
J .  Fluid Mech. (1991), vol. 224, p p .  335-359 
Printed in Great Britain 

335 

Natural convection in a mushy layer 

By M. GRAE WORSTER 
Department of Engineering Sciences & Applied Mathematics and Department of Chemical 

Engineering, Northwestern University, Evanston, IL 60208, USA 

(Received 2 January 1990 and in revised form 9 August 1990) 

Governing equations for a mushy layer are analysed in the asymptotic regime 
R ,  % 1, where R, is an appropriately defined Rayleigh number. A model is proposed 
in which there is downward flow everywhere in the mushy layer except in and near 
localized chimneys, which are characterized by having zero solid fraction. Upward, 
convective flow within the chimneys is driven by compositional buoyancy. The 
radius of each chimney is determined locally by thermal balances within a boundary 
layer that surrounds it. Simple solutions are derived to determine the structure of the 
mushy layer away from the immediate vicinity of chimneys in order to demonstrate 
the gross effects of convection upon the solidification within the layer. 

1. Introduction 
The internal structure of an alloy depends crucially upon the history of its 

solidification from a melt. For example, the geometry of the melt region, the rate of 
solidification, and fluid motions in the melt all affect the solidified product. These 
properties are all determined by internal processes that occur in response to external 
conditions such as the shape of the container and the location of cooled boundaries, 
the degree of cooling, the initial concentration of the melt, and the existence of body 
forces such as those produced by gravitational or magnetic fields. For example, when 
solidification takes place in a gravitational field, natural convective flow of the melt 
can be driven by thermal gradients that are set up by the imposed cooling, or by 
compositional gradients that are generated when one component of the alloy is 
preferentially incorporated within the growing solid, or by both. 

A phenomenon that occurs commonly during the solidification of alloys is the 
formation of partially solidified regions called mushy zones or mushy layers. These 
often take the form of a forest of solid, dendritic crystals, oriented principally along 
the direction of strongest thermal gradient, with fluid filling the interstices (figure 1). 
If the fluid flows through the interstices of a mushy layer, the transport of both heat 
and solute is altered and can cause additional growth of the dendrites or cause them 
to dissolve. Thus there are complex interactions between fluid flow and solidification 
in which density gradients generated by solidification drive a flow that can in turn 
modify the rates and structure of the crystal growth. Conversely, the growth and 
dissolution of dendrites, induced by convection, alters the permeability of the mushy 
layer viewed as a porous medium, which changes the pattern of convection. 

The interactions that occur in a gravitational field depend strongly upon the 
direction of solidification relative to gravity. For the simple geometries in which a 
melt is cooled from a single, flat, horizontal surface, Huppert & Worster (1985) 
identified six different regimes distinguished by whether the surface forms an upper 
or a lower boundary of the melt and whether the density of the melt is increased, 
decreased or remains constant when the melt is depleted of the component forming 
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FIGURE 1. A mushy layer of ammonium chloride crystals formed by cooling an aqueous solution 
of ammonium chloride from below. The millimetre scale on the left shows that the typical spacing 
between crystals is very small compared with the depth of the mushy layer, which was about 7 cm 
when the photograph was taken. The photograph is reproduced courtesy of H .  E. Huppert. 

the solid phase. Several of these cases have since been elucidated by combined 
laboratory investigations and mathematical analyses of simple models (Huppert & 
Worster 1985; Worster 1986; Turner, Huppert & Sparks 1986; Kerr et aE. 1989, 
1990a,b,c). In all of these earlier studies, the compositional density field that is 
generated is stable and there is either no mushy layer or the fluid in the mushy layer 
is stagnant. 

Woods & Huppert (1989) considered the solidification from below of a two- 
'component melt that becomes buoyant once i t  is depleted of the component forming 
the solid phase. In  such a case, the vertical variation of temperature causes a 
statically stable density field, while the compositionally induced density variations 
are convectively unstable. Woods & Huppert investigated the growth of a planar 
solidification front, and showed how its rate of advance depends upon the interaction 
of the compositionally driven flow in the overlying melt with the stable thermal 
boundary layer. In  this paper, we shall be concerned additionally with the growth of 
a mushy layer, where two different modes of convection can occur. I n  the liquid 
ahead of the mush-liquid interface there is a compositional boundary layer that is 
potentially unstable. The compositional variation across this boundary layer is much 
smaller than typically exists ahead of a plane solidification front, so we shall argue 
that double-diffusive, finger convection is more likely to occur than the wholescale 
disruption of the stable thermal boundary layer suggested by Woods & Huppert. The 
second mode of convection involves the escape of buoyant, interstitial fluid from the 
mushy layer into the overlying liquid region. It is the means of escape that is 
particularly intriguing and provides a focus for this study. 

Copley et al. (1970) reported experiments in which they had cooled and crystallized 
from below aqueous solutions of ammonium chloride. This particular salt was chosen 
because its crystal habit is similar to that of many metallic alloys. The authors found 
that convection of buoyant fluid from the interstices of the mushy layer, which 
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formed as crystals of ammonium chloride grew a t  the base of the container, took the 
form of narrow, vertical plumes rising through crystal-free vents or ‘chimneys ’ in the 
dendritic matrix. They suggested that these convectively formed chimneys are the 
cause of the ‘freckles ’ that  are observed in completely solidified ingots. Freckles are 
impcrfections that interrupt the uniformity of the microstructure of a casting, 
causing areas of mechanical weakness. 

There have been some attempts to understand the origin of freckles in terms of the 
convective instabilities that lead to chimney formation (e.g. Fowler 1985). Our aim 
in this paper, however, is to understand the nature of the flow and the structure of 
the mushy layer that  occurs once chimneys are fully developed. Some aspects of the 
flow structure have been analysed previously by Roberts & Loper (1983) but they did 
not include the thermodynamic interactions between the flow and the growth of solid 
within the mushy layer; interactions that are fundamental to the overall behaviour 
of the system. 

A concurrent aim is to provide analytical solutions to equations that govern the 
evolution of an ‘ideal’ mushy layer that  include the effects of gravitationally driven 
convection. Sets of governing equations have been proposed by Hills, Loper & 
Roberts (1983), based on principles of diffusive mixture theory, and independently 
by Worster (1986) based upon simple considerations of local heat and mass balances. 
Both sets are derived with many assumptions about the nature of crystal growth 
within a mushy layer and can be thought of as providing definitions of an ‘ideal’ 
mushy layer. It remains to  be seen whether the proposed equations are adequate to 
describe any of the formations that are observed experimentally or, alternatively, 
whether any physical system can be treated as being ‘ideal ’. To date, these equations 
have been solved and compared to experimental data only for cases in which there 
is no flow of the interstitial fluid. It is hoped that the theoretical results of this paper, 
in which the full interactions between fluid flow and crystal growth are taken into 
account, will provide a basis for comparison with future experimental investigations. 

