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Abstract

Marine ice sheets, which are those that terminate in the ocean forming a floating ice shelf, dominate the ice sheets

of West Antarctica, where much of the bedrock is below sea level. The weight of the thick ice sheets keep them in

contact with the bedrock until they are thin enough to float on the ocean as ice shelves. This paper reports mathematical

models and associated laboratory studies of analogue systems using either Newtonian or shear-thinning viscous fluids to

represent flowing ice. It is shown that the rheology has little influence on the qualitative behaviour of grounded flows but

floating, shear-thinning shelves are found experimentally to be subject to a fingering instability reminiscent of features

seen in Antarctic ice shelves.

c© 2013 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Herbert Huppert and Jiachun Li
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1. Introduction

In the decade 1993 to 2003, global sea level rose by almost 3 mm yr−1. More than half of this rise

can be attributed to thermal expansion of the oceans and most of the rest to melting of glaciers and ice

sheets. Predictions made in the most recent IPCC report are for a similar rate of sea-level rise in the next

hundred years, leading to a total rise of a few tens of centimetres. Estimates of the rates at which terrestrial

ice sheets will melt can be made fairly reliably given predictions of atmospheric warming. However, the

flow and possible collapse of marine ice sheets are much harder to predict. There is therefore much current

research devoted to understanding the physical controls on the flow of marine ice sheets and to understanding

their stability at the grounding line where they detach from bedrock to form floating shelves. This article

illustrates some of the fundamental fluid-mechanical controls on the flow of grounded sheets and floating

shelves using simple laboratory analogues and associated mathematical modelling.

On large, continental scales, ice flows as a viscous, non-Newtonian fluid. It is most commonly modelled

using Glen’s flow law, which treats the ice as a simple, shear-thinning fluid in which the viscous stresses are

proportional to a power 1/n of the rate of strain, with n often taken equal to 3. For much of the discussion

here, we shall treat ice as a Newtonian fluid, for which n = 1, but we shall consider the effects of n > 1

towards the end of the article.
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Fig. 1. A laboratory experiment in which golden syrup flows down a sloping bed into a denser layer of potassium carbonate solution.

This account of the presentation given at ICTAM 2012 is based on the papers listed in the bibliography at

the end [1–5]. References to the associated literature can be found in those papers.

2. Newtonian modelling of two-dimensional sheets and shelves

A laboratory experiment that illustrates the geometry of a two-dimensional, sheet–shelf system is shown

in Fig. 1. Viscous golden syrup is introduced at a constant rate at the top of a rigid slope and forms a flow

that is initially grounded on the slope. At some distance from the source, the flowing syrup detaches from

the slope to form a floating shelf. The locus of detachment is the grounding line.

The grounded part of the flow forms a type of viscous gravity current, which have been studied ex-

tensively and are reviewed here briefly in the context of two-dimensional flow along a horizontal, rigid

boundary. In such flows, illustrated in Fig. 2a, the dominant force balance is between horizontal gradients in

hydrostatic pressure and viscous stresses associated with vertical shear. This balance is represented within

a thin-film approximation by

ρg
∂h
∂x
≈ μ∂

2u
∂y2
, (1)

where u(x, y, t) is the horizontal velocity of the current, h(x, t) is the height of its free surface, ρ and μ are

its density and dynamic viscosity, and g is the acceleration due to gravity. Equation (1) can be integrated

subject to no slip at the base y = 0 and no stress at the upper surface y = h to give the parabolic velocity

profile

u = −ghx

2ν
y(2h − y), (2)

where ν = μ/ρ is the kinematic viscosity and hx ≡ ∂h/∂x. The associated horizontal volume flux is

q ≡
∫ h

0

u dy = −gh3hx

3ν
, (3)

which can be used within the continuity equation

∂h
∂t
+
∂q
∂x
= 0 (4)

to give a nonlinear diffusion equation for the thickness of the flow

∂h
∂t
=

g
3ν

∂

∂x

(
h3 ∂h
∂x

)
. (5)

This equation can be solved given the source condition q = q0 at x = 0 and a second condition that, when

the flow evolves self-similarly, is often expressed as an integral constraint on the volume of the current.

