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[1] Gravity drainage of brine through liquid brine channels
is the dominant mechanism for the desalination of growing
sea ice. We describe and determine mathematically the
essential physics of this process, elucidating the connection
between downward flow in brine channels and a
convective upward flow in the rest of the porous ice,
which we show has a vertically linear structure and
strength proportional to a Rayleigh number. Our simple
dynamical model of this process is used to interpret the
exponential propagation of dye fronts in laboratory
experiments. We propose that using our new, derived
parameterization for gravity drainage in sea ice in terms of
two unknown parameters could lead to computationally
feasible improvements to thermodynamic sea-ice models.
Citation: Rees Jones, D. W., and M. G. Worster (2013), A simple
dynamical model for gravity drainage of brine from growing sea
ice, Geophys. Res. Lett., 40, 307–311, doi:10.1029/2012GL054301.

1. Introduction

[2] The polar seasonal cycle sees an enormous volume of
sea ice frozen each year. As leads open up and refreeze, and
as pack ice thickens over the winter, salt water is initially
held within a matrix of porous sea ice. The interstitial
brine becomes increasingly concentrated in salt, which is
segregated from the solid phase as the ice continues to freeze.
This increasingly dense brine can then drain from the ice under
the action of gravity, both reducing the salinity of the ice and
causing plumes of dense brine to sink into the polar oceans,
leading to bottom-water formation and vertical mixing. It is
important to understand this process of gravity drainage, along
with other mechanisms such as flooding and flushing that
affect the salinity of sea ice, in order to determine the thermal
and mechanical properties of sea ice [reviewed in Weeks,
2010, ch. 10], and also to model the polar climate system
[Holland et al., 2006; Vancoppenolle et al., 2009].
[3] However, while the significance of gravity drainage to

brine fluxes from sea ice during its winter growth has long
been acknowledged [Untersteiner, 1968; Niedrauer and
Martin, 1979; Notz and Worster, 2009], it has proved
difficult to incorporate this process directly in the sea-ice
component of Global Climate Models in a sufficiently

simple fashion [Hunke et al., 2011]. Indeed, even the most
resolved, established sea-ice models (such as CICE: the
Los Alamos sea ice model) prescribe the bulk salinity of
the ice, use it to calculate its thermal properties, and
then calculate the thermodynamic growth of the ice
[Maykut and Untersteiner, 1971; Bitz and Lipscomb, 1999].
Although this approach is a reasonable starting point, a
dynamically informed model to predict the bulk salinity would
constitute a major advance and would increase confidence in
the predictions of Global Climate Models in significantly
changed climatic conditions in which the proportion of first-
year ice might be much higher and the previously prescribed
salinity profiles, which are more appropriate to multi-year
ice, might consequently be less appropriate.
[4] Some recent theoretical studies approached this

challenge by treating sea ice as a two-phase reactive
porous medium and solving partial differential equations
for heat, salt, and mass conservation, using Darcy’s law
for the interstitial fluid flow. Oertling and Watts [2004]
and Wells et al. [2011] constitute important, contrasting
studies in this vein.
[5] In this paper, we describe a simple theoretical model

that dynamically captures gravity drainage through narrow
liquid brine channels within the ice. In particular, we calcu-
late the strength of the interstitial upwelling away from the
main channels required to replace the interstitial liquid that
flows into the brine channels and thence into the ocean.
We then use our results to interpret the classic experiments
of Eide and Martin [1975] concerning dye-front propagation
in laboratory-grown sea ice, which provides a consistency
check for our model.

2. Physical Description

[6] Fluid flow in sea ice associatedwith gravity drainage is not
restricted to liquid brine channels; rather, that flow is part of a
convective circulation that occurs throughout the porous ice,
since the brine-rich liquid that leaves the ice through brine chan-
nels must necessarily be replaced by liquid flowing into the ice
from the ocean. Therefore, there is a net upwelling in the bulk
of the ice, a phenomenon that has been observed by Eide and
Martin [1975], who describe this as entrainment, but whose
significance is arguably under appreciated.
[7] In growing ice, convection is sustained by the following

physical mechanism. The ice near a brine channel (both the
solid matrix and interstitial brine) is cooled by conduction
from the cold liquid flowing down the channel; relatively
cold interstitial brine is also relatively concentrated, since the
freezing temperature of salt water decreases with salinity,
and to a very good approximation the interstitial brine is at
local thermodynamic equilibrium [Feltham et al., 2006]; this
establishes the horizontal density gradient of the interstitial
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brine that sustains convection, and we determine this flow
mathematically in section 3.
[8] While postmortems of sea ice often reveal a brine drain-