The mathematical equations governing the evolution of an ‘ideal ’ mushy layer are 
presented in $2. Analytical solutions for cases with no fluid flow are given in $3 in 
order to quantify the destabilizing influence of compositional buoyancy relative to 
the stabilizing influence of thermal buoyancy in different regions of the system. This 
competition is discussed in $4. In  particular, a single Rayleigh number R, is 
identified for the mushy layer, where the temperature and composition of the liquid 
are coupled. Consideration of the physical balances expressed by R,  gives a hint as 
to the likely structure of a convecting mushy layer. This structure is further 
elucidated in $ 5 ,  in which fully developed convection is analysed by seeking solutions 
in the asymptotic regime R, % 1. The analysis of $ 5  also provides estimates of the 
convective fluxes of fluid, heat and solute through an individual chimney. This 
analysis allows us, in $6, to  determine how the depth of the mushy layer and the solid 
fraction within i t  vary as the strength of convection increases. I n  $ 7  we discuss how 
the present results might apply to experimental systems and how the number density 
of chimneys might be determined, which would allow calculations to be made of the 
total convective exchanges between the mushy layer and the overlying liquid region. 

2. Equations governing a mushy layer 
Many previous authors have presented equations governing the internal evolution 

of mushy zones (e.g. Flemings 1981 ; Hills et al. 1983 ; Fowler 1985). The formulation 
presented here follows most closely the approach of Worster (1986). I n  all these 
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formulations, appeal is made to the fine-scale internal structure of the mushy region 
in order to treat it thermodynamically as a single continuum phase. The temperature 
T and the composition of the interstitial liquid C are assumed to  be uniform over 
lengthscales typical of the interdendritic spacing. Then differential equations 
describing conservation of heat and solute can be written as 

aT a$ 
at at 

C,--+C~ U * V T  = V.(k,VT)+Y,-, 

ac a$ ( l -$ ) - -+U.VC= at v . ( D , v C ) + ( c - c , ) - ,  at 

(2 . la)  

(2.lb) 

if we assume that there is no expansion of contraction upon changes of phase. The 
physical parameters in these equations are the specific heat per unit volume c ,  the 
latent heat of solidification per unit volume 9, the thermal conductivity k and the 
solutal diffusivity D ,  where subscripts ‘s’, ‘1’ and ‘m’ denote properties of the solid, 
liquid and mushy phases respectively. The volume fraction of solid dendrites, of 
uniform composition C,, is denoted by $. The specific heat per unit volume of the 
mushy phase is given by 

Cm = $ ~ , + ( 1 - $ ) ~ 1 ,  (2.2) 

and it is assumed that the molecular transport processes are given by similar volume- 
fraction weighted averages 

k, = $ k , + ( l - - $ ) k l ,  (2.3) 

D m  = (1-$)oly (2.4) 

having ignored chemical diffusion in the solid phase. Expressions (2.3) and (2.4) are 
only approximate, since such transport coefficients should generally depend upon 
the internal morphology of the two-phase medium (Batchelor 1974), but these 
expressions have been found to lead to good agreement with the results of laboratory 
experiments on stagnant mushy layers (Huppert & Worster 1985 ; Worster 1986 ; 
Kerr et al. 1989, 1990a,b,c). 

Since we have ignored volume changes upon change of phase, the continuity 
equation takes the form 

v .  u= 0, (2.5) 

satisfied by the volume flux of interdendritic fluid U = (1 - q5) u,  where u is the local 
fluid velocity. 

A fundamentally important feature of our model of mushy regions is the coupling 
of the temperature and concentration fields through the source terms, proportional 
to a$/at, on the right-hand sides of (2.1). Physically, these represent the latent heat 
and solvent that are released as freezing or melting takes place within the mushy 
layer. The rate of change of $ is determined indirectly by assuming that the internal 
freezing or melting is sufficiently rapid that the mushy layer is kept in local 
thermodynamic equilibrium according to the phase diagram illustrated in figure 
2(a).  Thus the temperature and composition are required to satisfy the liquidus 
relationship T = TL(C), which we approximate here by the linear expression 

T =  TL(C,)+f(C-C,), 

where C, is a reference value of the composition of the liquid and r is the slope of the 
liquidus curve a t  C = C,, which is taken to be positive. 
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FIGURE 2. (a) The equilibrium phase diagram used in the theoretical model. It is a binary, eutectic 
phase diagram with end-member concentrations C = 0 and C = C,. The two solidus curves are 
assumed to be vertical, i.e. the segregation coefficient is taken to be zero, and the liquidus curve is 
linear. With the convention that the density of the melt increases with C, the initial concentration 
Co is taken to be greater than the eutectic concentration C,. In  steady states, the concentration C,  
of the composite solid that forms below the eutectic temperature T, is equal to Co if there is no 
(convective) macrosegregation but is typically greater than C, once compositional convection 
transports solvent vertically to z = + co . (b) A schematic diagram of the solidification process that 
is being modelled. The system is steady in a frame moving with the prescribed solidification speed 
V .  A mushy layer lies above a completely solid region, where the temperature is below the eutectic 
temperature, and below a completely liquid region. The temperature profile T is shown together 
with the profile of the local liquidus temperature TJC). 

The interior description of the mushy layer is completed with a dynamical 
equation governing the fluid flow. Consistent with the view of the mushy layer as a 
porous medium, we follow Roberts & Loper (1983) and Fowler (1985) by adopting 
Darcy's equation 

where p is the dynamic viscosity of the liquid, p is the pressure, g is the acceleration 
due to gravity, po is some reference value of the fluid density and l7 is the 
permeability of the mushy layer. In general, a constitutive equation 

n = 17(x) (2.8) 

is required to relate the permeability ZZ to the local liquid fraction x = 1-4. We do 
not need an explicit form for the constitutive equation in this paper, since we shall 
only be concerned with asymptotic states in which the left-hand side of (2.7) can be 
neglected to leading order. However, we shall make important, implicit use of the 
fact that the permeability increases as the solid fraction decreases. To determine the 
buoyancy forcing (2.7), the density of the fluid is assumed to vary according to a 
linearized equation of state 

p1 = po{l -a*[T-T,(Co)I+P*[C-Col}, ( 2 . 9 ~ )  

where a* and p* are constants. Within the mushy layer, this relationship can be 
written as 

PI = ~ O [ ~ + P ( ~ - C O ) I ,  (2.9b) 
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where /3 = /3* -a*T, by taking the liquidus relationship (2.6) into account. Note that 
/3 is usually positive since p*la*T is typically much larger than unity. The combining 
in this way of the effects of temperature and composition on the density is valid once 
the strong coupling expressed by (2.6) is accepted. Note that this denies the 
possibility of any form of double-diffusive convection within the mushy region, 
which distinguishes the situations considered here from the convection in a porous 
medium below a fluid layer studied by Chen & Chen (1988). 

Equations (2.1)-(2.9) constitute a full set of governing equations for the mushy 
layer. Two interfacial conditions that express conservation of heat and solute a t  both 
solid-mush and mush-liquid interfaces can be derived directly from equations (2.1). 
These can be expressed as 

9Jq51 Vn = [knn.VTl, (2.10u) 

(C- C,)[$l J'n = [D,  n .  VC] > (2.10b) 

where V, is the normal velocity of the solid-mush or mush-liquid interface, n is a unit 
vector normal to  the interface and [ ] denotes the jump in the enclosed quantity 
across the interface. 

Worster (1986) introduced an additional condition to be applied a t  advancing 
mush-liquid interfaces. This condition is required in order to determine the unknown 
solid fraction q5. Worster argued that a solidifying system incorporating a mushy 
layer adopts a configuration of marginal thermodynamic equilibrium, which is 
achieved if the temperature gradient is equal to the gradient of the local liquidus 
temperature on the liquid side of the mush-liquid interface. This is expressed by 

n.VT = rn.vC. (2.11) 

I n  addition to the thermodynamic interface conditions (2.10) and (2.1 l ) ,  we require 
that the pressure and the normal component of mass flux be continuous everywhere. 
Further boundary conditions will be introduced and discussed in the following 
sections in which specific examples are analysed. 

