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35.1 � Introduction

Flows involving phase change are ubiquitous in geophysical and 
industrial settings and are vital for life on Earth. For example, the 
solid iron inner core of the Earth solidifies from the molten outer 
core and releases buoyant constituents that drive compositional 
convection and power the geo-dynamo that generates our mag-
netic field. Melting and re-solidification of silicates in the mantle 
and crust generate new rocks and segregate economically impor-
tant minerals into mineable seams. Groundwater is converted to 
steam in geothermal reservoirs that can be tapped for energy pro-
duction. The oceans freeze and thaw in annual cycles, moderat-
ing global temperatures and driving ocean circulations. Surface 
waters evaporate, rise, and re-condense to form clouds and life-
giving rain. And from the Bronze Age onward, melting and solid-
ification have been central to many technological developments.

In this chapter, we introduce the key thermodynamic and 
fluid-mechanical principles that govern phase changes, explain-
ing how flow in fluid melts can both be driven by and influ-
ence those changes. Our discussions are illustrated mostly by 
geophysical examples, particularly phenomena occurring in 
our oceans and atmosphere but also some that occur in water-
saturated soils, in magmatic systems, and in industrial processes.

35.2 � Principles

Changes of phase, from liquid water to vapor or to solid ice, for 
example, are thermodynamic processes requiring the transport 
of heat and sometimes, as in the case of freezing salt water, of a 
chemical component. Therefore, flows involving phase change 

are inevitably associated with temperature gradients and pos-
sibly also compositional gradients. Both can cause density gra-
dients and associated buoyancy forces. The importance of phase 
change to a given flow can be assessed by estimating certain key 
dimensionless parameters.

35.2.1 �T hermodynamic Considerations

We can distinguish two important situations: those in which 
phase change occurs at the boundary of a fluid domain or at 
the interface between fluid domains and those in which phase 
change occurs in the interior of a fluid domain. Examples of 
the former are the melting of an iceberg and the evaporation of 
a pool of water. Examples of the latter are condensation in the 
interiors of clouds and dissolution in the interior of sea ice.

When phase change occurs at a boundary, a key dimension-
less parameter is the Stefan number

	
S = L

c Tp∆
,

where
L is the latent heat per unit mass associated with change of 

phase at constant temperature
cp is the specific heat capacity of the medium through which 

the latent heat is principally transported in order to effect 
the phase change

ΔT is the characteristic temperature difference driving that 
heat transport
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When the Stefan number is large, the motion of the phase 
boundary is slow compared to the rate of thermal processes in 
the media on either side, whether or not the media are flowing. 
To a good approximation, therefore, the heat transfer rates and 
any fluid flow can be calculated assuming that the phase bound-
ary is stationary, and the evolution of the phase boundary can be 
determined subsequently.

In the transition from ice to water, L/cp is about 80°C in the 
water and about 160°C in the ice, while in the transition from 
liquid water to water vapor, L/cp is about 600°C in the water and 
about 2500°C in the vapor. In all these cases and for geophysi-
cally relevant flows, for which ΔT is typically only a few degrees 
Celsius, the Stefan number is therefore indeed large and the 
quasi-stationary approximation can be used with confidence.

Regions of mixed phase can exist when there are variations of 
two (or more) thermodynamic variables that determine the state 
of the matter. A well known and geophysically important exam-
ple occurs during the freezing of salt water. The equilibrium (liq-
uidus) temperature TL between ice and salt water decreases with 
the salinity S of the latter. In many circumstances, this relation-
ship can be approximated linearly by

	 T S T m S SL( ) ( ),= − −0 0

where
S0 is a reference value of the salinity at which TL = T0

m is the slope of the liquidus

For seawater m ≈ 0.05°C psu−1, where the practical salinity unit 
(psu), defined in terms of conductivity, corresponds closely to 
parts per thousand of sodium chloride.

Another important thermodynamic variable in geophysical 
contexts is pressure, which influences the equilibrium freez-
ing temperature Te(p) according to the Clausius–Clapeyron 
relationship

	
L T T p

T
p pm e

m
m

s l

− = − −






( ) ( ) ,1 1
ρ ρ

where
Tm is the freezing temperature at pressure pm

ρs and ρl are the densities of the solid and liquid phases, 
respectively

Therefore, the inner core of the Earth, which is virtually pure 
iron with ρs > ρl, is solid owing to the high pressures there, even 
though it is hotter than the outer core of molten iron. On the 
other hand, because the density of ice is less than that of water, 
marine ice sheets in Antarctica melt at their basal contact with 
the deep ocean, even though the temperature there is about −2°C.

Pressure is continuous across a planar interface between 
bulk phases in equilibrium. But if there is a pressure difference 
between a solid and its liquid melt, either because surface ten-
sion acts across a curved interface between them or because 

disjoining forces act in proximity to a substrate, then the equi-
librium freezing temperature Te is depressed according to

	
ρs

m e

m
s lL T T

T
p p− = − .

In the case of a curved interface with surface tension γsl and 
principal radius of curvature R, this gives the Gibbs–Thomson 
relationship

	
ρ γ

s
m e

m

slL T T
T R
− = ,

which stabilizes morphological instabilities of phase boundaries 
(see later) and hence influences the scale and patterns of snow-
flakes, for example.

