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The solidification of melts can be profoundly influenced by convection. In alloys, 
compositional convection can be driven by solute gradients generated as one 
component of the alloy is preferentially incorporated within the solid, even when the 
thermal field is stabilizing. In this paper, two modes of compositional convection 
during solidification from below are uncovered using a linear-stability analysis : one, 
which we shall call the ‘mushy-layer mode’, is driven by buoyant residual fluid 
within a mushy layer, or porous medium, of dendritic crystals; the other, which we 
shall call the ‘ boundary-layer mode ’ is associated with a narrow compositional 
boundary layer in the melt just above the mush-liquid interface. Either mode can be 
the first to become unstable depending on the thermodynamical and physical 
properties of the alloy. The marginally stable eigenfunctions suggest that the 
boundary-layer mode results in fine-scale convection in the melt above the mushy 
layer and leaves the interstitial fluid of the mushy layer virtually stagnant. In 
contrast, the mushy-layer mode causes perturbations to the solid fraction of the 
mushy layer that are indicative of a tendency to form chimneys, which are vertical 
channels of reduced or zero solid fraction that have been observed experimentally. 
Particular attention is focused on the mushy-layer mode and its dependence upon 
the thermodynamical properties of the alloy. The results of this analysis are used to 
make a number of interpretations of earlier experimental studies such as the 
observations that some systems are less prone to form chimneys and that the regions 
of melt in these systems evolve to supersaturated conditions, while the melt evolves 
to unsaturated conditions once chimneys have formed. In addition, good quan- 
titative agreement is found between the results of the linear-stability analysis and 
the experimental results of Tait & Jaupart (1992) for the onset of the mushy-layer 
mode of convection. 

1. Introduction 
I t  is now commonly accepted that certain imperfections, called ‘freckles’, that are 

found in castings of metallic alloys are caused by some form of convection of the melt 
during solidification. Two types of compositional convection have been observed in 
laboratory experiments. In certain aqueous solutions, convection in the form of 
discrete plumes are observed to emanate from chimneys in a mushy layer of dendritic 
crystals. These chimneys are vertical channels of zero solid fraction that are 
strikingly similar to the freckles found in experimentally cast ingots of metallic alloys 
(Copley et al. 1970; Sarazin & Hellawell 1988). On the other hand, similar 
experiments using different aqueous solutions exhibit a visually different type of 
convection and fail to produce chimneys (Huppert 1990). It is not yet known what 



650 M .  G. Worster 

key features distinguish these two classes of experiments. In  particular, much 
attention is currently focused on the questions of when and how chimneys are 
formed, with the ultimate aim of producing castings that are free of freckles. 

Chimneys have been most easily observed in the laboratory during the 
solidification from below of aqueous solutions of ammonium chloride. Consequently, 
such experiments have directed much of the current thinking in this field. The 
evolution of the solidification seems always to  follow three stages (see, for example, 
Chen & Chen 1991 and Tait & Jaupart 1992). Initially, a fairly uniform layer of 
dendritic crystals forms on the cooled base of the experimcntal tank, and buoyant 
residual fluid, depleted of the ammonium chloride taken up by the crystals, rises 
convectively to form a layer of double-diffusive fingers. Some time later, a few 
isolated convective plumes are seen to rise much higher than the top of the layer of 
fingers. Eventually, a chimney or vent is observed beneath each plume extending 
through the crystal pile to the base of the tank. The plumes grow in number and 
strength and, as they do so, the double-diffusive, finger convection wanes. This rise 
in plume activity is followed by a third and final stage in which the number of 
chimneys declines. 

The observed order of events (finger convection, followed by plumes, followed by 
chimneys) might lead one to suspect that the plumes are a more evolved form of the 
finger convection or that they are a direct consequence of the finger convection. 
Indeed, some support for this idea was provided by Hellawell (1987), who observed 
that chimneys could be induced by using a pipette to suck fluid vertically upwards 
from a region just above the top of the mushy layer. This suggested that fluid rising 
in double-diffusive fingers above the interface could provide a sufficient disturbance 
to initiate the formation of a chimney. 

The present paper arrives a t  a somewhat different, conclusion : that the fingers and 
the plumes are two independent modes of convection. These modes might interact 
but they can each be destabilized without the pre-existence of the other. One mode, 
which we shall call the mushy-layer mode, is driven by the compositional buoyancy 
within the mushy layer. The other is driven by the compositional buoyancy in a 
boundary layer that exists above and adjacent to the mush-liquid interface, and we 
shall call this the boundary-layer mode. 