3. A model of constrained growth 
A convenient system to investigate mathematically is one that is steady in a frame 

moving with some prescribed, constant speed V ,  as illustrated in figure 2(b). The 
liquid region has fixed temperature T, and composition C, as z+ 00, where z 
measures vertical displacement in the moving frame. The temperature decreases 
downwards, and we consider cases in which a mushy zone separates a completely 
solid region from a completely liquid region. I n  this model problem we imagine that 
the eutectic front, at which the temperature is equal to  the eutectic temperature T, 
and below which the system is completely solid, can be maintained at the fixed 
horizontal position z = 0. The mush-liquid interface z = h is left as a free boundary 
to be determined as part of the solution. In  general h = h(x, y) though, in the cases 
we shall consider, h is independent of the horizontal coordinates x and y. 

We make the further simplification that all physical properties are constant and 
independent of phase. Then equations (2.1) can be written in the dimensionless form 

ae aq5 --+ u.ve = vze-y-, 
a Z  a2 

( 3 . 1 ~ )  

(3.1 b )  
a 1 
aZ Le 
- [( 1 - q5)(%-- O)] + u* VO = -v - [( 1 - q5) VO] 
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by scaling the fluid velocity with V and all lengths with the diffusive lengthscale 
L = K / V ,  where K = k / c  is the thermal diffusivity. The dimensionless temperature 0 
and concentration 0 are defined by 

c-c, , o=- T -  TL(C0) 
AT AC ’ 

e =  

where AT = TAC = T,(C,)-T,. Equations (3.1) apply throughout the region z > 0. 
The liquidus relationship 

applies within the mushy layer, while, in the liquid region, the temperature and 
composition are uncoupled and $ = 0. The dimensionless parameters appearing in 
(3.1) are the Lewis number Le = K/D, a Stefan number 

e=o (3.3) 

9 y=- 
CAT’ 

and a concentration ratio 

(3.4) 

that represents the compositional contrast between solid and liquid phases compared 
to the typical variations of concentration within the liquid. We shall see that % is an 
important parameter in determining the structure of the mushy layer. 

Boundary conditions on the system of equations (3.1) are 

e = - i  ( z = o ) ,  (3.6a) 

t9+8,, and Q+0 ( z + c o ) ,  (3.6b) 

where 8, = (T,-T,(C,))/AT. The interfacial conditions (2.10) and (2.11) applied at  
z = h can be written 

Y$=- -- Elm El; 
ao 

m 

(3.7a) 

(3.7b) 

(3.7c) 

It is interesting to note that, in the absence of convection, the heat flux that needs 
t o  be extracted at z = 0 in order to maintain the steady state can be determined from 
(3.la) by integrating the whole equation from z = 0- to z = 00 and using the 
boundary conditions (3.6). This procedure gives ae/azlo- = 1 + 8, + 9. 

Hills et al. (1983) and Fowler (1985) have found complete analytical solutions that 
depend only upon z, for cases in which the fluid flow Uis zero. These are repeated here 
in order to provide a basis for comparison with the convecting solutions derived in 
later sections of this paper. The temperature and concentration fields in the liquid 
region have the exponential forms 
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where the dimensionless interfacial temperature is found, by applying (3.7 c),  to be 

(3.10) 

Within the mushy layer we let Le + co , which simplifies the analysis and is physically 
reasonable since typically D -4 K .  With this approximation, it is readily shown from 
(3.7) that the interfacial conditions a t  z = h become 

The governing equations (3.1) can then be integrated to  yield 

-0  $=-  w-e’  
with 0 given implicitly by 

z = -ln(-)+-lnL). a-V a + l  w-p p+1 
a-p u-0 u-p 

(3.11) 

(3.12) 

(3.13) 

where 
a = A + B ,  = A - B ,  A = t ( V + 0 , + 9 ) ,  B2 = A2-V0,.  

The depth of the mushy layer is given simply by setting z = h, 0 = 0 in (3.13). Similar 
expressions to (3.12) and (3.13) are given by Hills et al. (1983). 

A better understanding of how the system depends upon the three dimensionless 
parameters 9, V ,  and 0, can be gained by considering some limiting cases of (3.13). 
Several cases can be put into the simple form 

z = l n ( s ) ,  (3.14) 

which can be inverted to yield the exponential temperature (concentration) profile 

(3.15) 

The single parameter y is given by 

Y = 0, (3.16) 

y = 9  (Y+ a), (3.17) 

y = B,+Y (w = 0). (3.18) 

The absence of V from these expressions is indicative of the dominant influence of 
thermal balances in determining the depth of the mushy layer, as pointed out by 
Huppert & Worster (1985). In  the limiting cases of (3.16) the principal thermal 
balance is between conduction of heat through the mushy layer and conduction of 
heat from the liquid region. I n  (3.17) the balance is between conduction through the 
mushy layer and the latent heat released during solidification, while in (3.18) all three 
contributions to the thermal budget are in balance. 

(%+a or Y = 0 or ~ , + c o ) ,  
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FIQURE 3. Various profiles of solid fraction q5 as a function of height z in a mushy layer for different 
values of the concentration ratio V for Y = 1.  (a) When V is large, the solid fraction is small 
throughout the layer. ( b )  When V is small, q5 can be almost equal to unity through much of the 
layer. (c) For any value of %‘, letting O , + O  produces a ‘feathery’ top to the layer, where the solid 
fraction is very small. 

Another limiting case reveals one of the effects of varying V.  As e , + O ,  so that 
heat transfer from the liquid region is weak, we obtain 01 - %+Y, p - %@,/a and 

h - - l n ( c )  1 with .=(I+:). 

Y 
(3.19) 

In  this case, h does depend on V but only in a ratio with Y in the single parameter 
y. We see that increasing V is equivalent to  decreasing Y and thus that varying % 
acts to  modify the amount of latent heat released. 

In  stagnant mushy layers, V affects the total solid fraction within the layer and 
thereby determines the necessary release of latent heat. Examples of how the solid 
fraction can vary with height are shown in figure 3. We see that V also affects the 
distribution of solid within the layer, as expressed by (3.12), and thus the mobility 
of the interstitial fluid and the nature of any flow that might take place. 

When % is large, the solid fraction 9 is small throughout the layer so the 
permeability is likely to be relatively uniform with depth. This situation, shown in 
figure 3 ( a ) ,  is typical of the experiments using aqueous solutions of ammonium 
chloride, for example. Conversely, figure 3 ( b )  shows a case in which V is small, when 
the solid fraction is near unity in most of the layer. Here, the permeability is likely 
to be a strong function of depth and fluid flow may only penetrate the upper portions 
of the layer. These two pictures (figures 3a and 3 b )  represent the range of structures 
that can occur given moderate values of the other dimensionless parameters. 
Qualitatively different structures occur only when em is very small. I n  such cases, as 
represented in figure 3 (c), the function $(z )  has a point of inflexion, above which the 
solid fraction is very small. This behaviour is indicative of the loss of thermal control 
on the depth of the mushy layer that occurs when the heat flux from the liquid 
(proportional to 0,) tends to  zero. When the heat flux is small, other physical effects 
not included in the present model, such as those related to surface energy or kinetic 
undercooling, become important and act to  limit the growth of the layer. 