However, for more general situations it is necessary to provide an evolution equation for the position of the
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end of the current, which can be determined from consideration of conservation of mass in a small control

volume around the end of the current to be

ẋN,kin = lim
x→xN

q
h
= − g

3ν
h2hx. (6)

This kinematic evolution equation expresses the fact that the current simply advances at the rate at which

material is supplied to the end of it.
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Fig. 2. Schematic diagrams of (a) a viscous gravity current on a rigid surface and (b) a floating, viscous extensional gravity current.

In contrast with the shear-dominated sheet, the leading-order flow in the shelf is vertically uniform but

undergoes longitudinal strain, as illustrated in Fig. 2b. Its horizontal velocity u(x, t) satisfies an elliptic

equation

2μ
∂

∂x

(
H
∂u
∂x

)
=
ρg′

2
H
∂H
∂x
, (7)

where g′ = (ρw − ρ)/ρw and ρw is the density of the ocean, coupled with a hyperbolic equation

∂H
∂t
+
∂

∂x
(Hu) = 0 (8)

for its thickness H(x, t). These equations can be solved given a source condition of constant flux q = q0 at

x = x0 to show that

H = H0

[
1 + g′H2

0(x − x0)/4νq0

]−1/2
, (9)

independent of time: the fluid simply fills a constant envelope with the front accelerating according to

xN − x0 =
q0

H0

t +
g′

16ν
q0t2, (10)

where H0 = H(0, t) is prescribed to be constant.

The shelf floats on the ocean and we make the assumption that it is in simple Archimedian balance. In

particular, we assume that this balance is achieved in the sheet at the grounding line so that

h(xG(t), t) =
ρw

ρ

g′

g
b(xG(t)), (11)

which can be differentiated with respect to time to determine an evolution equation for the grounding line

∂h
∂x

ẋG +
∂h
∂t
=
ρw

ρ

g′

g
db
dx

ẋG, (12)

where the spatial derivatives are taken in the sheet. This equation relates changes in position of the grounding

line to thickening or thinning of the sheet there.

A longitudinal force balance across the grounding line

4μ
∂q
∂x
+ 2ρgH2

(
∂h
∂x

)2
= 1

2
ρg′H2 (13)
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can be applied given a questionable assumption that viscous bending stresses are negligible at the grounding

line. Part of the motivation of the experiments described below is to test the validity of such assumptions in

models of marine ice sheets coupled dynamically to floating ice shelves through their grounding lines.

The previous two equations can be combined to determine an equation for the dynamic evolution of the

grounding line (
ρw

ρ

g′

g
db
dx
− ∂h
∂x

)
ẋG,dyn =

gH2

2ν

(
∂h
∂x

)2
− g′H2

8ν
. (14)

In certain circumstances, this equation predicts that the grounding line advances more quickly than material

can be supplied to it from the sheet. In such circumstances, a shelf cannot form and the edge of the sheet is

predicted to advance kinematically according to Eq. (6).

Fig. 3. Computational results for the evolution of a two-dimensional sheet–shelf system on a uniform slope, fed by a constant flux.

Note that the shelf advances some way before a shelf forms and that a steady state is reached eventually.

Equations similar to Eqs. (5) – (8) can be solved numerically to determine the profiles shown in Fig. 3

for viscous fluid introduced at constant rate at sea level at the top of a uniform slope of gradient α. It can

also be determined that xG ∝ t4/5 at early times and tends to a steady value

xG =
1

α

ρ

ρw

(
6νq0

g

)1/3 ( g
g′

)1/6
(15)

as t → ∞. This latter prediction was compared with the maximum run-out distance of grounding lines in

experiments similar to that shown in Fig. 1. The parametric dependences in Eq. (15) gave some correlation

of the experimental data but generally underpredicted the experiments. The mismatch was suggested to be

due to the rise in sea level caused by the addition of the viscous fluid and to horizontal shear stresses in the

shelf due to its contact with the rigid side walls of the experimental tank.