When a mixture, like salt water, begins to freeze, one of the 
components is preferentially incorporated into the solid phase, 
while the remaining liquid is enriched in the other. At low salini-
ties, typical of the ocean, the solid phase is almost pure ice, and 
salt is rejected as sea ice forms. The rate of phase change at a 
planar interface is governed by the rate of removal of excess salt, 
rather than by the rate of removal of latent heat. The important 
dimensionless parameter is the concentration ratio

	
C = −( ) ,S S

S
s0

∆

where
Ss is the salinity of the solid phase (equal to zero in the case of 

ice formed from salt water)
ΔS is the characteristic salinity difference driving salt trans-

port in the liquid phase

Usually the solid–liquid interface is close to equilibrium and

	
∆S T T

m
i= −( ) ,0

where Ti is the temperature of the interface.
In consequence of the fact that salt diffuses slower than heat, 

a phenomenon called constitutional supercooling usually occurs 
in the liquid adjacent to the phase boundary during solidifica-
tion of a mixture. This is the phenomenon of having liquid at 
a temperature below its freezing (liquidus) temperature in con-
sequence of locally altered salinity. It is relieved in most natu-
ral and many industrial settings by a morphological instability 
of the phase boundary that results in the formation of a mushy 
layer: a region of mixed phase comprising small-scale, often den-
dritic, solid crystals bathed in residual melt. Mushy layers are 
reactive porous media (Worster 2000) whose porosity and per-
meability can change in response to changes in temperature and 
salinity caused by advection and diffusion.
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Latent heat is released in the interior of a mushy layer 
during solidification as the volume fraction of solid crystals 
increases. The effective specific heat capacity (the heat energy 
required to raise or lower the temperature by 1°) of a mushy 
layer is thereby augmented by a factor characterized by the 
dimensionless group

	
Ω = + = +

−
1 1

0

S
C

L
c m S Sp s( )

.

If there is a larger salinity difference between solid and liquid 
phases, then the change in solid fraction associated with a given 
change in temperature is smaller, and hence the internal release 
of latent heat is inversely related to C . A similar effect occurs in 
moist convection, where the effective heat capacity is equal to 
the heat capacity of dry air augmented by a factor approximately 
equal to

	
Ω = +1

2

2
L q

c TpR

(Stevens 2005), where
q is the mass fraction of water vapor
R is the gas constant

The analogy is clear once we associate q with S, the saturation of 
the condensed phase qs = 1 ≫ q with Ss and the liquidus slope m 
with −∂T/∂q ≈ −RT2/Lq.

35.2.2 � Buoyancy-Driven Convection

These sorts of considerations have a profound influence on the 
buoyancy forcing of the oceans and clouds. The density of salt 
water, for example, varies approximately linearly as

	 ρ ρ α β= − − + − 0 0 01 ( ) ( ) ,T T S S

for small temperature and salinity variations, where ρ0 is the 
reference density when (T, S) = (T0, S0) and α and β are the 
coefficients of thermal expansion and solutal density variation, 
respectively. Pure water attains a maximum density at 4°C, at 
which temperature α = 0. The temperature at which salt water 
attains its maximum density decreases as salinity increases 
until, for S greater than about 14 psu, there is no density maxi-
mum and α is positive for all temperatures above the liquidus. 
However, α remains very sensitive to temperature at tempera-
tures close to the liquidus, and seawater, whose salinity is around 
30–35 psu, has a value of α ≈ 10−5 near its liquidus temperature of 
about −2°C (typical of polar conditions), compared with a value 
of α ≈ 10−4 at 20°C.

In a polynya, growing ice crystals are blown down wind and 
the open ocean is continuously exposed to the cold atmosphere. 
A heat flux F from ocean to atmosphere creates ice crystals, 

which increases the salinity of the remaining liquid and causes 
a buoyancy flux

	
F S

t
g S

t
g S F

LBS
s

= ∂
∂

=
∂

=ρ β ρ β ∂φ ρ β
ρ0 0 0 0 0g ,

where
S and ϕ are the salinity and solid fraction in a parcel of freez-

ing ocean of unit volume
g is the acceleration due to gravity

This can be contrasted with the buoyancy flux

	
F g T

t
g F
cBT

p
= − ∂

∂
=ρ α α

0

that results from cooling the ocean without freezing. The ratio of 
these buoyancy fluxes

	

F
F

S c
L

BS

BT s

p= ρ
ρ

β
α

0 0

is about 20 in the polar oceans, which is why the densest abys-
sal waters are generated around Antarctica, where polynyas are 
commonly formed by strong katabatic winds off the continent, 
and, to a lesser extent, in the Greenland Sea. In contrast, where 
sea ice becomes consolidated, typical of the Arctic Ocean, it 
insulates the ocean from atmospheric cooling, and brine pro-
duction is much weaker.