age network that persists through much of its depth [e.g., Lake
and Lewis, 1970], there is evidence (for instance, Eide and
Martin [1975], discussed in section 4) that after an initial tran-
sient period when convection leading to brine transport can
occur within the whole depth of ice, convection is confined
to a relatively thin layer at the bottom of the ice, as indicated
in Figure 1. It has been suggested that above this layer the
ice has a porosity below some critical porosity (say 5%) at
which the permeability of the ice drops essentially to zero
[Golden et al., 2007]. The observation of confinement of the
flow is, alternatively, also consistent with a suggestion that
the depth of the convecting layer is set by a critical Rayleigh
number that depends on both the permeability and the local
temperature gradient. This interpretation was made following
the field experiments of Notz and Worster [2008], developing
the previous observation that delayed onset of gravity drainage
is controlled by a critical Rayleigh number [Worster, 1997;
Wettlaufer et al., 1997].
[9] The flow within a brine channel itself is only part of

the overall mechanism of gravity drainage in sea ice. While
the channel flow has received much attention (for example,
Lake and Lewis [1970] use the theoretical study of convec-
tion in a semi-closed pipe by Lighthill [1953] to interpret
flow in a brine channel, which is not appropriate since the
surrounding ice is a porous medium), continuity requires
that any description of gravity drainage must include the
sustaining convective flow in the bulk of the ice.

3. Mathematical Model

[10] Here we present a simple framework in the context of
idealized governing equations to determine the structure of
this sustaining convective flow.

3.1. Governing Equations

[11] In the sense that sea ice is a two-phase reactive porous
medium, it constitutes a mushy layer [Feltham et al., 2006].
The mushy-layer equations [Worster, 1992, 1997] adopt the
approach of continuum mechanics in averaging equations of

heat, salt, and mass conservation over the two phases, using
Darcy’s law for the interstitial fluid flow, described by the
Darcy velocity u and pressure p. The temperature T and
interstitial brine salinity C are coupled by local thermody-
namic equilibrium, and we assume that the associated
liquidus relationship is linear. This allows us to introduce
a single dimensionless variable for both: θ = (T� T0)/ΔT=
� (C�C0)/ΔC, where ΔT= T0�Ta and ΔC=Ca�C0 are
the temperature and interstitial salinity differences across
the whole depth of ice, respectively, as shown in Figure 1.
Taking the idealizations discussed below, we use the steady
ideal mushy-layer equations [Worster, 1997], which are
given non-dimensionally by

Ωu�rθ ¼ r2θ; (1)

r�u ¼ 0; (2)

u ¼ Ra �rpþ θkð Þ; (3)

where k is a unit vector in the vertical direction.
[12] The groupΩ ¼ 1þ L= �Tacp

� �
, where cp is the specific

heat capacity of the ice andL is the latent heat of solidification,
is the dimensionless factor by which the effective heat capacity
of sea ice is enhanced by phase change [Huppert and Worster,
2012]. In particular,Ωcp is a simplified form of the dimensional
effective heat capacity derived by Feltham et al. [2006].
[13] The important dimensionless Rayleigh number,

which represents the ratio of available potential energy for
convection to diffusive and dissipative effects, is defined by

Ra ¼ gbΔCKH=nk; (4)

where g is acceleration due to gravity, k is the thermal
diffusivity, n and r are the kinematic viscosity and density
of water, respectively, b=r�1@r/@C is a solutal expansion co-
efficient, and K is a typical permeability. The permeability
depends on the local porosity of the convecting layer;
however, for practical applications of our model, K can be
taken as a mean value over the convecting layer [cf. Notz
and Worster, 2008]. We use a quasi-steady approximation in
which the growth rate _h is constant on the timescale of convec-
tive turnover in which case an appropriate vertical length scale
is H ¼ k= _h.
[14] The idealizations made in (1)–(3) isolate the mecha-

nism of gravity drainage, which is the dominant mechanism
of desalination in growing sea ice [Untersteiner, 1968; Notz
and Worster, 2009; Weeks, 2010]. Thus, we neglect the
diffusion of salt, which accounts for brine pocket migration
but is a very slow process [e.g., Untersteiner, 1968]. Further-
more, we neglect all differences in the properties of the phases,
including in density, which accounts for brine expulsion
[Bennington, 1963]. This process causes weak redistribution
of salt within the ice but causes no salt flux from the ice [Notz
and Worster, 2009]. Finally, we assume that _h≪w, the vertical
Darcy velocity, such that the dominant balance in the heat
equation is between conduction and convective transport.
The resulting equations (1)–(3) provide the simplest meaning-
ful mathematical description of convection within sea ice.
[15] Given the assumptions underlying the ideal mushy-

layer equations, the equation expressing conservation of salt

@S

@t
¼ �w

@C

@z
(5)

is decoupled from equations (1)–(3) describing buoyancy-
driven flow [cf. Worster, 1997]. In this equation, S= (1�f)C