These two modes are analogous to those found by Chen & Chen (1988) in a porous 
layer underlying a fluid layer subject to  a destabilizing, linear temperature gradient. 
In the present paper, the destabilizing buoyancy is provided by the compositional 
depletion associated with the growth of crystals from a binary mixture, the porous 
medium is the mushy layer of dendritic crystals, and the overlying fluid layer is the 
melt from which the crystals are growing. The motionless basic state that we shall 
study varies considerably with the thermodynamic properties and external 
parameters of the system, and we shall explore how these affect the onset and nature 
of convection. 

The stability of similar systems has been investigated previously by Fowler (1985) 
and by Nandapurkar et al. (1989). Fowler (1985) studied a special limiting form of the 
governing equations in which only the mushy-layer mode can be identified and, since 
the solid fraction was asymptotically zero in the limit he investigated, there was no 
interaction between the convection and the solidification. Nandapurkar et al. (1989) 
solved the full set of governing equations numerically though they did not allow any 
perturbations to the solid fraction in their stability analysis and thereby suppressed 
any interaction between convection and solidification. In addition, they worked with 
dimensional variables and investigated only one set of physical parameters. As a 
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result, they did not encounter the mushy-layer mode and concluded that the system 
would only be unstable to convection above the mushy layer while the fluid in the 
interstices of the mushy layer would remain essentially stagnant. 

In contrast to both these studies, we treat the mushy layer as a reacting porous 
medium whose permeability varies as the solid dendrites grow or dissolve within it. 
We shall discover how the convection affects the local solid fraction within the 
mushy layer and draw conclusions regarding the way in which chimneys are formed. 

2. Governing equations 
The system to be investigated is illustrated in figure 1 .  A binary alloy of 

composition C, and temperature T, is solidified at a constant rate V ,  with the 
temperature at the horizontal position z = 0 held fixed at the eutectic temperature 
T, in a frame moving with the solidification speed. A mushy layer extends from 
z = 0 upwards to z = h(x, y, t ) ,  and lies beneath a semi-infinite region of melt in 
z > h, where h must be determined as part of the solution. 

The full set of governing equations we shall investigate here are described in detail 
by Worster (1991). Here we start with a dimensionless form of the equations for the 
case in which the properties of the solid and liquid are assumed to be identical. The 
variables are scaled as follows. Fluid velocities are scaled with the prescribed 
solidification rate V ,  distances with the thermal-diffusion lengthscale H = K / V ,  time 
with K / V 2  and pressure with pACp,gK/V, where the compositional scale AC is given 
by Co-C,, and C, is the eutectic concentration of the alloy. Here, K is the thermal 
diffusivity, po is a reference density, g is the acceleration due to gravity, and 
p = p*-ra*, where a* and p* are the expansion coefficients for heat and solute 
respectively and r is the slope of the liquidus curve, which is assumed to be constant. 
Dimensionless variables for temperature and concentration are defined by 

where A T  = I‘AC = TL(Co) - T,, and TL is the local liquidus temperature. 

solute and momentum in the moving frame are given by 
In the liquid region, z > h(z, y, t ) ,  dimensionless equations for conservation of heat, 

+ u.ve = vw, ae ae 
at ax 
_-_ 

(2.3) 

where 8 = D/K is the ratio of diffusivities of solute and heat, the Prandtl number 
v = v / K ,  and thermal and solutal Rayleigh numbers are given by 

a*ATgH3 p* ACgH 
R, = 7 R c =  

KV KV 

Note that the equations are written in terms of the volume flux of fluid per unit area 
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V 
z = h  

z = o  

FIQURE 1. A schematic diagram representing the steady upwards solidification of an alloy at speed 
V .  A mushy layer lies above a completely solid region, where the temperature is below the eutectic 
temperature, and below a completely liquid region. The temperature profile T is shown together 
with the profile of the local liquidus temperature TL. 

U = xu, where u is the actual fluid velocity and x is the local liquid fraction. Clearly, 
in the completely liquid region z > h, the liquid fraction is equal to unity and 
u =  u.  