A similar expression relates the buoyancy fluxes associated with 
salinity increase and cooling resulting from evaporation in warmer 
waters, such as the Mediterranean. However, because α is signifi-
cantly larger at those temperatures and salinities, and the latent 
heat of vaporization is much larger than that of freezing, the bal-
ance is reversed: cooling is then more potent than salinity increase 
at producing buoyancy fluxes by a factor of about 4 (Gill 1982).

Buoyancy forces can cause convection in a fluid (Turner 
1979), which can have profound effects on phase changes in the 
fluid. Whether or not convection occurs and the strength and 
character of any convection when it does occur are determined 
by the magnitude of the Rayleigh number. This dimensionless 
number characterizes the potential energy of the fluid due to 
buoyancy relative to the dissipation of buoyancy by diffusion 
and of energy by viscosity as the system attempts to convert its 
potential energy into the kinetic energy of fluid motion.

In a fluid whose density is affected only by temperature, the 
Rayleigh number is

	
Ra Tgh

T = α
κν

∆ 3

,

where
h is a characteristic vertical length scale for the fluid system
κ and ν are the thermal diffusivity and kinematic viscosity of 

the fluid, respectively
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This reflects the fact that the buoyancy is due to temperature gra-
dients and is dissipated by thermal diffusion. By direct analogy, 
if the density is affected only by salinity, then the appropriate 
Rayleigh number is

	
Ra Sgh

DS = β
ν

∆ 3

,

where D is the diffusivity of salt in water. In fluids whose den-
sity is simultaneously affected by thermal and salinity variations, 
both Rayleigh numbers are important. Indeed, fascinating forms 
of convection, so-called double-diffusive convection, can occur 
even when the overall density of fluid decreases with height, so 
that the system is apparently stably stratified, provided that there 
is potential energy associated with either the temperature or the 
salinity field (Huppert and Turner 1981). Such flows owe their 
existence to the fact that heat and salt diffuse at different rates, 
which allows the potential energy of the unstably stratified com-
ponent to be exploited. A ubiquitous feature of double-diffusive 
convection is the spontaneous development of discrete layers of 
fluid motion, illustrated in Figure 35.6. It has been suggested that 
such fluid-mechanical layering during solidification can result in 
layered structures within igneous intrusions, for example.

There are many interesting and important geophysical 
flows involving phase change that take place in porous media. 
Examples include natural hydrothermal flow of groundwater 
and the flow of supercritical carbon dioxide in aquifers during 
attempts at sequestering unwanted CO2 from gas and oil fields 
and other industrial sources. In a porous medium, the relevant 
thermal Rayleigh number is

	
Ra Tgh

p = α
κν

∆ Π ,

where Π is the permeability of the medium. This reflects the fact 
that viscous dissipation occurs on the scale of the pores of the 
medium, which is proportional to Π .

A fascinating hybrid of these results occurs in a mushy layer. The 
temperature and interstitial salinity of a mushy layer are coupled 
by the liquidus relationship, so the density variation is given by

	
ρ ρ β α= + −





−








0 01 ( ) ( )

m
S S

and there is no propensity for double-diffusive convection. 
Typically β ≫ α/m, and the characteristic Rayleigh number is

	
Ra Sgh

m = β
κν

∆ Π .

This reflects the facts that a mushy layer acts as a porous 
medium, that the buoyancy is dominated by salinity variations, 
but that the dissipation of buoyancy results from internal phase 

change, mediated by the thermal field altering the interstitial 
salinity (Worster 2000). As described earlier, the internal release 
of latent heat augments the effective heat capacity of the mushy 
layer, so the effective thermal diffusivity is κ/Ω and, as we shall 
see later, the critical parameter for convection in a mushy layer 
is therefore ΩRam.

In this section, we have introduced many of the dimension-
less parameters governing flows involving phase change. They 
will appear and be illustrated further as we explore specific 
examples later.

35.3 � Methods of Analysis

Our understanding of flows involving phase change has ben-
efited enormously from studies that have combined laboratory 
experimentation with theoretical and computational develop-
ments. Here we outline some of the most common approaches, 
starting again with single-component systems.

35.3.1 � Scaling and Similarity Solutions

Significant physical insight and understanding can be gained from 
scaling analyses, which in some important circumstances can lead 
to similarity solutions. This is the case in what has become known 
as Neumann’s solution to the Stefan problem, though Neumann’s 
analysis seems to predate Stefan’s own investigation! In the sim-
plest version, depicted in Figure 35.1 and described in Carslaw 
and Jaeger (1959) for example, a deep layer of liquid (ocean) at its 
freezing temperature Tm has its fixed boundary maintained at a 
constant lower temperature T0. Solid (ice) forms a layer of thick-
ness h(t) adjacent to the cooled boundary. The temperature T(z, t) 
in the solid satisfies the diffusion equation

	 T kT z h tt zz= < <( ( ))0

and conservation of heat at the solid–liquid interface is expressed 
by the Stefan condition

	 ρ κLh Tz z h
� = =| ,

where k = ρcpκ is the thermal conductivity. Since there is no 
externally imposed nor any intrinsic length scale in the problem, 
there is a similarity solution with

	
T z t T T T h t tm( , ) ( ) ( ) .= + −







=0 0 2erf 
2 t

andz
κ

λ κ

z = h(t)

Tm

T0

T (z, t)Solid (ice)

Liquid (ocean)

z = 0

Figure 35.1  A simple Stefan problem, in which solid forms at the 
cooled boundary of a deep layer of melt at its freezing temperature.
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The growth parameter λ is determined by the transcendental 
equation

	 πλ λλe
2 1erf = −S ,

where S  = L/cp(Tm − T0).
A useful and instructive approximation can be found when S

is large, in which case the temperature field is quasi-steady and 
therefore linear. The Stefan condition then has the simple form

	
ρLh k T T

h
m� = −( ) ,0

which is readily integrated to give

	
h t= 2κ

S
.