In  typical experiments with aqueous solutions of ammonium chloride, V is 
between about 10 and 20, and it is easy to  arrange that 0, is about unity. Thus, in 
what follows, we imagine that V is moderate or large and that 0, is moderate so that 
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the structure of figure 3 (a )  pertains and the variation of the permeability of the layer 
with depth is small. 

4. Natural convection 

system described in the previous section can be written as 
Dimensionless dynamical equations governing natural-convective flow in the 

in the liquid region and 
U 
- = - R,(Vp + 82) n 

in the mushy region, where l7 is now scaled with no, a typical dimensional value of 
the permeability of the mushy layer. At a mush-liquid interface, we require that 

b ] = O  and [ n . V V ] = O ,  (4.3) 
where n is a unit vector normal to  the interface. 

These equations are coupled with the advection-diffusion equations (3.1) in both 
regions, subject to the boundary conditions (3.6) and interfacial conditions (3.1 1). 
Just as in $3, we let Le+ 00 in the mushy region. 

The fluid-dynamical behaviour of the crystallizing system is determined 
principally by the three Rayleigh numbers 

a* ATgL3 P* ACgL3 , and R,= PACgnoL R ,  = 3 R , =  7 
KV KV KV 

(4.4) 

where v is the kinematic viscosity of the fluid. The liquid region is characterized 
further by the Prandtl number cr = v / K ,  the buoyancy ratio PIP* and, since the 
temperature and concentration fields are uncoupled there, the Lewis number Le = 
K I D .  We note that it is often the case that P*/a*r % 1, which implies that R ,  4 R ,  
and PIP* z 1. 

Figure 4 shows the density fields due to temperature and composition of the static, 
steady state calculated in 5 3. Two extreme modes of buoyancy-driven convection 
can be envisaged. 

One mode would arise if the permeability l7 of the mushy layer were small. It is 
then possible that the fluid in the interstices remains almost stagnant while the liquid 
above it convects strongly. Since the thermal density variations are stabilizing while 
the compositional density variations are destabilizing, the possibility of double- 
diffusive, ‘finger’ convection can arise depending upon the relative magnitudes of R ,  
and R ,  and on the value of Le (Turner 1979). This mode of convection would be 
characterized by having a critical wavelength comparable with the thickness of the 
compositional boundary layer. 

Alternatively, since the change in concentration across the compositional 
boundary layer is typically small, of order 8, Le-l 4 1, compared to that across 
the mushy layer (see (3.9) and (3.10)) and the boundary layer is thin, of order Lec’, 
compared to the depth of the mushy layer, it  is possible that the compositional 
boundary layer is convectively stable while the mushy layer is convectively unstable. 
This second mode of convection would be characterized by having velocity fields of 
equal magnitude in the liquid and mushy regions and by having horizontal 
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z = h  
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FIGURE 4. A schematic diagram showing the density variations due to temperature, pT, 

and composition, pc, and the total density field, p. 

wavelengths comparable with the depth of the mushy layer. The flow in the liquid 
region, in this case, is driven solely in response to the convection arising from the 
mushy layer. 

In order to determine whether either mode or both modes of convection occur, it 
is necessary to conduct a detailed stability analysis. However, for the first mode, in 
which the interstitial liquid in the mushy region is essentially stagnant, many 
previous results (Turner 1979) can be applied to estimate the tendency for convective 
instability of the liquid region. If the permeability of the mushy layer is very small 
then i t  acts almost as a solid boundary as far as the flow in the liquid region is 
concerned. The compositional boundary layer is unstable once a local Rayleigh 
number R,, = Lec3R,, based upon the depth of the compositional boundary layer and 
on the solutal rather than the thermal diffusivity, exceeds a critical value of about 
10 (Hurle, Jakeman & Wheeler 1983). However, we note that the ratio of the total 
destabilizing potential energy in the compositional boundary layer to the total 
stabilizing potential energy in the thermal boundary layer is of order Le-2(/3*/a*r), 
which can be small, since typically Le $ 1, even though the buoyancy ratio /3*/a*T 
is usually large. Thus, in this case, 'finger' convection in a small region above the 
mushy layer is perhaps more likely than the wholescale disruption of the thermal 
boundary layer found by Woods & Huppert (1989) above a plane solidification front. 
Indeed, such convection was observed in the experiments of Tait & Jaupart (1989) 
in which ammonium-chloride mushy layers were grown from aqueous solutions 
doped with hydroxyethylcellulose, which increased the viscosity of the liquid and 
suppressed convection of the interstitial fluid in the mushy layer. 

We shall concentrate here on the convection of the interstitial fluid within the 
mushy layer and therefore consider the second mode of convection in which the 
liquid region is convectively stable. This can occur if the local compositional 
Rayleigh number R,, is sufficiently small. At the same time, we require that R, is 
sufficiently large (Fowler 1985) for convection to occur in the mushy layer. These two 
conditions can be achieved simultaneously if Lean,, L-' 9 1. 

It is instructive to consider the make-up of R,, which is the sole dimensionless 
parameter governing convection in the mushy layer. Like the other Rayleigh 
numbers, it is the ratio of the destabilizing potential energy available to a disturbed 
fluid element to the stabilizing dissipation of that energy as the element moves. In 
this case, the Rayleigh number depends upon the destabilizing influence of 
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FIGURE 5. A schematic diagram illustrating the convective instability of a parcel of fluid within a 
mushy layer and the formation of a chimney. The temperature T and the density due to the solute 
concentration pc both increase with height. The fluid parcel is considered to be much larger than 
the spacing between dendrites. 

compositional buoyancy but on the stabilizing influence of thermal diffusion. To 
understand the physical reasons for this, consider the schematic diagram of figure 5. 
When a fluid element is displaced slightly upwards, it finds itself buoyant relative to 
its surroundings since the fluid density of the surroundings increases upwards owing 
to compositional variations, However, the fluid element also finds itself cooler than 
its surroundings. It therefore warms up by thermal diffusion but, owing to the much 
slower diffusion of solute, does not change its concentration appreciably. This much 
would be true in a passive porous medium and could lead either to ordinary 
buoyancy-driven convection or to the double-diffusive phenomenon of ‘ salt fingers ’ 
(Turner 1979; Chen & Chen 1988). In  the reactive mushy layer, however, the raised 
fluid element, which has a temperature close to its new environment but is relatively 
depleted of solute, partly dissolves the dendrites that it encompasses. It thereby 
becomes denser and dissipates its potential energy. Thus the physical balance 
expressed in R, is that between compositional buoyancy and the dissipation of that 
buoyancy arising from exchanges of solute between the liquid and solid phases 
caused by thermal diffusion. Such behaviour is analogous to aspects of ‘wet 
convection ’, studied in relation to cloud physics, in which parcels of moist air can 
change their density through evaporation or condensation as well as through thermal 
expansion. 

Note that the parcel argument just outlined relies upon two fundamental 
assumptions of our modelling : that the spacing between dendrites is smaller than the 
lengthscale of typical fluid motions, so that the fluid element encompasses several 
dendrites; and that the mushy layer can be maintained near equilibrium, through 
internal melting or solidification, on a timescale that is short compared with the 
transport times of fluid motions. 

Another feature emerges from this parcel argument, namely that where fluid rises, 
dendrites melt and hence the permeability increases. It may be possible that a rising 
plume can completely dissolve the dendrites that it encompasses to form a ‘ chimney ’ 
in the mushy layer. This has been observed in experiments and we shall now 
formalize this picture using the mathematical model presented in 992 and 3. 