The boundary conditions to be applied to the variables in the liquid region are 

e+o,, o+o, u+o ( z + ~ ) ;  (2.4 a+) 

8 = 0, n.V8 = n.VO,  [ n .  v] = 0, U-n. U = 0 ( z  = h) .  ( 2 . 5 ~ 4 )  

The square brackets denote the jump in the enclosed quantity across the interface. 
Condition ( 2 . 5 ~ )  is the liquidus relationship applied at  the mush-liquid interface, 
while (2 .56)  is an expression of the condition of marginal equilibrium proposed by 
Worster (1986). Continuity of normal mass flux across thc mush-liquid interface is 
expressed by condition (2 .5c) ,  and ( 2 . 5 d )  is the no-slip condition applied to the liquid 
adjacent to the interface with the mushy layer. Chen & Chen (1988) used the more 
general BeaversJoseph condition in which there is a slip velocity that is proportional 
to the interfacial shear stress. We use the condition of no slip here for simplicity, so 
as not to introduce extra parameters into an already over-crowded set of governing 
equations. We note that the no-slip condition is an appropriate approximation if the 
scale of fluid motions is large in comparison with the pore size of the underlying 
porous medium and that its use here does not seem to lead to any qualitative 
differences from the results of Chen & Chen (1988). 

Dimensionless equations for conservation of heat, solute and momentum in the 
mushy region, 0 < z < h, are given by 

($-:)<+ U . v 8  = 0, (2.7) 

where 
P A C g l P H  R, = 

KV 
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is the Rayleigh number appropriate for the mushy layer, which is expressed in terms 
of a reference value l7* of the permeability of the layer. We use Darcy’s equation 
(2.8) here for simplicity and, again, to limit the number of parameters. Other authors 
(e.g. Nandapurkar et al. 1989) have favoured an extended Brinkman equation that 
includes effects of inertia and of deviatoric stresses within the mushy layer. Note that 
diffusion of solute has been ignored in (2.7) and that the liquidus relationship 6’ = 0 
is applied throughout the mushy layer. Here, the bulk composition 6 = x0 + #%? is 
used as a dependent variable in place of either the liquid fraction x or the solid 
fraction 4. The other dimensionless parameters introduced in these equations are a 
Stefan number 

y=- 3 
CAT’ 

where 9 is the latent heat of fusion and c is the specific heat, and a concentration 
ratio 

where C, is the composition of the solid phase forming the dendrites. 
The boundary conditions to be applied to the variables in the mushy region are 

e = - 1 ,  w = o  ( z = o ) ;  (2.9a, b )  

[el = 0, [n.ve] = 0, [PI = 0, = o (2 = h) .  (2.10 a 4  ) 

Conditions ( 2 . 1 0 ~ )  and ( 2 . 1 0 ~ )  express continuity of temperature and pressure across 
the mush-liquid interface, while conditions (2.10b) and (2.10d) are derived from 
expressions for the conservation of heat and solute once the condition of marginal 
equilibrium (2.5b) is taken into account. 

3. Steady basic solution 
The governing equations and boundary conditions presented in the preceding 

section admit a steady solution in which the temperature and composition depend 
only on the vertical coordinate z ,  the fluid velocity U =  0 and the mush-liquid 
interface is at the fixed horizontal level z = h,. This solution was presented by 
Worster (1991) and can be expressed as follows. 

In  the liquid region, z > h,, the unperturbed temperature 0, and composition 0, 
are given by the exponential profiles 

with the interfacial temperature given by 

(3.3) 

In  the mushy region, 0 < z < h,, the temperature/composition 0, is given implicitly 
by 

a-%? 
z = - l n ( ~ P ) + Z k ! h ( E ) ,  a-p a-e, a-p p-so (3.4) 
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Stable thermal 

FIQURE 2. A schematic diagram showing the density variations due to temperature, p T ,  and 
composition, p r ,  and the total density field, p. 

where 

a = A + B ,  p = A - B ,  A=4(%+Om+Y), B2 =A2-%8,-9'Oi, 

while the porosity xo is given by 
%-Oi 

x o  = m. (3.5) 

The unperturbed depth of the mushy layer h, is given by (3.4) with Oo = 0. 
The density fields associated with the temperature and concentration variations, 

as well as the total unperturbed density field, are illustrated in figure 2. We see that 
the thermal field is gravitationally stabilizing while the compositional field is 
destabilizing. We also see that most of the compositional variation is taken up by the 
mushy layer, where the fluid is relatively immobile, while there is a narrow 
compositional boundary layer in the more mobile liquid ahead of the mush-liquid 
interface. This picture led Worster (1991) to speculate that two different modes of 
convective behaviour are possible, one mode characterized by overturning of the 
fluid interior of the mushy layer on lengthscales typical of the depth of the mushy 
layer, and the other more or less confined to the boundary layer ahead of the 
mush-liquid interface with the fluid in the interstices of the mushy layer remaining 
essentially stagnant. This speculation is given substance by the following linear 
stability analysis. 

4. Linear perturbation equations 
The linear stability of the basic state just presented is investigated by introducing 

normal modes proportional to ewteiax. These give rise to the following linearized 
equations and boundary conditions in which the variables 8 , 0  and W now represent 
the disturbance amplitudes. 