A comparison between this approximate result and the exact 
solution is shown in Figure 35.2a.

Many important analytical and computational methods have 
been developed in terms of the enthalpy of the system. A new 

and revealing example of such an approach is provided by the 
case of a solid at temperature Tm growing into a supercooled 
liquid of temperature T∞ < Tm, as depicted in Figure 35.3. The 
total enthalpy of this system relative to the far field (at constant 
pressure) is

	

H L c T T h c T T dzp m p

h

= − + −  + −∞ ∞

∞

∫ρ ρ ρ( ) ( ) .

We can approximate the integral by ρcp(Tm − T∞)δ, where δ is a 
scale length (boundary-layer thickness) for the temperature field, 
and use conservation of enthalpy, given the initial condition that 
H = 0, to deduce that δ = (S  − 1)h, where S = L/cp(Tm − T∞). In 
this case, the Stefan condition can be approximated by

	
ρ

δ
Lh k T Tm� = − ∞( ) ,

whence

	
h t=

−
2

1
κ

S S( )
.

This is compared with the exact similarity solution 
h t e= = −2

2 1λ κ πλ λλ, with erfc S  in Figure 35.2b. The quan-
titative effectiveness of the approximation is of secondary impor-
tance to the insight that can be gained from the structure revealed 
by it. We see immediately that the predicted rate of solidification 
tends to infinity as S → 1+, and that there is no solution when
S  < 1. The enthalpy formulation reveals the fact that the solid 
is predicted to have positive enthalpy when S < 1, and that the 
total enthalpy cannot therefore be conserved. In this case, one 
must take account of the kinetics of molecular attachment and 
recognize on the continuum level that the solid–liquid interface 
is below the equilibrium freezing temperature Tm during solidifi-
cation (Worster 2000).
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Figure 35.2  The growth parameter λ as a function of the inverse 
Stefan number S −1 for solidification at a cooled boundary (a) and into 
a supercooled melt (b). In the latter case, there is no solution for S < 1. 
The solid curves show the similarity solutions of the full diffusion equa-
tion. The dashed curves show the approximate solutions described in 
the text.

Tm

T (z, t) T∞

H (z, t)ρL
δ

z = 0 z = h(t)

H = 0

Figure 35.3  The temperature T and enthalpy H for a solid growing 
into a supercooled melt. Conservation of enthalpy means that the two 
shaded regions must have equal area, which cannot be achieved if the 
latent heat L is too small.
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The two previous approaches can be combined or the method 
of Neumann extended straightforwardly to consider the case 
of a melt initially at a temperature greater than Tm brought into 
contact with a boundary held at a temperature less than Tm. The 
additional diffusive heat transport from the liquid typically 
plays a minor role in comparison with the latent heat that must 
be removed through the solid phase to the boundary.

35.3.2 � Perturbation Analysis

An important phenomenon that occurs when the liquid is super-
cooled is morphological instability: small corrugations of the solid–
liquid interface grow into the branched patterns of snowflakes or 
Jack Frost, for example. The same phenomenon is common during 
solidification of a mixture, as depicted in Figure 35.4. In this illus-
trative example, we employ the frozen temperature approxima-
tion (Davis 2001) that the temperature field remains unperturbed 
with a uniform gradient G. In the liquid near the interface, the salt 
rejected during solidification creates a salinity gradient GS. When 
the initially planar interface at z = 0 is perturbed to position

	 z x t ei x t= = +η η α σ( , ) ,ˆ A

there is a corresponding perturbation to the salinity field, which 
to good approximation satisfies Laplace’s equation so that

	 S x z t S G z e eS
z i x t( , , ) = − + − +

0 Θ α α σ

where η̂ and Θ are constants, while

	 T x z t T Gz( , , ) ,= +0

where we have chosen (S, T) = (S0, T0) to correspond to the salin-
ity and the corresponding liquidus temperature at the unper-
turbed interface.

The temperature of the curved interface

	 T x t mS x t zxx( , , ) ( , , ) ( )η η η η= − − − =Γ ( )

is equal to the liquidus temperature depressed by an amount 
proportional to its curvature, with constant of proportionality 
Γ, according to the Gibbs–Thomson effect. Conservation of salt 
is expressed by

	 S DS zt xη η= − =( ),

which is similar in form to the Stefan condition.
By substituting the aforementioned expressions for the tem-

perature and salinity fields into the two interfacial conditions 
and linearizing in the small perturbation quantities, we find the 
dispersion relation

	
σ α α= − − 

D
mS

mG GS
0

2( ) Γ

for the growth rate σ of disturbances of wavenumber α.
In this simple, idealized model, we see that there are positive 

growth rates and disturbances will grow if G < mGS, which cor-
responds to there being constitutional supercooling (tempera-
tures less than the liquidus) of the unperturbed liquid.