Figure 1. A schematic diagram of a one-dimensional
model of sea ice: (a) typical temperature T and interstitial
salinity C profiles; (b) sketch of convective flow within the
ice (thin arrows) and down through brine channels into the
ocean (thick arrows). Often this flow only occurs in a lower
convecting layer between z= zc and z = h, as indicated.
However, this is not a restriction imposed by our model.
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is the bulk salinity, since we may neglect the salt content of
solid ice which is very small, and we have also neglected
molecular diffusion of salt as discussed above. Then, having
determined the upwelling velocity w as we describe below,
equation (5) can be used to determine the evolution of bulk
salinity field and hence the solid fraction.

3.2. Channel-Active-Passive (CAP) Model

[16] The CAP model provides a simple characterization of
convective solutions to (1)–(3). Full mathematical details are
presented in Rees Jones and Worster [2013]; here we adapt
our previous results from steady, directional solidification to
the transient growth of sea ice. The CAP model can be
applied in both two and three dimensions. For clarity, we
sketch this approach applied to a periodic planar array of
brine channels of separation 2L. We introduce a stream
function c such that u= (�cz,cx) satisfies the mass conser-
vation equation (2). Throughout this paper, subscripts x and
z denote partial derivatives. Then by taking the curl of (3),

r2c ¼ �Raθx: (6)

[17] Figure 2 shows how we divide up our periodic
domain into the brine channel, the active region and the
passive region to facilitate analytic progress. Firstly, in
the passive region, which is defined by imposing that the
temperature there is horizontally uniform (θx= 0), we take
the temperature to be vertically linear, which is appropriate
for a relatively thin convecting layer. Therefore,

θ ¼ θ0 z� hð Þ= zc � hð Þ; zc ≤ z ≤ h; (7)

where θ0 =�ΔCe/ΔC, in which ΔCe =Cc�C0 is the intersti-
tial brine salinity difference across the convecting layer.
Horizontal uniformity means that (6) simplifies to Laplace’s
equation r 2c = 0. Vertically linear solutions for c corre-
spond to horizontally uniform upwelling velocities, which
are consistent with horizontally uniform solutions for θ.
Therefore, the most general solution of this form that satis-
fies no flow through the periodic boundary at x =L or at
the top of the convecting region at z = zc is

c / L� xð Þ z� zcð Þ; (8)

which corresponds to horizontally uniform upwelling.
[18] Secondly, the overall strength of the flow, or equiva-

lently the proportionality factor in (8), is determined by
matching this uniform upwelling in the passive region to
an analytical solution of equations (1) and (6) in the active
region near the chimney. This is defined as the region in
which the temperature is not horizontally uniform (θx 6¼ 0).
The horizontal temperature gradient corresponds to a
horizontal density gradient so there are active buoyancy
forces in this region driving convection. Inside the
brine channel itself, we follow Chung and Worster [2002]
in determining the flow analytically using a lubrication
(narrow-chimney) approximation.
[19] The salt flux from the ice into the ocean depends on

channel spacing L. We find that there is both a minimum
channel spacing [Wells et al., 2010] and also a minimum
width of the active region needed in order to sustain gravity
drainage through channels. Therefore, horizontal density
gradients in the surrounding ice sustain gravity drainage
through channels. However, the mean channel spacing L
remains undetermined. We follow the recent suggestion of
Wells et al. [2010, 2011] that L takes the value that
maximizes the salt flux. This avoids prescribing L, which
is not an external parameter, and importantly allows us to
determine the solution completely in terms of the single
proportionality factorW(Ω) which can be computed cheaply.
However, since the model includes a number of idealiza-
tions, for quantitative implementation we propose tuning
this factor with experimental results.
[20] In conclusion, the dimensional vertical component of

Darcy velocity w in the passive region, which gives a
measure of the mean upwelling outside the brine channel, is

w ¼ � k
h� zc

Rae
z� zc
h� zc

W Ωð Þ; (9)

where

Rae ¼ gbΔCeK h� zcð Þ½ �=nk (10)

is an effective Rayleigh number across the convecting layer.
By integrating equation (5) for local salt conservation using
equation (9) for the upwelling velocity w, we can determine
the net salt flux from the mushy layer due to gravity
drainage.