3. Newtonian modelling of axisymmetric shelves

It is relatively straightforward to ensure experimentally that the level of the inviscid fluid (sea level) is

maintained constant. On the other hand, the horizontal stresses exerted on a shelf confined to a channel or

bay are an important aspect of natural ice shelves, giving stability to the grounding line by buttressing the

ice sheet. Nevertheless, in an effort to understand the dynamical evolution of grounding lines without theffff

added complications of horizontal shear, we have carried out a systematic study of axisymmetric sheet–shelf

systems, as illustrated in Fig. 4.

An axisymmetric shelf is a relatively simple example of a general three-dimensional shelf, whose depth-

integrated properties can be determined from the two-dimensional equations

∇(μ(( H∇ · u) + ∇ · (μ(( He) =
ρg′

2
H∇H, (16)
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Fig. 4. The evolution of an axisymmetric sheet–shelf system of golden syrup introduced into a denser layer of potassium carbonate

solution.

∂H
∂t
+ ∇ · (Hu) = 0. (17)

The axisymmetric forms of these equations

∂

∂r

[
H
(
2
∂u
∂r
+

u
r

)]
+ H
∂

∂r

(u
r

)
=

g′

2ν
H
∂H
∂r
, (18)

∂H
∂t
+

1

r
∂

∂r
(rHu) = 0 (19)

can be solved subject to source conditions at a radial origin

lim
r→0

(2πrHu) = Q0, H(0, t) = H0, (20)

where Q0 and H0 are constants, and front conditions

2
∂u
∂r
+

u
r
=

g′

4ν
H, ṙN = u (r = rN). (21)

Solutions to these equations, which are illustrated in Fig. 5, reveal interesting dynamical balances.

Asymptotic analysis shows that at early times the flow is purely extrusional: buoyancy forces are negli-

gible and the front advances under a balance of radial and azimuthal viscous stresses such that

rN ∼ ηN

(
Q0

2πH0

t
)1/2
, t → 0, (22)

where ηN is a constant. As time progresses, the viscous shelf reaches a steady state H(r, t) ∼ H(r) near the

source, r � rN , though the greater proportion of the shelf remains time dependent, governed by a balance

between buoyancy and viscous forces and spreading self-similarly with

rN ∼ ξN
(

Q0g′

2πν

)1/2
t, t → ∞, (23)
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Fig. 5. The computed evolution of an axisymmetric, floating shelf

where ξN is a constant. This latter expression gives excellent predictions of controlled laboratory experi-

ments, as shown in Fig. 6. The experiments are challenging because, on the laboratory scale, surface tension

exerts a significant force on the shelf. This was overcome by creating viscous shelves along the interface

between two relatively inviscid aqueous fluids of different densities.

Fig. 6. Comparison between experimental data and theoretical predictions for the extent of a floating shelf fed by a constant flux.

4. Newtonian modelling of axisymmetric, coupled sheets and shelves

The modelling of axisymmetric, grounded sheets follows that of axisymmetric, viscous gravity currents

and is structurally similar to the modelling of two-dimensional sheets. It is a special case (n = 1) of the

modelling of power-law, viscous gravity currents presented below. The equations governing the sheet can

be coupled to those describing the shelf, presented in the previous section, by employing the same physical

considerations that were described in Sect. 2. These lead to the dynamical equation

(
−∂H
∂r

)
ṙN,dyn =

g
2ν

H2

(
∂h
∂r

)2
− g′

8ν
H2 − q

2r
− 1

2

∫ rN

rG

H
∂

∂r

(u
r

)
dr. (24)
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The first two terms on the right-hand side represent the same dynamical components that were present in

two dimensions. The third term relates to thinning of the sheets associated with radial spreading. The final

term includes the viscous hoop stresses in the shelf created as material in the shelf is stretched azimuthally.