35.3.3 � Continuum Modeling of Mushy Layers

Once significant morphological instability has occurred and a 
mushy layer has formed, it is no longer practical to follow the evo-
lution of the solid–liquid interface, and it is usual to adopt an aver-
aged, continuum description of the resulting reactive, two-phase 
medium, called a mushy layer. Dependent variables of a mushy 
layer are the mean temperature, the mean interstitial salinity, and 
the mean volume fraction of the solid phase, with averages taken 
over a scale larger than the pore scale. Because the salt rejected by 
the solid phase can be accommodated within the interstices of a 
mushy layer, transport of salt is no longer a rate-limiting factor 
and the macroscopic envelopes of mushy layers are determined 
principally by heat transfer (Huppert and Worster 1985).

However, gradients of the interstitial salinity can drive con-
vection in the interior of a mushy layer, and this is the dominant 
mechanism by which salt is delivered to the ocean during for-
mation of sea ice: the salt flux from sea ice to ocean would be 
negligible in the absence of buoyancy forces, a fact that is insuf-
ficiently recognized in the parameterizations used in most cur-
rent climate models.

The key ideas can be gleaned from the following simplified 
model. The equations governing an ideal mushy layer (Worster 
1997) can be written as

	

ρ ρ φ

φ φ

µ

c T
t

T k T L
t

S
t

S S
t

p
∂
∂

+ ⋅ ∇





= ∇ + ∂
∂

− ∂
∂

+ ⋅ ∇ = ∂
∂

= −

u

u

u

2

1

,

( ) ,

(Π ∇∇ +p ρg),

T(z) TL(z, t)

z = η(x, t)
z = 0

Solid (ice)

Liquid (ocean)

Figure 35.4  The thick sinusoidal curve shows the perturbed posi-
tion z = η(x, t) of the solid–liquid interface, originally at z = 0. The thin-
ner sinusoidal curves show perturbed contours of concentration in the 
liquid: they are closer together near protrusions of the solid into the 
liquid, which enhances diffusion of solute away from the solidification 
front and promotes instability. The thick solid line shows the (frozen) 
temperature field. The thinner curve and short-dashed curve show the 
perturbed and original vertical salinity profiles, expressed as the local 
liquidus temperature.
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together with the liquidus constraint and the continuity equa-
tion ∇ · u = 0. An approximate dimensionless form, when S  ≫ 1, 
C ≫ 1 with S C/  = O(1), can be written as

	

Ω D
Dt

R p k

t
D
Dt

m

θ θ

θ

φ θ

= ∇

= −∇ +

∂
∂

= − −

2

1

,

( ),

,

u

C

where θ = [T − TB]/[TL (S0) − TB] = [S − SL (TB)]/[S0 − SL (TB)] 
and D/Dt ≡ ∂/∂t + u · ∇ is the material derivative following the 
Darcy flow. Note that the first two equations are de-coupled 
from the third, which determines the evolution of the solid 
fraction in terms of the redistribution of solute. In particular, 
the third equation shows that there is dissolution (∂ϕ/∂t < 0) 
whenever there is flow from cooler to warmer regions within a 
mushy layer. This is the cause of the brine channels that form 
in sea ice, for example.

The first two equations admit a steady solution with a linear 
vertical temperature gradient and no flow in an infinite horizon-
tal layer, as depicted in Figure 35.5a. Perturbations to this solu-
tion can be analyzed by considering the normal modes

	

θ θ

ω ω

α σ

α σ

= − +

=

+

+

1 z z e

z e

x t

x t

ˆ

ˆ

( ) ,

( ) ,

i

i

where ω is the vertical component of the velocity field. If these 
expressions are substituted into the governing equations and the 
resulting equations are linearized in the perturbation quantities, 
we obtain

	

− = −

− =

Ωω α θ

α ω α θ

ˆ ˆ

ˆ ˆ

( ) ,

( ) ,

D

D Ram

2 2

2 2 2

which can be combined to give

	 ( ) .D Ram
2 2 2 2− = −α ω α ωˆ ˆΩ

For illustration, we solve this perturbation equation subject to 
boundary conditions that the upper surface is impermeable and 
at constant temperature, so that

	 ω θ ωˆ ˆ ˆ= = ⇒ = =0 0 02, 0 ( )D z

and that the lower boundary is held at constant pressure and 
heat flux, as is appropriate at a mush–liquid interface, so that

	 D D D zω θ ωˆ ˆ ˆ= = ⇒ = =0 0 0 13, ( ).

The eigenfunctions of this system are

	
ω πˆ n n z= +( ) −





sin ( ) ,1
2 1

with corresponding eigenvalues

	
ΩRa

n
m =

+( ) +








1

2

2
2 2

2

2

π α

α
.

