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Measurements are described of the profile of solid fraction in the mushy layer that is formed when aqueous solutions of sodium
nitrate are cooled and crystallized from below. The method reiies on the measurement of electrical resistance in a conductivity cell.
one electrode of which is a thin horizontal wire situated in the mushy layer. As the solid fraction increases with time, it insulates an
increasing fraction of the length of the wire and increases the resistance. The results show an encouraging degree of consistency with
the theoretical predictions of Worster. Inclusion in the theory of the effects due to the difference in density between the solid and
liquid phases may enhance the agreement between the theoretical and experimental results even further.

1. Introduction

The phase change from liquid to solid plays a
central role in a wide variety of natural, industrial
and laboratory processes. The study of phase
changes has thus attracted not only scientists
working in specific disciplines such as metallurgy,
geophysics and crystal growth, but also applied
mathematicians who have attempted to build gen-
eral quantitative models of the various processes.
All such models, and the assumptions built into
them, need to be tested against experimental data
before one can be confident of their predictions.
This is particularly so if one wishes to apply the
theoretical concepts to situations inaccessible to
direct experimental measurement, for example at
the growing boundary between the solid inner
core and the liquid outer core of the earth. Part of
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the aim of the work reported in this paper is to
carry out a measurement of the local ratio of solid
to liquid in the mushy zone of a laboratory experi-
ment with aqueous solutions and to compare the
results of these measurements with the predictions
of previously reported theoretical calculations.
Chen and Chen [1] have recently used X-ray
tomography to measure the solid fraction in a
mushy layer at the end of an experiment. In the
current paper we report on a series of measure-
ments of both the spatial and temporal evolution
of the solid fraction. In order to make measure-
ments periodically throughout the experiments, we
have constructed an instrument that we hope will
be of more general use than to just this particular
application.

When a binary fluid is cooled and solidified
from a horizontal plane boundary, a morphologi-
cal instability of the interface between solid and
liquid usually occurs. The resulting solid phase
that grows from the liquid usually forms in a
so-called mushy layer. In this region there exist
both a liquid phase and a solid, crystalline phase.
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Early theoretical work on mushy layers centers on
the Scheil equation [2] which relates the local solid
fraction to the local temperature. A later model
developed by Huppert and Worster [3] allows
predictions to be made of the total solid fraction
in terms of the external parameters of the system
by treating the mushy layer as a continuum, with
the physical properties of the solid and liquid
being averaged over the depth of the layer. Experi-
ments in which an aqueous solution of sodium
nitrate was cooled from below, in which case both
the thermal and compositional profile within the
mushy layer are stable, showed that this approach
gives an accurate prediction of the rate of advance
of the interface between the mushy layer and the
liquid, although both the temporal and spatial
variations of the ratio of solid to liquid throughout
the mushy layer were neglected in the model.

Worster [4] presented a more detailed theory
from which the solid fraction ¢ can be predicted
as a function of both time and distance normal to
the cooled boundary. Solving the equations of the
model numerically, he showed that, over the
parameter range covered by the experiments of
Huppert and Worster [3], both models predicted
the growth rate of the mushy layer well, and they
disagreed with each other by less than the uncer-
tainty of the experiments.

Huppert and Worster also calculated the tem-
perature profile in the mushy layer and obtained
good agreement between these calculations and
their experimental measurements. Their de-
termination of the profiles of solute concentration
in the upper part of the mushy layer also con-
firmed the predicted values near the interface be-
tween the mushy layer and the liquid. Unfor-
tunately, they were unable to make satisfactory
measurements deep within the mushy layer.

The purpose of the work which we describe
here was twofold. First, we wished to apply an
additional test to the theory by measuring the
solid fraction ¢ throughout a mushy layer. Fur-
ther, we wished to build an apparatus that could
measure the solid fraction in mushy layers gener-
ally and which could be used in other studies. The
experiments were conducted under conditions al-
most identical to those used by Huppert and Wor-
ster [3]. Aqueous solutions of sodium nitrate with

mass concentrations between 5 and 18 wt% were
cooled from below with a boundary temperature
of —14°C, and the solid fraction ¢ was measured
at three fixed distances z;, (i =1, 2, 3) above the
cooled boundary. Both forms of the theory de-
scribed above give solutions in terms of a similar-
ity variable 1 =z/(4xt)'/?, where z is the height
above the cooled boundary, ¢ is time, and « is the
thermal diffusivity of the solution. In particular,
they predict that the depth / of the mushy layer is
given by h = 2X(xt)'/?, where A is a constant that
depends upon the imposed conditions of the ex-
periment. Hence, if the similarity solution is valid,
measurements at different times of ¢ at the three
separate heights should map out the single profile
¢($), where { =z /h.