In the liquid region, z > h, the disturbance equations take the form 

[D," + (D, - W )  -a2] 8 = 8; W ,  

(D: - a2) U' = Q, 

[D,"+ ((D,-w)/(T)-cc~]SZ = a2(R,  8-R, O ) ,  

(4.1) 
[ E D , " + ( D , - u ) - ~ ~ ~ ] O  = 0; W ,  (4.2) 

(4.3) 
(4.4) 
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where D, = d/dz, and a new variable S Z ,  representing the disturbance vorticity, has 
been introduced for convenience in (4.3). In the mushy region, 0 < z < h, 

These equations are subject to the linearized boundary conditions 

8+0,  0+0, W + O ,  D,W+O ( z + c o ) ;  (4.8) 

1 - €  
8 = 0, D,@-D,d = -0;7, [ W ]  = 0, D, W = 0 ( z  = ho);  (4.9) 

E 

(4.10) 

B*Rm17(1)[DQ = (O+a2W)/a],,,,,, ( z  = ho);  (4.1 1) 
PRC 

D, Ulmush = - 

e = o ,  W = O  ( z = O ) ;  (4.12) 

where 7 is the perturbation to the position of the mush-liquid interface, i.e. 
h ( z , y , t )  = h o + 7 ( x , y , t ) .  

5. Marginal stability problem 
In what follows, we seek only the onset of non-oscillatory instabilities. Indeed 

oscillatory instabilities are not expected to occur in the system being analysed since 
double-diffusive systems in which the slower diffusing component is unstably 
stratified, such as we have here, usually give way to direct modes of instability that 
lead to the formation of double-diffusive fingers. Accordingly, we set w = 0 in the 
disturbance equations and seek their neutrally stable eigenfunctions. 

Owing to the complexity of both the governing equations and the basic state, a 
numerical procedure was developed and utilized to determine the eigenvalues and 
eigenfunctions. Finding solutions is complicated by two features of this problem. One 
is that the melt occupies a semi-infinite domain and the other is that the basic state 
is only known implicitly via (3.4). The first difficulty can be dealt with by truncating 
the domain of integration at some finite distance above the solidification front (e.g. 
Coriell et al. 1980; Ng & Reid 1980). Instead, we introduce here a new technique, 
which is to use the basic-state temperature as the independent variable in the 
disturbance equations. Specifically we use the variable 

= e,-eo 
as the independent variable so that the domain of integration runs from 7 = 0 
(corresponding to z+ co) to the eutectic front at 7 = 7, = 1 +Om. This approach 
should be found useful in many problems. Here, it has the added advantage that we 
avoid having to invert the transcendental equation (3.4). 



656 M .  G. Worster 

The governing equations in the liquid region, 0 < 7 < 7i = eJ(1 -e),  thus become 

(PD,2 - a2) e = Tw,  (5-1) 

( T ' D ~ + T D , - ~ ~ )  W = a, (5.3) 

(5.4) ( ? ~ , 2  + (1  - a-1) TD,-o~') sz = 0123EpB,(de- (1 + 0). 
Here we have introduced new dimensionless parameters 3Ep = H2/Z7* and 
d = ra* /p ,  in place of R, = d P R ,  and R, = (1 + d)3EpRm. In what follows, we fix 
d and 3Ep and use the Rayleigh number R, as the bifurcation parameter representing 
the effects of gravity. 

I n  the mushy region, T~ < 7 < 7, = 0, + 1,  the governing equations for marginal 
stability are 

where (a + 7-e,) (p+. - e,) 
w+7-e, e; = 

Equations (5.1)-(5.8) are subject to  the boundary conditions 

e = o ,  Q = O ,  w = o ,  D , W = O  ( T = o ) ;  

l--E 
e = O ,  D,e-D,O=-q, [W]=O, D , W = O  ( 7 = 7 J ;  

e 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

Equations (5.1)-(5.4) have? regu_lar singular point a t  T = 0. It is therefore helpful 
to write (e,O, W ,  Q) = P(&, 0, w, Q), where m is a root of the indicia! eguation, and 
to use the numerical procedure to solve for the analytic functions ( 8 , 0 ,  w, d). The 
equations solved numerically in the liquid region are thus 

(T 'D,~ + 2m7D, + m2 --m - a') e" = 7w, (5.14) 

(~T'D: + (2me + 8 - 1) 7D, + em2 - m - €01') O = 7i (ye@, (5.15) 

(5.16) 

(5.17) 