5. The structure of a convecting mushy layer 
The dimensionless governing equations presented in 433 and 4 can be used to 

determine a critical value of the Rayleigh number R, above which a stagnant mushy 
layer is convectively unstable to infinitesimal disturbances (Fowler 1985). Here, we 
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aim rather to find strongly nonlinear solutions that describe the convective flow in 
a mushy layer once chimneys are fully developed. Specifically, we seek steady 
solutions under the assumption that R, is large. 

This section begins with the derivation of asymptotic equations governing the 
regions of the mushy layer that  are outside the immediate vicinity of chimneys. It 
is then argued that rapid upflow occurs in narrow, vertical regions and causes 
chimneys to  form. Flow in the chimneys is governed by the Navier-Stokcs equations. 
The major part of the section is devoted to a scaling analysis of the thermal boundary 
layer that surrounds each chimney in order to demonstrate that, to leading order, the 
pressure driving the flow in the chimneys is given simply by the hydrostatic pressure 
in the outer regions of the mushy layer. Thus an important, simplifying feature of the 
analysis is that, when R, is large, the flow in the outer regions of the mushy layer 
is independent of the functional form of the relationship between porosity and 
permeability (2.8). An explicit form of this equation is needed to determine the 
detailed structure of the boundary layer and the overall number density of chimneys, 
neither of which is addressed in this paper. 

Formally, we let R, + co and look for solutions in which I Ul remains of order unity. 
This can be achieved consistently provided that the dimensionless number density of 
chimneys JV (equal to  the number of chimneys per unit horizontal area multiplied 
by L2)  is not too large. The specific upper bound Xmax on the allowed magnitude of 
JV is found towards the end of this section. While there is no external control over 
the value of JV and it is perhaps to be expected that I Ul+ 00 as R, + co, i t  is possible 
to find solutions to  the governing equations with I Ul = O( 1)  for any prescribed value 
of JV with 0 < JV < JVmax. The question that must be asked is whether any of these 
solutions are stable. A discussion of this question is presented in $7. 

Equation (4.2) shows that, to  leading order in large R,, while IUl = O ( l ) ,  the 
pressure field is hydrostatic and 8 is independent of horizontal position. Equations 
(3.1 a, b )  then show, in this limit, that 4 and the vertical component W of the velocity 
are also functions of x only. 

The governing equations for the leading-order variables e 0 ( z ) ,  q50(x )  and Wo(z) when 
R, % 1 are thus 

(wo-i)e; = e;;-y#; ,  ( 5 . 1 ~ )  

(i-#,)e;+%#; = woe;, (5.1 b )  

where primes denote differentiation with respect to z. These equations are derived 
from (3.1) with Le-l = 0. 

When Wo = 0, as in $3,  the two terms on the left-hand side of (5.1 b )  must balance, 
and hence large values of V lead to small values of the solid fraction #o,  as illustrated 
in figure 3 (a ) .  However, when W ,  is non-zero, and V is large, the second term on the 
left-hand side can dominate the first term and balance the advective term on the 
right-hand side. When this occurs, it is readily seen from (5.1 b )  that Wo is negative 
(i.e. the flow is downwards) everywhere to leading order. However, in order to satisfy 
global mass conservation, there must be upwards flow somewhere. The scaling 
arguments proposed here therefore indicate that, when R, is large, the upflow can 
only occur in regions that are narrow compared with the scale-depth L = K / V  and, 
by continuity, the upwards flow in these regions must be correspondingly large. 

It was argued in $4 that upflow causes the solid fraction of the mushy layer to 
decrease locally. Further, Fowler (1985) has suggested that the solid fraction 
becomes zero once the dimensionless upflow exceeds unity. Thus, given the proposed 
scalings, a possible structure for the convecting mushy layer is that illustrated in 

12 FLM 224 
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FIGURE 6. A schematic diagram representing the structure of a convecting mushy layer once steady 
convection through chimneys is fully developed. Isotherms in the mushy layer are shown to the left 
of the chimney while the vertical component of velocity (arrows) and streamlines are shown to the 
right. There is inflow to the chimney at all heights. In the boundary layer, the temperature 
decreases, the vertical velocity changes sign and the solid fraction increases towards the chimney. 

figure 6. Throughout most of the layer, the solid fraction is horizontally uniform and 
the vertical component of the flow is downwards. The layer is interspersed with 
chimneys of zero solid fraction in which the vertical component of the flow is 
upwards. Around each chimney there is a thermal boundary layer that forms as the 
mushy layer is cooled locally by the fluid rising through the chimney. This picture 
is consistent with experimental observations in aqueous, ammonium-chloride 
systems (Copley et ul. 1970) and in some metallic systems (Sarazin & Hellawell 1988). 

In  order to determine the downwards flow W,,(z) in the ‘outer’ regions of the 
mushy layer (away from chimneys), and hence to  complete the description provided 
by (5.1), it is necessary to analyse the flow in the chimneys and surrounding 
boundary layers. A chimney is characterized by being devoid of dendrites, so the flow 
in a chimney must be described by the Navier-Stokes equations. Dimensionless 
equations describing the temperature, concentration and velocity fields within a 
chimney can be approximated by 

( 5 . 2 ~ )  
ao 
aZ - - + u . v e  = vze, 

(5.2 b )  

V2u = R,(@L+Vp),  ( 5 . 2 ~ )  

v - u  = 0. (5 .2d)  

These equations are obtained from (2.1), (2.5) and (4.1) by letting Le+ co, /3 = /3*, 
R ,  = 0 and u + 00. The first three of these approximations have been discussed and 
justified previously, while letting u+ 00 is a simplifying assumption that we make 
here for convenience but which is appropriate for many liquids. 

If we assume further that the chimney is axisymmetric then the continuity 
equation (5 .2d)  can be satisfied by introducing a Stokes stream function y? such that 

with respect to local radial and axial coordinates ( r ,  2 ) .  
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If the radius of a chimney a(z)  = O(s) ,  where e 4 1 when R, % 1, R ,  % 1 ,  then 
consistent scalings for the dependent variables within the chimney are as follows. 
The stream function $ = O(e4Rc), the composition 8 = O( 1) and, if the temperature 
field is written in the form 

then the deviation from the outer solution 8, = O(e4Rc). We shall see that e4R, 4 1 
while the magnitude of the vertical velocity within the chimney e2R, B 1. With these 
scalings, the leading-order governing equations for the chimney are 

e e,(z) + O A T ,  z), (5.4) 

( 5 . 5 ~ )  

u -  W 8  = 0,  (5.5b) 

(5.5c) 

with corrections of 0(e2Rc)-l. In ( 5 . 5 ~ )  we have used the fact that, to leading order, 
the pressure everywhere is equal to the hydrostatic pressure in the outer regions of 
the mushy layer, which will be demonstrated shortly. 