The most unstable mode has n = 0 and

	
ΩRam = +( ) .π α

α

2 2 2

2
4/

This neutral curve has a minimum value of ΩRam = π2 at α = π/2. 
As a rule of thumb, a mushy layer growing from a region of melt 
will begin to convect when its modified Rayleigh number ΩRam 
exceeds a value of about 10 (Worster 1992).

35.3.4 � Numerical Analysis

Numerical studies of phase change have employed a range of 
algorithms and different approaches. When phase boundaries 
are involved, a choice has to be made whether to “fit” the bound-
aries or to “capture” them. In the former case, separate computa-
tional domains are established for the solid and the liquid or the 
mush and the liquid, for example, and conditions are employed 
to relate variables across the interface between the domains as 

T0

T0 + ∆T

θ = 0

θ = 1
z = 1

z = 0
ω̂ = 0 θ̂ = 0 D2ω = 0ˆ

ω̂ = 0

Mushy layer

Liquid

(a) (b)

Dθ = 0ˆ D3ω = 0ˆ 

Figure 35.5  (a) A quiescent mushy layer above a deep liquid region with a linear temperature gradient imposed across it. (b) Small perturba-
tions can lead to convective rolls, shown by the stream lines. Boundary conditions for the perturbed fields are shown.
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well as to evolve the location of the interface. For solidification 
of a pure melt, for example, the diffusion equation would be 
applied to the solid domain, the Navier–Stokes equations and 
the advection–diffusion equation would be applied to the liquid 
domain, and an equilibrium constraint T = Tm plus the Stefan 
condition could be applied at the solid–liquid interface. This 
mimics the approach usually taken in analytical studies, such as 
those described earlier.

Alternatively, equations are sought that apply, at least approxi-
mately, throughout the system, and the interface is subsequently 
located as a contour of one of the dependent variables. In the 
case of a pure melt of temperature T∞ > Tm brought into con-
tact with a boundary of temperature T0 < Tm, for example, the 
enthalpy method would start with uniform enthalpy H (x, t = 0) = 
cps(T∞ − Tm) throughout a fixed domain then, at each point, evolve 
the enthalpy according to
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where k(ϕ) is the conductivity, with the temperature T and the 
phase fraction ϕ determined by inverting
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Note that the phase fraction ϕ is an artifact of the method, related 
to the fact that the phase boundary would like to be between the 
fixed grid points of the numerical scheme and is not the same 
as the solid fraction ϕ of a mushy layer. Such methods can smear 
the solid–liquid interface over several grid points. The location 
of the phase boundary is usually identified with the contour 
ϕ = 0.5. There are some drawbacks to such methods, but they 
can be outweighed by the convenience of computing on a single 
domain, particularly in higher dimensions if the phase bound-
ary becomes convoluted.

Another single-domain approach is the phase-field method, 
which starts with a weak form of the governing equations and 
includes a gradient energy proportional to |∇ϕ|2, which leads 
to behavior that mimics the curvature undercooling associated 
with the Gibbs–Thomson effect. This method has been used 
extensively to study branched or dendritic growth of single crys-
tals, including cases in which fluid flow is important (Boettinger 
et al. 2002).

An additional complication in using a single domain to 
compute solidification of systems involving mushy regions is 
the need for a single momentum equation that reduces to the 
Navier–Stokes equation in fully liquid regions and reduces to (or 
at least approximates) Darcy’s equation in the interior of mushy 
regions. The most common choice is to use the Brinkmann equa-
tion, which adds Darcy friction to the Navier–Stokes equations 

with a permeability that tends to infinity as the solid fraction 
tends to zero. The two-domain approach for such problems has 
its own difficulties. Principally, because of the hyperbolic char-
acter of the differential operator acting on the solid fraction in 
the mushy layer equations, the treatment of mush–liquid inter-
faces depends crucially on whether the material flow is from liq-
uid to mush or vice versa, which may not be known in advance 
of a computational time step.

As with all computational endeavors, there are horses for 
courses, and it pays to consider carefully the likely behavior of a 
system before choosing an appropriate algorithm.

35.3.5 � Experimental Studies

Many solidifying systems of interest are opaque and have 
melting temperatures that are difficult or inconvenient for 
laboratory study. There have been significant advances in our 
understanding of the solidification of mixtures, in particular, 
made by studying the crystallization of aqueous salt solu-
tions (Huppert 1990). Many of these are transparent, which 
has made possible visual observations of crystal habit and 
of convective flows in the melt. Flow observations have been 
made quite simply using dye streaks, shadowgraph images, or 
schlieren. These have revealed many fascinating phenomena, 
including double-diffusive convection of the melt (Figure 35.6) 
and plumes of residual fluid emanating from chimneys (called 
“brine channels” in the context of sea ice) formed by convec-
tion in mushy layers (Figure 35.7).

