the structure change predicted by this model inside the inner core. The fronts at the present time are marked with bolder lines.

The data lie on the parabola $C_{\text{Si}} = a R^2$ with

$$a = (1.437 \pm 0.007) \times 10^{-8} \text{ km}^{-2}$$

$$\text{and } k = 0.067 \pm 0.001 \text{ (} = \text{Ni}/(\text{Ni}+\text{Fe}) \text{).}$$

The initial fluid Si-concentration is 58.3 wt% of the surface fluid.

13 chemically different layers form just via the solidification process from this three-component melt.

D'' layer is 132 km thick (same as from Vidale & Benz, 1993). It has four sublayers. Deepest of them is made of Fe_3Si -mush and is growing inwards.

The fluid Si-concentration is 2.1 wt% at the ICB and 17.4 wt% at the CMB. Its average in the outer core is about 11 wt%.

Inner core has three layers:

- From centre up to $R = 870$ km it has Ni-rich Fe.
- From $R = 1050$ km to the surface it has Ni-poor Fe-mush (having Si-enriched melt in its interstices).
- Between them it has an inhomogeneous mixture of Ni-rich and Ni-poor Fe.

8. Conclusions:

The solidification process from a three-component fluid offers a unified reasoning for the Earth's layers.

It gives more precise predictions for the core structure and its concentration than any other model before. The seismically observed anisotropy may be generated by the differing Ni-content in the inner core layers and the presence of fluid in the surface layer. Si trapped into the interstices would reduce the inner core density as expected. The observed hemispheric asymmetry follows if Ni/Fe-ratio varies locally.

This model does not consider the recycling which has happened in the upper layers. Rich crust and mantle chemistry comes from the unmelted original material. Still, it does not seem to have much effect on the main layers, here generated by the solidification of the primary melt, but it could create extra layers if melted and resolidified.