- 

(7'D,2+(2m+ 1-aa-')~D,+m2--mmcr-'-~')d = a ' P R m ( d & - ( 1 + d )  e), 
( T ' D ~  + (2m + 1) TD, + m' - a') fi = d. 
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Four linearly independent solutions to these governing equations exist that satisfy 
the boundary conditions at T = 0 corresponding to values of m given by 

m, =a(1+(1+4a2)f),  m, = a ( e - l + ( ~ - ~ + 4 a ~ ) ; ) ,  

m3 = +(a-1 + (a-2 +4a2)$, m4 = a. 
- I -  

When m is equal to mi, the corresponding values of (0, @, 52, m) at T = 0 are given by 
the ith row of 

i 8 0  a m 
a2R, a2R 

(m2 - a-'m - a,) (m2 - a-lm - a2) (m2 - a2) 
1 1 0  

- a2R, - a2R, 
(m2-a-'m-a2) (m2-a-'m-a2) (m2-a2) 

2 0 1  

3 0 0  1 

4 0 0  0 

1 
m2 - a2 

1 

while, for each value of m, a Taylor expansion of the governing equations about 
T = 0 gives the following values for the first two derivatives of the dependent variables 
a t T = O :  

- m 
D,e = 

m2 +m--a2' 

D,B = 0, D,"&= 0 ;  

a2R, D, I!? 
m2 + m(2 - cr-l) + 1 - a-' -a2 ' 

a2RT DO 8 
m2 +m(4- a-l) + 4- 2n-l --a2 ' 

D,52 = D,"d = 

D, d 
D,@= 

m2 + 2m+ 1 - a2 ' 
- D," d 

D,"W= 
m2 + 4m + 4- a2 ' 

These expressions allow numerical evaluation of (5.14)-(5.17) to be started from 
asymptotic expressions for the dependent variables near T = 0. For each value of m 
in turn, the governing equations are integrated from T = 0 to T = T ~ .  The dependent 
variables in the mushy layer at T = ri are then related to the dependent variables in 
the liquid by the expressions 

- e = ? m e ,  
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These values are used to  start the numerical integration of (5.5)-(5.7) a t  7 = 7i, which 
continues until 7 = 7,. The solutions thus evaluated will not, in general, satisfy all the 
boundary and interfacial conditions. The remaining boundary and interfacial 
conditions are thereforc used to compute the residuals rii corresponding to index mi, 
where 

ril = 7 m t ( B - 0 )  

r i2  = 7miDT@+m7mi-1@ 

ri3 = 0 (7 = 7J, 

ri4 = W 

(7 = 7i), 

(7 = 7i), 

(7 = -re). 

The determinant of the matrix ( r i j ) ,  9 = 9(Rm,  a ;  E, X ,  d, u, 9, W, O w ) ,  is then 
computed, and the Rayleigh number R, is varied until the determinant is equal to  
zero. The corresponding solutions are eigenfunctions of the governing equations 
representing the marginally stable states of the system. 

6.  Results 
We begin our study with the three principal thermodynamic parameters 9, W, and 

ern all set to unity. The eigenvalue relationship 9(Rm,  a ;  e, X ,  d, u) = 0 then 
specifies a marginal-stability curve R, (a) for each choice of the dimensionless 
parameters E ,  X ,  ,r8 and u. We set the Prandtl number = 10 throughout, this being 
the appropriate order of magnitude for many aqueous solutions. To begin with, we 
set the buoyancy ratio d = 0, which is appropriate for cases in which the 
temperature has little effect on the density of the fluid. This is a simplifying 
assumption that eliminates all double-diffusive effects from the system. I n  addition, 
we assume for the moment that the permeability of the mushy layer is uniform and 
hence set the dimensionless function n(x) = 1. The two remaining parameters are the 
inverse Lewis number e = D / K ,  which is typically very small, and the parameter 
X = H 2 / 1 7 * ,  which can be thought of as the square of the ratio of the thermal 
lengthscale (on which the depth of the mushy layer principally depends) to the 
average spacing between dendrites within the mushy layer. This ratio is typically 
very large; indeed X being large is one of the fundamental hypotheses upon which 
the governing equations for the mushy layer arc derived. 