3.3. Comparison with Some Alternative Models

[21] These conclusions contrast with some recent sugges-
tions about parameterizations of gravity drainage. They are
fundamentally different to enhanced molecular diffusion or
mixing-length diffusion [Vancoppenolle et al., 2010; Jeffery
et al., 2011]; gravity drainage is an advective process.
Consistent with this, our advective parameterization always
transports salt (and any passive tracers) in the direction of
the fluid flow and necessarily desalinates ice. By contrast,
diffusive parameterizations imply down-gradient transport.
[22] Our model is closer to the prescription of a vertical

velocity proportional to a Rayleigh number proposed by
Petrich et al. [2011]; our mathematical modeling provides
a solid justification for this kind of approach. However,
whereas they impose a vertically uniform vertical velocity,
we determine a linear structure (9). Our concept of the
passive region matched to the active region around brine

Figure 2. The Channel-Active-Passive (CAP) model. The
vertical component of Darcy velocity w is uniform in the
passive region but changes in the active region owing to
the horizontal density gradient driving convection. Note
that the shape of the isotherms is similar to the profile of
vertical velocity: the temperature is horizontally uniform in
the passive region and lower in the active region neat the
brine channel.
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channels shows theoretically that horizontally uniform
vertical velocity corresponds to vertically linear vertical
velocity. The concept of Petrich et al. [2011] requires much
of the interstitial liquid to enter the brine channel at the top
of the convecting region by conservation of mass. This
seems unlikely both given the description of the nature
of convection we argued for in section 2 and also given
the observed tributary structure to brine drainage systems
[e.g., Lake and Lewis, 1970]. Furthermore, the linear struc-
ture to the vertical component of the Darcy velocity given
in (9) that we found is consistent with the experimental
observations of Eide and Martin [1975] and Chen [1995],
as we now demonstrate.

4. Analysis of Previous Experiments

[23] Eide and Martin [1975] investigate the interstitial
flow by injecting dye into the liquid beneath growing ice
in a laboratory, observing its horizontally uniform “entrain-
ment” into the ice. For two cases, they measure the average
height of the dye front as a function of time, which we repro-
duce in Figure 3, to which they fit exponential curves of the
form a[1� exp(�bt)].
[24] This exponential time dependence is explained by our

simple model and fundamentally arises from the linear verti-
cal structure we found for the vertical velocity. Neglecting
diffusion of the dye, the dye front zd(t), which satisfies
zd(0) = h, is governed by

dzd
dt

¼ w zd ; tð Þ ¼ �b zd � zcð Þ; (11)

using (9), where b =RaeW(Ω)k/(h� zc)
2. This equation can

be integrated immediately, assuming that the depth of the
convecting layer h� zc evolves slowly compared to the
dye-front position zd. Together with the initial condition,

integrating (11) shows that the height of the dye front above
the injection point is

h� zd ¼ h� zcð Þ 1� exp �btð Þ½ �: (12)

[25] This exponential time dependence contrasts, for ex-
ample, with the piecewise linear time dependence that
results from the model of Petrich et al. [2011]. Equation
(12) provides a simple interpretation of a and b in Eide
and Martin [1975]:

a ¼ h� zc; (13)

the depth of the convecting layer, and, on rearrangement,

b ¼ Rae
k

h� zcð Þ2 W Ωð Þ � gb
n

ΔCe

h� zc
KW Ωð Þ: (14)

[26] Further confirmation of the linear vertical structure in
(11) from the experiments of Chen [1995] on a different
physical system is presented in the Auxiliary Material.

5. Conclusions

[27] We have derived a new parameterization for gravity
drainage in sea ice theoretically in terms of two unknown
parameters. Our mathematical modeling and experimental
comparison indicate the existence of a convecting layer in
which the mean upwelling velocity is vertically linear and
proportional to an effective Rayleigh number. The dye-front
experiments described above offer a systematic way to
investigate both the behavior of the tuning parameter W(Ω)
and also the question of how the depth of the convecting
layer h� zc is determined physically. A theoretical determi-
nation of the latter is required for a complete implementation
of our model; however, the suggestions outlined in section 2
can already be tested.
[28] The CAP model constitutes a new dynamical

approach to modeling gravity drainage from sea ice. Using
the CAP model to determine the vertical upwelling velocity
w would allow a thermodynamic sea-ice model to determine,
rather than prescribe, the bulk salinity profile. Such a
modified sea-ice model would conserve salt as well as heat
in the ice-ocean system and dynamically determine the heat
capacity and thermal conductivity of the ice, the additional
vertical heat transport due to convection within the ice, and
net brine fluxes into the ocean.
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this paper.
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