Note particularly that the grounding line is influenced by the accumulated (integrated) hoop stresses within

the whole shelf, not just by local viscous stresses.

Fig. 7. The early time structure of a gravity current introduced into a layer of denser, inviscid fluid. If the layer is shallow (left) then a

sheet forms with no shelf. If the layer is deeper (right) then a shelf can form from the outset.

Buoyancy and viscous forces are involved from the outset, combined in a similarity solution in which

rG,N = ηG,N

(
νQ0

2πg

)3/8 (g
ν

)1/2
t1/2, (25)

where ηG,N are constants. Depending on the dimensionless depth of the ocean D = b0(ρw/ρ)(2πg/νQ0)1/4,

the shelf can either form straight away (in a relatively deep ocean) or the sheet advances kinematically until

the radial viscous forces within it have reduced sufficiently to balance the hydrostatic force of the (relatively

shallow) ocean. These two forms of early-time behaviour are illustrated in Fig. 7.

rG

Fig. 8. Steady positions of a radial grounding line in oceans of different depths. When a shelf is present then steady grounding lines

are achieved for all depths of ocean. There is no steady state if the shelf is absent in a deep ocean.

The most significant insight revealed by analysis of this system is that the buttressing hoop stresses in

the shelf allow steady grounding lines for all depths of ocean (Fig. 8) but that if the shelf is removed and the

ocean is sufficiently deep (D >
√

3) then the grounding line recedes all the way to the origin – the ice sheet

is no more!

Experiments have confirmed these predictions of the initial evolution of the grounding line and the front

of the shelf (Fig. 9) but, despite every effort to control possible extenuating effects, show that the grounding

line of an axisymmetric sheet fed by a constant flux continues to advance where the theory presented above

predicts that it should have reached a steady position. Having carefully evaluated and eliminated from
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Fig. 9. Comparison between laboratory measurements and theoretical predictions for the positions of the grounding line (lower data

and curve) and the front of the shelf (upper data and curve).

consideration a number of other potential causes for this observation, we are left with the conclusion that

this discrepancy is a consequence of the neglect of viscous bending stresses in the neighbourhood of the

grounding line.

5. Non-Newtonian, axisymmetric viscous gravity currents

Ice sheets are typically modelled as having a simple shear-thinning (power-law) rheology with a dynamic

viscosity given by

μ = μ̃
(

1
2
E : E

)( 1
n−1)/2

, (26)

where E is the rate-of-strain tensor and μ̃ is a material constant. This makes the equations employed in most

studies algebraically cumbersome, though it is often the case that they are structurally similar to the more

transparent equations describing Newtonian flow. There is little discussion of whether the shear-thinning

rheology causes qualitatively different behaviour relative to that of a Newtonian fluid or is simply believed

to give quantitative accuracy to the predictions of dynamically similar flows.

Consider, for example, the flow of an axisymmetric gravity current fed from a point source with constant

flux Q0. The leading-order dynamical equation, expressing a balance between vertical shear stresses and

horizontal buoyancy gradients, is
∂

∂y

(
μ
∂u
∂y

)
≈ ρg∂h

∂r
, (27)

which has solution

u = 21−n
(
ρg′

μ̃

)n (
−∂h
∂r

)n hn+1

n + 1

[
1 −
(
1 − y

h

)n+1
]
. (28)

This profile is topologically similar to the parabolic profile of a Newtonian current (n = 1), though the shear

is a little more concentrated towards the base. Conservation of mass leads to the nonlinear diffusion equation

∂h
∂t
+

21−n

n + 2

(g
ν̃

)n 1

r
∂

∂r

[
rhn+2

(
−∂h
∂r

)n]
= 0 (29)

for the thickness h(r, t) of the current. Given the constraint

2π

∫ rN (t)