The first illustrative example is displayed in figure 3, which shows the marginal- 
stability curve for values of e = 0.025 and X = lo5. The system is convectively 
unstable to disturbances of wavenumber a whenever the Rayleigh number is greater 
than the value R,(cr) given by the marginal-stability curve. The striking property of 
this marginal curve is that it has two minima, corresponding to two distinct modes 
of convection with eigenfunctions illustrated in figure 4. There is an instability at a 
wavelength comparable to the depth of the mushy layer (with wavenumber 
a = 2.25), which causes flow throughout the mushy layer and the liquid region, and 
another instability a t  wavelengths comparable to the depth of the compositional 
boundary layer ahead of the mush-liquid interface (with wavenumber a = 13.3). 
This second mode of instability, which we call the boundary-layer mode, is 
characterized by the fact that it leaves the fluid within the interstices of the mushy 
layer essentially stagnant (figure 4 b ) .  As a consequence, it is characterized further by 
causing little perturbation to the solid fraction, in contrast to the mushy-layer mode 
which is associated with the solid-fraction perturbations shown in figure 5. We see 
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I I 1 I 

4 8 12 16 
a 

FIGURE 3. A representative marginal-stability curve with E = 0.025 and 2 = lo6. The two local 
minima correspond to the two different modes of convection discussed in the text. 

I I 

Liquid 

FIGURE 4. Streamlines for the two modes of convection corresponding to the local minima of 
the marginal-stability curve of figure 3. 

that the mushy-layer mode is associated with an increase in the solid fraction a t  
horizontal levels near the top of the layer in regions of upflow, which corresponds to 
an elevation of the mush-liquid interface there. In addition, there is a substantial 
decrease in the solid fraction in the interior of the mushy layer in regions of upflow. 
This is clearly indicative of a tendency to form chimneys ; convective upflow results 
in a local decrease of the solid fraction and an elevation of the mush-liquid interface. 

The relative stability of these two modes of convection, signified by the relative 
values of the local minima of the marginal-stability curve, varies considerably with 
the magnitudes of the parameters X and E .  An alternative interpretation of the 
parameter .%' is as a measure of the relative mobility of fluid in the melt region to 
that in the mushy layer. Therefore, increasing .%' causes the melt region to become 
more unstable relative to the mushy layer, as shown by the curves in figure 6. This 
figure also shows that either mode can be the most unstable depending on the 
parameters of the system. 

The principal effect of varying E is to change the thickness of the compositional 
boundary layer ahead of the mush-liquid interface relative to the depth of the mushy 
layer. As E decreases, the thickness of the compositional boundary layer decreases, 
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FIGURE 5. Streamlines superimposed on a density plot of the perturbation to the solid fraction in 
the mushy-layer mode. Light regions correspond to negative perturbations that represent local 
melting of the dendrites. Darker regions show where the solidification is enhanced. 

15 

10 

R,  

5 

FIGURE 6. Marginal-a 

\I\ / 6.4 x lo4 I - 
\ -  I lo5 I -9 2~ lo5 

I I I I I 
0 4 8 12 16 20 

a 
ability curves for various values of &' with e = 0.025 he-3 fixec 

Ji? destabilizes the system overall and, in particular, destabilizes the boundary-layer mode relath; 
to the mushy-layer mode. 

which causes the local compositional Rayleigh number of the boundary layer (based 
on its thickness) to decrease proportionally to c3. The variation with B of the minima 
corresponding to the two modes of convection is shown in figure 7. This variation is 
similar to that found by Chen & Chen (1988) as they varied the relative thickness of 
a liquid layer above a porous medium between impermeable walls. As E decreases, the 
local minimum of the marginal-stability curve associated with the boundary-layer 
mode moves simultaneously to larger wavenumber and larger critical Rayleigh 
numbers. 
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FIQLJRE 8. Marginal-stability curves for two different values of the Prandtl number c, with E = lo-' 
and .%' = lo6: u = 10 is an appropriate magnitude for many aqueous solutions, while u = 0.02 is 
appropriate for metallic alloys. 

Metallic alloys, which are of commercial interest, have Prandtl numbers that are 
much smaller than the aqueous solutions that are convenient for laboratory study. 
It is therefore important to consider the effect of the Prandtl number cr on the 
stability of these solidifying systems. In BBnard convection, the marginal stability 
curve is independent of cr, which affects only the growth rate of disturbances. In 
systems such as the one presently being studied, in which the velocity in the basic 
state is non zero (here by virtue of the moving reference frame), any vorticity 
generated by buoyancy is advected by this velocity field as well as being diffused. 
The inverse Prandtl number cr-l measures the strength of this advection relative to 
diffusion, as can be seen from (4.4). Therefore, the smaller the Prandtl number, the 
larger is the advection of vorticity towards the solid boundary, which acts as a sink 
of vorticity by virtue of the no-slip condition. Thus systems with smaller Prandtl 
numbers tend to be more stable, as indicated by figure 8, which shows marginal- 
stability curves for two different values of cr. Note that cr is typically much larger 
than 6 in physical systems, so it is not appropriate to consider smaller values of cr 
given the value of E = used to calculate the curves shown in this figure. A second 
role played by the Prandtl number in the present system is through the interfacial 
condition on the pressure field (4.11). This shows that decreasing cr tends to inhibit 
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the vertical velocity through the mush-liquid interface, which has a stabilizing effect 
on the mushy-layer mode as well as lessening the interaction between the two modes 
of convection. This latter effect is indicated by the greater relative height of the 
separating maximum at a x 10 in figure 8. This figure illustrates further that the two 
modes are widely separated when E is small. The equations are also very stiff in this 
limit, so i t  is convenient to rescale them appropriately for each mode and to  
investigate each separately. 