Temperature and composition (salinity) in solidifying systems 
can be measured using standard techniques: thermocouples or 
thermistors for temperature and conductivity probes or refrac-
tometers for concentration. More difficult to measure is the solid-
fraction distribution in mushy regions. Probably the first direct 
measurement of solid fraction was made using X-ray tomog-
raphy in a medical facility after completion of an experiment 
(Chen 1995). More recently, magnetic resonance imaging (MRI) 

Figure 35.6  (See color insert.) A vertical block of ice melting into 
a warm, stratified salt solution. Double-diffusive convection results in 
the formation of nearly horizontal, nearly uniform layers of water that 
are colder and fresher than the environment.
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has been used under laboratory conditions to measure the evo-
lution of solid fraction as well as the internal structure of chim-
neys (Aussillous et al. 2006). MRI has also been used in field 
experiments, exploiting the Earth’s magnetic field to measure 
the brine diffusivity and volume fraction of ice in thick multi-
year sea ice with a vertical resolution of about 20 cm (Callaghan 
et al. 1999). The evolution of solid fraction in growing sea ice 
has been measured in situ with a vertical resolution of 1 cm by 
measuring the electrical impedance between pairs of horizontal 
wires around which the ice grew (Notz et al. 2005). Such non-
destructive techniques as MRI or electrical impedance methods 
are important to develop if accurate remote monitoring of sea 
ice is to be achieved.

To this end, there is considerable effort in developing ways 
to sense the state of sea ice from orbiting satellites. Some vari-
ables, such as ice extent and ice concentration (area fraction 

covered by  ice), are relatively straightforward to detect by 
electromagnetic methods. On the other hand, ice thickness is 
very difficult to determine, in part because of snow and in part 
because the reflectivity to the microwaves used depends on the 
electrical properties of sea ice, which are sensitive to its brine 
content. Currently, more accurate measurements of ice thick-
ness are made using upward-looking sonar from submarines, 
but such data is sparse compared to the coverage that could in 
principle be obtained by satellite (Kwok and Rothrock 2009).

35.4 �A pplications

As indicated in the Introduction, there is a vast range of applica-
tions involving fluid flow coupled with phase change. Here we 
sketch a few interesting examples.

The inner core of the Earth, of current radius 1221 km, rep-
resenting 0.5% by volume and 2% by mass of the Earth, grows 
slowly by deposition of almost pure iron from the fluid outer core 
of molten iron and roughly 10% of impurities such as oxygen, 
sulfur, and nickel. The deposition rate is 2 × 106 kg s−1, approxi-
mately two orders of magnitude larger than the total iron and 
steel production on the surface of the Earth, yet the radius of 
the inner core currently increases at only about 1 mm per year. 
The compositional convection driven by the relatively light fluid 
(enriched in impurities) released during solidification through 
an electrically conducting medium maintains the magnetic field 
of the Earth. Without this field, life would be impossible because 
the field deflects the solar wind that would otherwise blow away 
the atmosphere. The inner core was initiated approximately 
2  ×  109 years ago and will become completely solidified after 
another 2 × 1010 years (by which time the sun will have burned 
itself out). The growth of the inner core is currently controlled 
by a balance between the decrease in heat content of the cooling 
outer core and the heat flux out at the top because the effective 
Stefan number is relatively small.

Solidification plays an essential role in igneous petrology—the 
study of rocks derived from a liquid melt of volcanic origin. The 
rich multicomponent melts solidify in magma chambers (large 
storage reservoirs of partially molten rock that power volcanic 
eruptions), in volcanic conduits, and in lava flows. An important 
component, even though present in small amounts (of order 1% 
by weight) is dissolved gas (such as H2O and CO2) which can 
exsolve due to pressure release and temperature change and alter 
the form of the resulting solid as well as drive vigorous motion. 
This is an area of extreme laboratory investigations, using very 
high temperatures and pressures. An example of considerable 
financial importance is the rather exotic magma formed up to 
450 km beneath the surface of the Earth that rises in so-called 
kimberlite pipes and is the major source of the world’s diamonds 
(Sparks et al. 2009).

A vertical surface of ice surrounded by water stratified by salt 
melts to produce a layered structure, as shown in Figure 35.6. 
While the relatively fresh meltwater rises in a thin, turbulent 
boundary layer adjacent to the ice, cooling extends further into 
the liquid region and drives a downward flow that detrains into 

(a)

(b)

Figure 35.7  (See color insert.) (a) The underside of columnar sea 
ice, showing ice platelets spaced slightly less than a millimeter apart 
and two brine channels of approximately 3 mm diameter. (b) A shadow-
graph image of the side view of growing sea ice (the black region at the 
top), showing the plumes of dense brine that emanate from brine chan-
nels and deliver salt to the underlying ocean. The image is of a region 
approximately 20 cm wide.
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the stratified exterior when it reaches a level of neutral buoyancy. 
Mixing between these counter-flowing layers increases the salin-
ity of the rising meltwater and takes some of it into the horizon-
tal layers, which thus ruins the potential to harvest freshwater 
simply from icebergs. The thickness of the intruding layers can 
be determined quantitatively; and the theory has been compared 
successfully against numerous laboratory experiments (Huppert 
and Turner 1981) and the layers formed adjacent to the Erebus 
Glacier Tongue in the Antarctic.