The diameter of a chimney is determined by thermal balances in the boundary 
layer surrounding it. The heat flux from the cold, rising fluid in a chimney, 
determined by integrating (5.5a), is 

2 n a A  = O;, (5-6) 
ar I r-a 

where 2n+, is the vertical volume flux in the chimney. These fluxes must be balanced 
by the diffusion of heat and a flow of interstitial fluid from the mushy layer into the 
chimney. Hence, as r + a through the boundary layer, 

(5.7) 8-8, = 8, N $at9;lnr, 

1 
U N -$by .  

The horizontal flow U is driven by a horizontal pressure gradient across the boundary 
layer that is given by (4.2). The permeability remains of order unity in the boundary 
layer since the temperature variations within it, given by (5.7) are small, as we shall 
see. Thus the pressure near the chimney has magnitude 

with respect to the hydrostatic pressure in the outer regions of the mushy layer. 
Finally, the perturbation in the concentration field, represented by (5.7), drives an 
upward flow of magnitude 

W - R,$/,lne (5.10) 

near the wall of the chimney, since both 27 and 0; are of order unity. 
Now, as r decreases from the outer edge of the boundary layer towards the edge 

of the chimney, the solid fraction y5 first increases because of the additional cooling 
and then decreases as the flow turns upwards bringing with it depleted fluid that 

12-2 



350 M .  G .  Worster 

dissolves the dendrites. This requires a balance of all the terms in (3.lb) throughout 
the boundary layer, which leads to  two possible scalings depending upon the relative 
magnitudes of R,  and R,. 

When R, is relatively small compared to R,, it can be shown (Appendix A) that 
the vertical flow W in the boundary layer near the wall of the chimney is 0(1) and 
that the vertical advection of solute exceeds the horizontal advection. This gives the 
scalings 

( 5 . 1 1 ~ )  
A p  - R;’, (5.11b) 

8-8, - R;I. (5 .11~)  

with E given by (5.11 a) .  At this 
point, the horizontal advection of solute becomes of equal magnitude with the 
vertical advection. Once R, & (R, In E ) ~  the following scalings are appropriate 

These scalings become invalid once R,  - (R, 

(Appendix A) : 
e2 R,  

ins R, ’ 
--- 

(R, In E ) ~  
A p  - - Ri2 

R ,  ’ 
( R , l n ~ ) ~  f 

s - s o - - R ; l [  R ,  ] 

(5.12 a )  

(5.12b) 

( 5 . 1 2 ~ )  

Vertical and horizontal advection of solute balance throughout this regime and 
(3.1 b )  shows additionally that a$/& - (R, E In E ) ~  + 1, which in turn shows that 
a’(z)/a 4 1, i.e. that  the wall of the chimney is vertical to leading order. 

Both sets of scalings (5.11) and (5.12) have the properties that Ap 4 1 and 
8-8, 4 1 when R ,  %- 1.  This justifies our approximation of using the hydrostatic 
pressure in ( 5 . 5 ~ )  and our earlier statement that  l7 remains of order unity. We shall 
continue with the second set of scalings (5.12) principally because it leads to the 
simplifying feature that the chimney radius a is constant with height. 

We note that the radii of chimneys are observed experimentally to be 
approximately constant with height in mushy layers that form above a solid, 
eutectic layer, though the radius tends to increase rapidly near the base of mushy 
layers that form above a cooled surface whose temperature is maintained greater 
than the eutectic temperature. 

The alternative set of scalings (5.11) will not lead to  qualitatively different results 
for the global structure of the mushy layer but is quantitatively more difficult to 
work with. We also focus on determining the total fluxes of fluid, solute and heat 
rather than the detailed characteristics of the field variables within chimneys and 
their surrounding boundary layers. 

The volume flux through a chimney can be estimated by applying integral 
constraints derived from (5.5) to suitable trial functions for the concentration and 
velocity fields (Roberts & Loper 1983; and Appendix B of this paper). The total 
volume flux is given by 

2~c*, = 2m1a4~,(1+ e,(z)), (5.13) 

where h x 0.0306, as shown in Appendix B. In  order to satisfy global mass 
conservation, the downflow through the bulk of the mushy layer W,(z) must equal 
the total upflow through all the chimneys per unit horizontal area. Thus 

W,(z) = N, (5.14) 
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where JV is the dimensionless number density of chimneys. If we define 

5 = 2xha4~, JV, (5.15) 

which is a constant, independent of z ,  then 

W,(Z) = -5(1+0,(z)) .  (5.16) 

The foregoing scaling analysis was founded on the assumption that JV is not too 
large, so that W, = O(1). We see now that this requires specifically that 

JV < [e4R,]-' - R, In 6, (5.17 a) 

for the first scaling (5.11), or 

JV < [e4R,]-' - R,lne (5.17b) 

for the second scaling (5.12). Since the right-hand sides of (5.17) are much larger than 
unity when R, B 1, these conditions are not very restrictive. 

What has been achieved is an expression for the vertical flow in the outer regions 
of the mushy layer (5.16) in terms of the single parameter 9. This parameter is 
determined partly by the dynamics local to  each chimney, which determines a, and 
partly by the global dynamics of the mushy layer that  determine N. It is useful to 
recognize 9 as the ratio of the convective velocity from the overlying melt into the 
mushy layer to the rate of solidification V .  

We note finally that the dimensional fluxes of solvent F, and of heat F, convected 
from the mushy layer into the overlying liquid region are 

and 

(5.18) 

(5.19) 

Equation (5.18) is obtained by integrating (5 .5b)  across a horizontal cross-section of 
a chimney, while (5.19) is obtained by noting that, to leading order, the temperature 
of the liquid in the chimney is horizontally uniform and equal to the temperature in 
the surrounding mushy layer. 

6. The effects of convection 
The simple relationship (5.16) for the fluid flow as a function of the solute field in 

the bulk of the mushy layer can be incorporated into (5.1) to determine the gross 
effects of convection on the mushy layer. If we assume that the motion of the 
overlying fluid is driven by continuity of mass, solely in response to  the motions 
in the mushy layer, then we can integrate equation ( 3 . 1 ~ )  with 4 = 0 to find the 

(6.1) 
temperature field there, 

By using (6.1) to  determine the boundary conditions (3.11), equations (5.1) can each 
be integrated once to  give 

and 

0 = 0 1 - e - ( i + ~ ) ( ~ - h )  . 1 4 
e;, = - e 0 + ~ $ , + e , ( i + ~ ) + ~ 9 [ i - ( i  +0,)21 (6.2) 

(6.3) 

Equation (6.3) gives $, as a function of 0,, and the remaining first-order differential 
equation (6.2) is readily integrated numerically to determine 0,. Some results are 

(1 - $,) (U - 0,) = % -&F[ 1 - ( 1 + 0,)2]. 
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FIGURE 7. Computed profiles of solid fraction $ as a function of height z for various values of the 
parameter 9. Increasing values of 9 correspond to increasing values of the number density of 
chimneys and hence to increasing vigour of the convective flow. 

displayed in figure 7 to show the effects of increasing 9 while the other dimensionless 
parameters are held constant and equal to unity. The figure shows the solid fraction 
as a function of height for several different values of 9. Two very important features 
are illustrated. First, as the strength of convection increases (signified by increasing 
9) the depth of the mushy layer decreases. This is a direct result of the additional 
heat that is convected from the overlying liquid region which tends to inhibit growth 
of the mushy layer. Secondly, convection carries more solute from the overlying 
liquid into the mushy layer, which allows further internal solidification and an 
increase in the solid fraction. Indeed, one sees, by applying the boundary condition 
( 3 . 6 ~ )  to (6.3), that the liquid fraction a t  the base of the mushy layer, 

w - 4 9  
1 - #,(O) = ~ 

l + W  ’ 

decreases linearly with 9 until it is zero when 9 = 2%. This gives us the maximum 
allowed value of 9 for the validity of the present model. 