2. Experimental method

The solid fraction ¢ is the local ratio of the
volume which is solid to the total volume. The
volume concerned must be small compared with
that of the mushy layer as a whole, but sufficiently
large to include representative contributions of
both solid and liquid phases. In this experiment ¢
is expected to vary only with the dimensionless
vertical coordinate {, so it can be appropriately
thought of as the volume fraction of solid within a
thin horizontal layer which spans the mushy layer.
Division of this thin layer into many narrow paral-
lel strips shows that ¢ can also be thought of in
this case as the fraction of a horizontal line that is
embedded in the solid phase, and this view forms
the basis of the measurement technique.

The experimental arrangement employed is
shown in fig. 1. Three thin platinum wires of 0.32
mm diameter were stretched at heights z; above
the cooled boundary. In the experiment with 17.8%
concentration, the z, were chosen to be (10, 20, 30)
mm, but otherwise they were set at (5, 15, 25) mm.
Each of these wires in turn formed one electrode
of a conductivity cell, the other electrode in each
case being a carbon block of relatively large surface
area suspended in the solution about 150 mm
above the cooled boundary. As cooling proceeded,
the mushy layer grew up past the wires, and the
ice growing around them reduced the length of
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wire in contact with the fluid. The major assump-
tion in interpreting the experiment was that the
cell constant of each conductivity cell, that is, the
product of its resistance and the conductivity of
the fluid, was inversely proportional to the frac-
tion (1 — ¢) of the length of the wire immersed in
the fluid. The technique also relies on the fact that
the conductance in the solid is negligible com-
pared with that in the liquid.

This assumption needs to be discussed, as there
are two potential sources of error: (i) the presence
of a fine wire in the supercooled liquid just ahead
of a growing crystal might have affected the freez-
ing process, for example by providing a preferred
site for crystal growth, and (ii) the geometry of the
spaces which were occupied by fluid between the
growing crystals is unknown, and might have af-
fected the electric field and its associated current
in such a way as to change the current which

flowed from any given short length of the wire,
even though its potential was unchanged and it
remained immersed in fluid of constant conductiv-
ity. These problems will now be discussed in turn,
before going on to examine the results of the
measurements in the next section.

Firstly, the effects of a wire on the formation of
crystals would be most easily seen near the time
when the crystal interface first reached the wire.
Visual inspection of the ice crystals at that stage
of the experiments showed no abnormality near
the wire, provided steps were taken to prevent
heat being conducted along it between the mea-
surement region and warmer or colder levels of
the experimental tank. For this reason, the in-
sulated copper wire, which was connected to one
end of the platinum wire and which provided the
electrical connection to it, was arranged to run
horizontally for a length of about 60 mm before

To con(J]uclance bridge

Coolant flow

I

Fig. 1. The experimental arrangement.
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turning upwards and passing out of the top of the
tank. Without this precaution, ice was noticeably
slower to form near the wire.

Secondly, the geometry of the liquid-filled
spaces between the crystals could not be observed
directly. The fact that current continued to flow to
the wire in these experiments even when the wire
was above the base by only 10% of the depth of
the mushy layer shows however that the spaces
remained connected to the solution above the
mushy layer. Furthermore, the ice crystals tended
to grow as nearly vertical plates, which is a
favourable geometry for this method. However,
when a wire is surrounded by a homogeneous
solution, current flow is radial and most of the
resistance occurs where the current paths con-
verge, within a few radii of the wire. It is probable
that the ice crystals introduced some additional
constrictions into the current paths, further from
the wire, thereby increasing the resistance.

We cannot distinguish between errors produced
by these two effects. However we show below that
a correction can be made for their combination,
which we shall refer to as the geometrical error.

3. Measurements
After a number of trial runs, four experiments

were conducted. In each case a uniform aqueous
solution of sodium nitrate at room temperature
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was cooled at its base as rapidly as our equipment
would allow to —14°C (in about 90 min). This
boundary temperature was then held constant.
The eutectic temperature and concentration for
such solutions are —17.8°C and 38.5 wt%, so no
solid composite layer was formed at the boundary.
The mushy layer, consisting of ice crystals growing
upwards through a concentrated solution, always
extended to the cooled boundary.

The essential difference in external parameters
between the four experiments was in the con-
centration of the initial homogeneous solution,
values of which were 5.6, 10.75, 15.0 and 17.8
wt%. Data from the first of these cases will be
presented in detail to show the treatment applied
in all of them.