The governing equations have so far been scaled with respect to the thermal- 
diffusion length and arranged such that R, is employed as the principal bifurcation 
parameter. This is convenient for the study of the mushy-layer mode but not 
particularly appropriate for the boundary-layer mode. For that mode, i t  is better to  
consider a local compositional Rayleigh number R,, = e 3 2 R ,  based on the thickness 
of the compositional boundary layer, the density contrast across it and the solutal 
diffusion coefficient. Then, for all the values of c and 3? investigated, the critical 
value of R,, for the onset of the boundary-layer mode has been found to be between 
about 10 and 15. This is consistent with the values of the critical Rayleigh number 
determined by Hurle, Jakeman & Wheeler (1983) for compositional convection 
above a planar interface solidifying at a constant rate, which gives support to the 
idea that, at least when 8 is small, the boundary-layer mode is largely insensitive to  
the mushy layer. With this assumption, one expects that  increasing the buoyancy 
ratio d from zero will give rise to essentially the same double-diffusive modes of 
convection in the liquid region as have previously been studied extensively by 
previous authors (e.g. Coriell et al. 1980) and will not, therefore, be pursued here. We 
note only that increasing d will tend to stabilize the boundary-layer mode but 
slightly (Turner 1979). 

For the remainder of this paper, we shall focus on the mushy-layer mode of 
instability which we have concluded is primarily responsible for the formation of 
chimneys. The mushy-layer mode can conveniently be studied in isolation by letting 
E + O  in the governing equations. This has the desirable effect of rendering the 
equations less stiff and thus more easily integrable numerically. We see from figure 
7 that this procedure results in a very good approximation to the marginal-stability 
curve in the neighbourhood of the critical point of the mushy-layer mode when E is 
small. 

The nature and stability of the mushy-layer mode depends on the internal 
structure of the mushy layer, particularly on its permeability n, which is a function 
of both its porosity x and the morphology of the crystal interfaces within it. Many 
different empirical and semi-empirical relationships for I7 have been determined for 
various porous media. One example is the Kozeny equation (Bear 1988) which gives 
n = cox3/M2,  where c,, is a constant and M is the specific surface area of the phase 
boundaries per unit volume of the porous medium. This illustrates the general trends 
of all such formulae, namely that n increases with the porosity and decreases with 
the specific surface area. In mushy layers, there are two opposing mechanisms 
affecting the specific surface area : morphological instabilities of the phase boundary 
give rise to the internal dendritic structure of the layer that increase the specific 
surface area, while Ostwald ripening serves to decrease the interfacial energy by 
decreasing the specific surface area. A prediction of the specific surface area is beyond 
the scope of the present theory but we can investigate the effect of varying porosity 
by choosing the simple dimensionless function 

n = x 3  (6.1) 
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FIQURE 9. The variation of the critical Rayleigh number R,  and wavenumber a with the 
dimensionless parameters of the system. (a) The variation with 6,, while Y = 1 and V = 1 .  (a) 
The variation with Y, while 6, = 1 and V = 1. (c) The variation with V, while Y = 1 and 
6, = 1.  

which is suggested by the form of the Kozeny equation with M held constant. We 
note that some previous authors (for example, Poirier 1988, and Nandapurkar et al. 
1989) have used a formula in which 17 cx x3/( 1 - x), which is derived from the Kozeny 
equation for a regular array of cylinders. Such a formula, in which l7+ 00 as x+ 1 
is inappropriate when, as in this paper, the Darcy equation is used to describe the 
flow in the porous medium rather than the more general Brinkman equation. 

With the permeability given by equation (6.1), the stability of the mushy-layer 
mode was investigated as the controlling thermodynamic parameters of the system 
are varied. The depth and internal structure of the mushy layer depends on the three 
principal thermodynamic parameters 8,, Y and V as determined by (3.4) and (3.5), 
and discussed by Worster (1991). 