For greater values of 9, the liquid fraction tends to zero as z --f z, > 0 from above. 
If we redefine the base of the mushy layer to be at  z = z, and assume (see the 
discussion in $ 7 )  that the structure found in $ 5  remains valid in z > zc ,  where the 
liquid fraction is still of order unity, then equation (5.16) for the vertical velocity 
becomes 

wow = - 9 [ e e , ( z )  - e,i, 

e;, = - e , + ~ ~ , + e , ( i  - ~ ~ , ) + ~ ~ [ e ~ - ( ~ , - ~ , ) 2 1  

(1 - #,)(% - 8,) = % - &9[e :  - (8, - e,)2]. 

where 8, = e,(z,). Equations (6.2) and (6.3) are then replaced by 

and 

Since 9, = 1 a t  z = z,, where 8, = B,,  equations (6.6) and (6.7) imply that 
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These values of I9 and its derivative at  z = z, must match with the completely solid 
region below z = z,. In the solid region, 6 obeys a simple diffusion equation, whose 
solution is 

0 = - 1 +A(  1 - ePZ), 

where A is a constant, from which it can be determined that 

z, = In ( 1+- 'i?), (6.10) 

with 0, and 0; given by (6.8). This result, together with (6.6) and (6.7) were used to 
plot the case 9 = 4 in figure 7(d) .  

7. Discussion 
An analysis of the governing equations for a mushy layer has produced 

mathematical solutions that incorporate the effects of strong natural convection. The 
results are formally valid in the asymptotic regime R,  B 1 provided that the 
dimensionless number density of chimneys .N is less than order (e4RJ1, with E given 
by ~ l n s  = (RmR,)-l if R, 4 RL or by E2/lns = Rm/Rc if R, B RL. Here, R, is a 
Rayleigh number for the mushy layer and R, is a solutal Rayleigh number for the 
liquid. These solutions provide some evidence of the suitability of the governing 
equations for describing mushy layers that are observed experimentally. 

From a qualitative point of view, the solutions presented in this paper demonstrate 
that the observed structure of some convecting mushy layers (such as those produced 
from aqueous solutions of ammonium chloride, for example), having convection 
through narrow chimneys interspersed through the layer, is consistent with the 
proposed governing equations. The width of the chimneys predicted by the theory 
were shown to be of order E 4 1, compared with the depth of the layer, when 
R, B 1. The pressure field was shown to be almost hydrostatic (i.e. that W p  = pg 
throughout the layer), and this approximation led to a simple expression for the 
vertical component of the velocity field in terms of the local concentration of the 
interstitial fluid. 

An interesting result that emerges from the scaling analysis is that the volume flux 
through an individual chimney decreases as the Rayleigh number R,  increases. This 
is just one of the curious ways in which convection in a mushy layer differs from that 
in a passive porous medium. In vertical convection boundary layers there is always 
a competition between the increasing mean vertical velocity and the narrowing of the 
boundary layer as the Rayleigh number increases. In a Newtonian fluid, or in a 
passive porous medium, the net effect of these two processes is to increase the vertical 
volume flux in the boundary layer. In the mushy layer there is an additional, 
thermodynamical element in the competition which acts to enhance freezing and to 
diminish the width of the boundary layer (chimney) further as the Rayleigh number 
increases. The net effect in this case is to decrease the vertical volume flux through 
a chimney. It is to be expected, perhaps, that the number density of chimneys that 
occurs in practice will increase with the Rayleigh number in such a way as to increase 
the total volume flux of fluid exchanged between the mushy layer and the overlying 
liquid region. However, such a prediction is outside the scope of the present theory. 

The expression for the vertical component of velocity in the mushy layer in terms 
of the local solute field allowed a family of solutions to be found for the leading-order 
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FIGURE 8. A schematic diagram showing the structure o f t h e  mushy layer when R ,  is extremely 
large so tha t  9 > 2%. Most of the layer is stagnant, having very small, or zero, permeability. There 
is a boundary layer at the top of the mushy layer in which the porosity x is of order unity and 
through which vigorous convection occurs. The structure of this boundary layer is similar t o  t,he 
structure of the whole mushy layer depicted in figure 6 with vertical flow through chimneys 
dispersed throughout the layer. 

structure of the mushy layer away from chimneys, characterized by a single 
parameter 9 that is linearly related to the number density of chimneys JV and is 
equal to the ratio of the convective fluid velocity a t  the mush-liquid interface to the 
rate of solidification. As % increases, the convective exchange of fluid between the 
mushy layer and the overlying liquid region increases. This was shown to  cause the 
depth of the mushy layer to decrease and the solid fraction to increase. These are 
both stabilizing effects causing the local Rayleigh number, based upon the depth of 
the mushy layer and the compositional contrast across it,  to  decrease. 

The solutions found are self-consistent solutions of the governing equations 
provided that .% < 2%. This gives a definition for Nmax = O(E-~R;'%), the maximum 
allowed value of JV for the theory to be valid. It is natural to ask whether any of 
these solutions are stable and whether, therefore, they correspond to experimentally 
observable states. Specifically, given a large, prescribed value of R, one can ask 
whether there is a value of N, N c  < JV,,,, above which the solutions that have 
been found are stable. 

There are two reasons for believing that the solutions can sometimes be stable for 
a value of J1/' < JVmax. The first is that we have shown that Nmax 9 1 when R, $- 1 
whereas experiments have tended to show that N is about unity in practice. The 
second is that the upper limit 9 = 2% corresponds to  solutions that have zero liquid 
fraction x a t  z = 0. However, I have estimated that the liquid fraction, which 
decreases as 9 increases, is greater than about 0.6-0.7 throughout the mushy layer 
in my own experiments with ammonium chloride, and C. F. Chen (private 
communication) has measured the liquid fraction using X-ray tomography to be 
about 0.6 at x = 0 in his experiments with ammonium chloride. 

The experiments with aqueous solutions of ammonium chloride are characterized 
by large values of %, so it may be that these systems fall fortuitously into the 
category of operating with 9 < 2%, It is important to consider how a system will 
behave when either % is small or R, is so large that PC > 2%. 

Both cases can be determined by considering the limit R, + 00 while relaxing the 
condition Iq = O(1) imposed in $5. The mushy layer then adopts the structure 
shown in figure 8, which is similar to that suggested by the solutions presented in 
figures 3 ( c )  and 7 ( d ) .  The dept-h of the mushy layer is determined by thermal 
balances and has magnitude h N 1/1q. However, through most of its depth, the 
mushy layer has x = 0;  the interstices axe efficiently filled .in by the extra solute 
transported by the vigorous convection. (It is possible that x is greater than zero in 
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this region if the permeability tends to zero at  some non-zero value of x, which would 
lead to trapped liquid inclusions.) There is a narrow boundary layer of thickness S 
near the mush-liquid interface in which x increases to unity and the interstitial fluid 
convects. The temperature contrast across this boundary layer has magnitude 
A8 - S/h,  derived by balancing thermal fluxes in the mushy layer. The balance of 
convective transport with generation of solvent within the mushy layer is expressed 
by U -  VO - V a$/&, which gives I UAe - V. 