Fig. 2a shows a plot of A versus time for this
experiment. The time scale is clock time, and the
arrow indicates the time at which the supply of
coolant to the base of the tank began. The first ice
appeared 16 min later, and the graph shows that
for the next 80 min its growth differed somewhat
from the theoretical result that 4 o« 7172 In fig. 2b
the temperature of the base of the tank is plotted
against time, and it can be seen that the initial
failure to conform to the similarity solution was
due to the relatively slow cooling of the base.
Once the base temperature became steady, the
expected growth rate was established.

Fig. 3 shows graphs of the resistance associated
with each of the three wires as a function of time
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Fig. 2. (a) The square of the height of the mushy layer versus (clock) time. (b) The temperature of the base plate versus (clock) time.
The arrow in both figures indicated the time of commencement of the experiment.
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Fig. 3. The resistance versus time for the three wires.
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in this experiment. In each case there are two
regions of interest in the graph: an initially slow.
approximately linear growth, and a final rapid
growth. Initially, the resistance increased slowly
due to the reduction of temperature ahead of the
mushy layer, and after the transition it was af-
fected strongly by the growth of ice crystals which
insulated an increasing proportion of the wire.
The resistance R, when the ice first arrived at the
wire is indicated by the intersection of the trend
lines before and after the transition. According to
our assumed relationship between the solid frac-
tion and the cell constant, we may therefore write

1—-¢=vRy/YR (1)
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Fig. 4. Uncorrected values of solid fraction versus fractional height. Legend for all plots as in (a); small points show unsteady data.
large points are steady data for each of the three wires. (a) C = 5.6%; (b) C =10.75%; (¢) C =15.0%; (d) C =17.8%. Data depicted by
circles are taken from the lowest platinum wire, data depicted by squares are from the middle wire of the array. and data depicted by
triangles are from the uppermost wire.
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at any later time, where ¢ and R are the solid
fraction and resistance at that time, and y, and vy
are the corresponding fluid conductivities.

As a first approximation, we may assume that
the conductivity of the fluid is constant. Fig. 4a
shows the resulting estimates of ¢ plotted against
the dimensionless height {; of the wire concerned,
where {, = z,/h. In this experiment z; = (5, 15, 25)
mm. It is clear from fig. 2a that the mushy layer
had already grown to a depth of at least 20 mm by
the time the conditions had been established for
the similarity solution to apply. Thus for the lowest
wire, points with {; > 0.25 have been indicated by
small dots only. Similarly for the second wire,
points with {, > 0.75 have been indicated sep-
arately. Figs. 4b to 4d show corresponding graphs
for the other three experiments. :

The data points plotted in fig. 4 display an
important property: all of the points acquired
during the period when h o t'/? collapse to a
single curve, the results from all three wires being
consistent. This 1s strong evidence for the validity
of the similarity solution. The appearance of this
property in all four experiments, as shown in fig.
4, confirms that for given external conditions of
base temperature, initial concentration and initial
temperature, ¢({) is a function that is indepen-
dent of time.

A second property which appears to be con-
firmed by the experiment is that ¢({) tends
smoothly to zero at {=1. This too is consistent
with the theory of Worster [4] for this case, but it
is not obvious a priori that there will be no discon-
tinuity in ¢ at this point.

These are the major results of the experiment.
However, subject to certain assumptions, we can
derive additional information by considering the
first-order corrections

4. First-order corrections

The graphs plotted in fig. 4 display a satisfac-
tory collapse of each set of raw data. Two correc-
tions are necessary, however, to allow a compari-
son with the theory. The data need to be corrected
firstly for the variations in the actual conductivity

of the fluid, which is dependent on the tempera-
ture and concentration, and secondly for the geo-
metrical error.

First, we shall make the correction for the
change of conductivity of the fluid with depth in
the mushy layer. Since this is a higher-order cor-
rection, we can calculate 1t to sufficient accuracy
by assuming that the concentration and tempera-
ture there are both linear functions of {; fig. 4 of
Huppert and Worster [3] provides justification for
this assumption. The conductivity at 20°C as a
function of the concentration C was evaluated by
least squares as a cubic polynomial v,(C) from
data in Weast [S]; the expression, valid up to a
concentration C = 40%, is

¥,(C) =0.9809C — 1.79 x 10 *C*
+1.13x10%C*+01 2 'm™ L.

Our own measurements showed that in the range
of interest the dependence of y on temperature is
nearly linear and that y =y,(1 — 0.015T") to an
adequate approximation, where T’ is the tempera-
ture deficit below 20° C. The resulting correction
increases the estimates of ¢ by about 0.2; it is less
at the top and bottom of the layer than near the
centre.