0

rh dr = Q0t. (30)

on the volume of the current, this equation admits a similarity solution in which

rN ∝ t(2n+2)/(5n+3). (31)
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For the complete range of shear-thinning fluids (n � 1), the exponent of time only varies between 0.5 (n = 1)

and 0.4 (n → ∞). For n = 3, the value favoured by ice modellers, the value of the exponent is 0.44. We

see in this example that the shear-thinning model has made a slight quantitative difference to the predicted

spreading rate but has introduced no new physical phenomenology. This is confirmed by experiments, which

show perfectly axisymmetric spreading using golden syrup (n = 1) or a 1% by weight solution of Xanthan

gum (n ≈ 5).

6. Non-Newtonian sheet–shelf systems fed from a point source

In any theoretical model of viscous flows with defined geometry, be it two-dimensional or axisym-

metric or confined to a channel for example, predictions made using power-law rheology are likely to be

phenomenologically similar to those made using Newtonian rheology. But what if the geometry is uncon-

strained? We have conducted experiments in which viscous solutions of Xanthan gum were introduced

from a point source into a layer of relatively dense, inviscid fluid – non-Newtonian versions of the system

described in Sect. 4 above.

Fig. 10. Views from below of sheet-shelf systems spreading from point sources. With a Newtonian fluid (golden syrup, left image), the

sheet (centre, bright orange) and shelf (annular, pale orange) remain axisymmetric. With a non-Newtonian fluid (Xanthan gum, right

image), the sheet remains axisymmetric but the shelf fragments.

A theoretical model of this non-Newtonian system can be constructed and solved straightforwardly

assuming that the flow remains axisymmetric. Such a model would reveal broadly similar physical balances

and evolution to the Newtonian version of the problem, just as did the model of non-Newtonian gravity

currents described in Sect. 5. However, the experiments reveal startlingly different behaviour, as shown in

Fig. 10. Whereas the grounded sheet remains axisymmetric, the floating shelf fragments into quasi-radial

fingers, which themselves break up into bergs. The axisymmetric flow is clearly unstable. It is currently an

open problem whether the instabilities observed experimentally can be described using power-law rheology

or whether a more complex, perhaps visco-elastic, rheology is required.

7. Conclusions

Scientific prediction relies on robust theoretical models tested against observation and experiment. In

modelling the components of the Earth’s climate system, we can sometimes use measurements of climate
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50 km5 cm

Fig. 11. Aerial views of a a tongue of Xanthan gum formed in a laboratory experiment and b the Stancomb–Wills ice tongue, Antarctica.

proxies to constrain the models we construct but cannot conduct our own planetary-scale experiments. Of-

ten, therefore, models are advanced based on sound physical principles but nevertheless making assump-

tions regarding what elements of a system are dominant in determining behaviour. The aim of the studies

described here has been to develop theory of marine ice sheets step by step, testing each component rigor-

ously in the laboratory and exploring the fundamental physical balances involved using asymptotic analysis.

More sophisticated models than we have presented exist and in that sense we have taken a step back in order

to be able to step forwards with much more confident footing.

Our analyses of Newtonian sheet–shelf systems have established principles that govern whether or not

a shelf forms at the terminus of an ice sheet that flows into the ocean and have illustrated ways in which an

ice shelf can buttress an ice sheet and stabilize its grounding line. However, the comparison between theory

and experiment for an axisymmetric sheet–shelf system suggests that simple shallow-ice models may be

inadequate to describe the dynamical evolution of grounding lines in all circumstances.

Finally, our experiments using shear-thinning fluids, which are exemplars of the rheology most com-

monly assumed by ice-sheet modellers, exhibit phenomenology that is visually similar to that observed in

Antarctic ice shelves (Fig. 11). Whether these observations have a similar dynamical cause is the subject of

ongoing research.
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