The magnitude of I Ul is still indeterminate. However, if 9 ( N )  increases until the 
system regains stability then we can conjecture that the local Rayleigh number 
R, = R, SAO, based upon the thickness S of the boundary layer and the compositional 
contrast A 0  = A0 across it, remains of order unity as R ,  + a. This hypothesis is 
introduced by analogy with the convective state that occurs when a deep fluid layer 
is heated from below (Howard 1966). The scalings presented in the previous 
paragraph together with this hypothesis lead to 

I &&m, h - V-gRi, 8 - V-iRd, A8 - $f$R;i. (7.1) 
If we now rescale the variables by U = 8 = WiR;i8* etc. then Darcy’s 

equation becomes 
v 
- n = - R z ( v p + e * f ) ,  

where R z  = V-i&m, and S/h = (RZ)-l. Therefore, if R ,  % 1 then R z  % 1,  the 
structure of figure 8 pertains and, since I U*l = O( l),  the scaling analysis of $ 5  can be 
applied within the upper boundary layer, which will thus have the structure depicted 
in figure 6. 

Fearn, Loper & Roberts (1981) suggested that the Earth’s inner core is a mushy 
zone of iron dendrites extending all the way to the Earth’s centre. Loper (1983) later 
showed that the solid fraction increases rapidly with distance inwards from the inner- 
core boundary by constructing Taylor series of the dependent variables from the 
equations for a mushy layer proposed by Hills et al. (1983). Since the outer core is 
thought to consist of a molten mixture of iron and small amounts of other light 
components (e.g. oxygen and sulphur), the value of %? appropriate to the freezing of 
the inner core is likely to be small. We should therefore anticipate that the picture 
in figure 8 is appropriate to describe the structure of the inner core ; a picture that 
is consistent with the estimates of Loper (1983). 

8. Conclusions 
The essential physical processes governing convection through chimneys in a 

mushy layer have been elucidated by an asymptotic analysis of simplified governing 
equations. The important processes were found to be thermal balances, modified by 
free compositional convection, controlling the overall depth of the mushy layer and 
the width of the chimneys, and convective transport of solute modifying the 
distribution of solid within the layer. Many assumptions and approximations were 
made in the analysis in order to arrive at as simple a system of equations as possible. 
More specific details, such as the proper variation of the mean conductivity of the 
mushy layer for example, need to be included in the theory before it can be used to 
make quantitative predictions. The model presented here should, nevertheless, 
provide a framework to guide and interpret future experimental and theoretical 
investigations. 
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Appendix A 
The diameter of the chimneys in a convecting mushy layer is set by thermodynamic 

balances in the boundary layer around the chimney. The chimney is maintained, in 
the steady state, by internal dissolution of the dendrites as dilute interstitial fluid is 
convected from below. When % is large, the dominant balance in (3.lb) for the 
conservation of solute is 

At leading order, when R, & 1, this can be written as 

a+ ae 
a2 ar 

w- = u-+ we&). 
Near the wall of the chimney, a+/az is positive, since the dendrites are dissolving 
there. The horizontal advective flux Uae,/ar is negative near the wall of the chimney, 
while the vertical flux Wr9k(z) is positive there if the vertical flow W is positive 
(upwards). Thus the dissolution of dendrites is caused by the vertical advection of 
solvent and retarded by the horizontal motion of interstitial fluid towards the cooler 
chimney, which causes deposition of solvent. 

If the horizontal transport is weak then the simple balance 

applies, which implies that W = O(1) in the boundary layer near the wall of the 
chimney. Since W - R,$alne, from (5.10), this leads to the scalings presented in 
(5.11). 

With these scalings, the horizontal-advection term 

- [  Rc ]: 
(R, In e)3  ' 

which has been derived from (5.7), (5.8) and (5.1 1 a) .  Thus the horizontal advection 
is indeed negligible to leading order provided Rc < (R, In E ) ~  with E given by (5.11 a) .  

Once R, D (R,ln s ) ~ ,  all three terms in (A 2) must balance. In  particular, the 
advective terms balance to give 

which combines with (5.10) to give the scalings presented in (5.12). 

W - E'R;, (A 5) 
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Finally, since the balance (A 3) must still apply, we see that 

with these scalings. The wall of the chimney is defined by 

which yields 
4 ( W ,  2) = 0, 

when differentiated with respect to z. Thus 

a'o N -  1, 
a az 

which shows that, with the scalings given by (5.12), the walls of the chimney are 
vertical to leading order. 

Appendix B 

( 5 . 5 ~ )  together with the boundary conditions 
We wish to determine the volume flux $, through a chimney using (5.5b) and 

@ = e , ,  -- a' - o ( r  = a) ,  
ar 

8 = - 1 ,  $ = O  ( z = O ) .  (B 3) 

Equation (5.5b) expresses the fact that 8 is constant along streamlines, so that 
0 = 8(+). We use this fact, together with the boundary conditions (B 1)-(B 3), to 
show additionally that 

aQ 
-= 0 ( r  = a). 
ar 

The approximate technique we shall use is a type of Polhausen method, suggested 
by Lighthill (1953) for solving the laminar, convective flow in tubes. This approach 
to finding the flow through chimneys was proposed by Roberts & Loper (1983), 
though they simply set up the appropriate equations without solving them. Here, we 
consider a simpler problem by ignoring inertia within the chimney and are therefore 
able to find complete approximate solutions. The method begins by introducing a 
trial function for the concentration field 

1 + 8 = (1 + e,){P,(X) +pP2(x)I, (B 6) 
where x = r /a ,  p is a parameter that must be determined, and the polynomials P, and 
P ,  are given by 

pI(x)  = 2x2--4 (B 7) 
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and P2(x) = x 2 (  1 - x y .  (B 8) 

These are convenient, low-order polynomials that satisfy the boundary conditions 
(B 1)-(B 5). The trial function (B 6) is used in (5 .5c) ,  which can be integrated directly 
to obtain the stream function $. Equivalently, we write 

$ = a4RC(1 +eO){hpl (x)  + A2P2(x) +h3P3(x) + h 4 P 4 ( z ) }  (B 9) 

P,(z )  = x 2 ( 1 - x 2 ) 3 ,  P4(x) = 2 2 ( 1 - 2 2 ) 4 ,  (B 10) 

32 =&-&p, A = L + L  200 l440p3 ’4 = &@? (B 11)  

(B 12) 

in terms of the polynomials Pl(x), P2(x), 

and differentiate to  determine the constants 

A = 1-1 

from ( 5 . 5 ~ )  and (B 6). Note that the value of the stream function at r = a is 

$, = ~ a 4 ~ , ( 1 +  eo). 
A first approximation to A could be obtained simply by using the trial function given 
by setting p = 0 in (B 6). This would give h x & x 0.03125. A better approximation 
for A is obtained by choosing p so that the trial functions satisfy the integral 
constraint 

which is derived from (5 .5b) .  Substitution of the trial functions given by (B 6) and 
(B 9) into the constraint (B 13) leads to the quadratic equation for p, 

(B 14) p-2992  +‘g24-0 
617 p 3085 - 

which has roots p x 0.111 and p x 4.738. The larger of these roots corresponds to a 
flow that reverses within the chimney and has a negative shear at the wall. There is 
in fact an infinite family of solutions to the full problem given by (5 .5b)  and ( 5 . 5 ~ )  
with boundary conditions (B 1)-(B 3) (Lighthill 1953). Our trial functions have 
identified just two members of the family, and we choose the solution corresponding 
to p x 0.111, which has no reversals of the flow field, as seeming the most likely to 
occur. Thus we determine 

from (B 11) .  
A x 0.0306 (B 15) 
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