Second, in order to correct for the geometrical
error, we calculate quite separately the value ¢ of
¢ which we should expect at { =0, that is, at the
cooled boundary. Little vertical exchange of
material can occur in the mushy layer, because the
temperature decreases downwards in it and the
solid and liquid phases are close to equilibrium at
each level. It follows that the density of the liquid
increases downwards, limiting any vertical advec-
tion. Our estimate of ¢, is based on the assump-
tions that there is no vertical advection, and that
the expansion associated with freezing is accom-
modated uniformly by both phases of the mushy
layer. We consider a region near the cooled base
containing some fixed mass M. Before cooling
and solidification take place, this region has
volume V), say, density p,, and concentration C,.
In the final state, after cooling and solidification
have occurred, the region is mushy with a solid
fraction ¢, and total volume V,. The liquid phase
has concentration C; and density p,, while the
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solid phase has concentration 0 and density pq.
Conservation of mass requires that

M=p,Vy=p (1 —¢)Va+ psdols, (2a)
while conservation of solute is expressed by
Cop V1= Crp (1 — o) V5. (2b)
These two equations are readily solved for
$o=(CL— C)/(CL—aC,), (2¢)
where

a=1~ps/p;. (2d)

In the present case, C; = 33%, corresponding
to a temperature of —14°C, p, =125 g cm™?
and pg =0.92 g cm . Hence a = 0.27 and ¢, may
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Table 1

C (%) o Va/
5.6 0.87 1.08
10.75 9.74 1.07
15.0 0.62 1.06

17.8 0.54 1.05

be calculated for each value of C_, giving the
values in table 1.

The amount by which the measured value of
¢y, after correction for the variation of conductiv-
ity, exceeds this value is a measure of the geomet-
rical error at { = 0. We now need to estimate this
error in the interior 0 < ¢ < 1. Since the measure-
ments are consistent with the existence of a simi-

2 —— ‘

Fig. 5. Final estimates of profiles of solid fraction, ¢. The curves represent the theoretical model of Worster [4] and the points are our
adjusted measurements; (a)-(d) as for fig. 4.
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larity solution in which ¢({) is independent of
time (after the initial transient cooling), it is likely
that the first-order corrections are also dependent
on { only. Indeed, if this were not so, the measure-
ments from the three wires would not have col-
lapsed onto single curves in fig. 4. We therefore
take the simplest option and assume that the
fractional correction to ¢ which is necessary at
¢ =0 should be applied at all values of {. This
procedure yields the profiles shown in fig. 5 as our
best estimates. It may be noted that the downward
correction of the measured values which this pro-
cedure introduces is similar in magnitude to the
prior upward correction required by the variation
of conductivity in the mush. Comparison of fig. 4
and fig. 5 shows that the nett effect of these two
corrections is mainly seen near the centre of the
mushy layer, where the estimate of ¢ is somewhat
increased.

5. Discussion

Superimposed on the experimental profiles in
fig. 5 are the profiles predicted by the numerical
solution of the theoretical model of Worster [4]. It
may be seen that in each case the theoretical curve
predicts a value of ¢, that differs from the value
given by (2). This is because the theory assumes
that the densities of the solid and liquid phases are
equal, that is, « =0 in (2c). It is likely that this
assumption is responsible for the entire difference
between the curves, and that if the theory was
recast to include the actual density differences, the
experimental values would agree within their un-
certainty.

We conclude that the continuum model of the
mushy layer is a good one, but that allowance for
the different densities of solid and liquid phases
needs to be made in it. We note also that the
technique described above for the measurement of
solid fraction is a useful one, and should have
applications in other circumstances, for example
where no theoretical value of ¢ is available.
Knowledge of the solid fraction may be particu-
larly important in cases where the fluid in the

interstices of the mushy layer is in convective
motion.

As an example of an important phase change
which occurs on a large scale, we note that a large
mushy layer is believed to exist at the outer ex-
tremities of the solid inner core of the earth. The
idea, first put forward qualitatively by Braginskii
[6], is that the slow solidification of the liquid
outer core in this mushy layer results in the release
of relatively less dense fluid which rises through
the outer core. This flow through a conducting
fluid in a rotating frame is thought to be responsi-
ble for the maintenance of the earth’s magnetic
field. Only the very beginnings of a quantitative
analysis of the formation of the mushy layer and
the resulting fluid motions have been undertaken,
notably by Loper [7] and by Moffatt [8]. Any
theoretical model of the mushy layer will be
strengthened by the agreement of predictions of
the model with results from laboratory experi-
ments. We would hope that the instrument we
have constructed and the approach we have out-
lined in this paper will be of use in this endeavour.
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