The solidification of multicomponent melts in molds is 
an essential and very successful aspect of the metallurgical 
industry (Hurle 1993). Amorphous (noncrystalline) alloys called 
glasses can be produced by spin casting at rapid cooling rates of 
millions of degrees per second. Glasses also occur as a result of 
rapid volcanic eruptions, both within volcanic conduits and in 
the resultant hot plume cooled by contact with the atmosphere. 
By contrast, epitaxy is a process of slow deposition of a thin film 
onto a monocrystalline substrate from either gaseous or liquid 
precursors. The substrate acts as a seed crystal and the epitaxial 
film adopts its crystalline structure and orientation. Epitaxy 
is widely used to manufacture silicon-based semiconductors 
such as bipolar junction transistors within integrated-circuit 
microcontrollers and microprocessors. At a more prosaic level, 
concrete solidifies on mixing and reacting with water to be the 
world’s most used synthetic material, approximately 8 km3 being 
manufactured each year (more than 1 m3 per person per year) 
in a multibillion-dollar industry that contributes approximately 
5% of the world’s anthropogenic emission of CO2.

Clathrate hydrates, first documented by Sir Humphrey Davy 
in 1810, consist of a molecular cage of solid ice enclosing gases 
such as water vapor, methane, carbon dioxide, and hydrogen 
sulfide (Buffett 2000). They form at high pressures, and on 
Earth they exist within sea-floor sediments along deep conti-
nental margins. In the Martian ice caps, they sequester large 
amounts of water vapor and carbon dioxide from the atmo-
sphere. It has been estimated that on Earth about 1012 kg of car-
bon is trapped in oceanic sediments as methane hydrates with 
a smaller amount in permafrost regions, a total that represents 
the largest hydrocarbon source on Earth. Because methane is 
such a strong greenhouse gas, the release of large quantities of 
methane from these hydrates could have serious consequences 
for global climate.

Intermolecular disjoining forces exist between ice and many 
other materials when they are brought into contact. These cause 
the ice to melt (pre-melt because this phenomenon occurs at 
temperatures below the bulk melting temperature) in a thin sur-
face film (of the order of tens of nanometers) and generate high 
pressures between the ice and its substrate that cause water to be 
sucked toward colder regions of partially frozen, saturated soils 
(Wettlaufer and Worster 2006). This is the underlying cause of 
frost heave, which results in potholes in roads and is a major 
geomorphological agent, fracturing rocks and forming various 
types of patterned ground.

Significant attention is currently being paid to the fate of 
sea ice, which may soon be absent from the Arctic Ocean 

during summer months, though the ocean is likely to remain 
ice-covered in winter for the foreseeable future. The seasonal 
waxing and waning of the sea-ice cover drives a high-latitude 
distillation process in the oceans: salt is rejected by the growing 
sea ice and is carried buoyantly into the mixed layer or deeper 
into the abyss; melting sea ice forms a relatively fresh cap on 
the oceans that resists convective overturning. After the initial 
buoyancy-driven instability described earlier, brine convect-
ing in the interstices of sea ice dissolves the ice matrix to form 
channels that provide the principal conduit for salty plumes to 
be injected into the ocean (Figure 35.7, Wettlaufer et al. 1997).

On the surface of very young sea ice, when it is only a few 
centimeters thick, beautiful fern-like clusters of ice crystals 
called frost flowers can form. Concentrated brine is wicked up 
from the interstices of the underlying sea ice to form a liquid 
surface layer on frost flowers in which bromides from seawater 
are converted to bromine monoxide, which is carried into the 
atmosphere and contributes to the depletion of ozone. High in 
the atmosphere, the pre-melted surfaces of ice crystals enhance 
a wide range of reactions, making ice a key component of atmo-
spheric chemistry.

35.5 � Major Challenges

Interactions between phase change and fluid flow involve phys-
ics on a vast range of scales, from the nanoscale of pre-melted 
liquid films through the microscale of dendritic snowflakes 
and the interstices of mushy layers, to the macroscales of brine 
channels and the megascales of ocean circulations. The major 
challenges facing this branch of science relate to understanding 
the physics of these multiscale processes sufficiently to codify 
them efficiently within predictive mathematical models. There 
are important questions relating to the evolution of sea ice and 
the associated brine fluxes that contribute significantly to the 
thermohaline circulation driving, together with wind stresses, 
the Gulf Stream, and other major oceanic features that affect 
regional climate.

The mathematics of phase change is relevant to other systems 
that do not involve thermodynamic phase change. Examples 
include predicting the shape and evolution of alluvial fans, 
where the advancing phase is the sedimentary bed; calculating 
the heat and salt fluxes across double-diffusive interfaces, where 
the phases are turbulent and quiescent fluid regions; and estab-
lishing the location and stability of marine-ice-sheet grounding 
lines, separating grounded ice sheets from floating ice shelves. 
In all these examples, the major challenge is to understand the 
physical processes sufficiently to derive tractable mathematical 
models capable of making robust predictions.

It is clear that flows involving phase change are an integral 
part of many phenomena and processes that affect our environ-
ment. Their understanding requires collaborations across many 
scientific disciplines, and it is essential that the mathematical 
and numerical approaches that are increasingly used to make 
predictions of our future environment are tested against well 
controlled and characterized experiments.
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