The principal effect upon the basic, convectionless state of increasing the initial 
temperature of the melt 8, is to decrease the unperturbed depth of the mushy layer 
(Worster 1991). Therefore the layer becomes more stable and the critical wavenumber 
increases as 8, increases, as illustrated in figure 9(a).  

The same behaviour might be expected when increasing the Stefan number Y 
since this too decreases the unperturbed depth of the mushy layer. However, 
although the critical wavenumber increases with 9, as shown in figure 9(b) ,  the same 
figure shows that the critical Rayleigh number decreases with increasing Stefan 
number. This behaviour might be attributable to the following physical effect. When 
fluid in the mushy layer is displaced upwards, it partly dissolves the dendrites it 
encompasses and thereby becomes denser. This is a stabilizing effect. Smaller values 
of the Stefan number (latent heat) result in more dissolution for the same 
perturbation, and thus cause the system to be more stable. 

The critical Rayleigh number R, varies most dramatically with V ,  as shown in 
figure 9 (c). As %? increases, not only does the depth of the mushy layer increase but 
the porosity increases simultaneously. Thus the mushy-layer mode is greatly 
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mushy layer. 

destabilized by increasing %. Another effect of varying % is illustrated in figure 10, 
which shows the neutrally stable eigenfunctions alongside profiles of the solid 
fraction for three values of %. When V is small, the porosity near the base of the layer 
is small, while the porosity always approaches unity at the top of the layer. 
Therefore, as V decreases, the flow becomes more confined to  the upper part of the 
mushy layer, and this acts to stabilize the layer further. 

We have defined the Rayleigh number R, in terms of the thermal-diffusion 
lengthscale H = K / V  and the permeability at the mush-liquid interface l7*. These are 
both appropriate scales from a theoretical standpoint since each is an external 
parameter of the system. However, in laboratory experiments, i t  is often convenient 
to define a Rayleigh number in terms of the undisturbed depth of the mushy layer 
k / V  and the mean permeability of the layer n(X)l7*, where is the mean porosity 
of the layer given by 
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which can be evaluated theoretically from (3.4) and (3.5) as 

Figure 11 shows graphs of the critical values of R, = h17(x)R, and = ha as they 
vary with the three controlling parameters Om, 9’ and V. It can be seen that the 
critical wavenumber scaled on the depth of the mushy layer is almost constant, with 
a value of about 2, except for small values of V when convection is confined to the 
upper portions of the mushy layer. 

7. Conclusions 
The linear stability of a mushy layer to the onset of compositional convection has 

been analysed, and two modes of convection have been found. One, called the 
boundary-layer mode, is associated with the compositional buoyancy in a thin 
boundary layer above the mush-liquid interface and has a critical wavelength 
comparable to the thickness of that boundary layer. The other, called the mushy- 
layer mode, is driven by the buoyancy in the interior of the mushy layer and has a 
much larger critical wavelength, comparable to the full depth of the mushy layer. 
The boundary-layer mode was found to be almost independent of the details of the 
underlying mushy layer and to cause little perturbation of the solid fraction within 
the boundary layer. In contrast, the mushy-layer mode depends crucially on the 
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internal structure of the mushy layer and results in perturbations of the solid fraction 
that are indicative of a tendency to form chimneys. It was found that the Prandtl 
number has little effect on the stability of the system, though systems with smaller 
Prandtl numbers are slightly more stable, so that results of experiments with 
aqueous solutions will be indicative of the behaviour of metallic systems. 

Experiments with transparent aqueous solutions have clearly demonstrated the 
existence of different forms of convection arising from mushy layers (Hellawe111987 ; 
Huppert 1990; Chen & Chen 1991). In  some systems, fine-scale convective motions 
are observed originating from near the mush-liquid interface. Indeed, such 
convection seems to be observed at  some stage in all experiments and leads to a 
decrease of the temperature relative to the local liquidus temperature (Huppert 
1990). On the other hand, in certain other experiments (notably those in which 
ammonium chloride is crystallized), this convection eventually gives way to a larger- 
scale convection that permeates the whole mushy layer, results in the formation of 
chimneys, and can cause the temperature of the liquid region to increase relative to 
the local liquidus. 

In  the light of the present analysis, the observed fine-scale convection can be 
interpreted as resulting from the boundary-layer mode of convective instability. The 
analysis has shown that this mode of convection does not penetrate the mushy layer 
and has no tendency (notwithstanding possible nonlinear effects) to produce 
chimneys. Kerr et al. (1990) have argued that non-equilibrium kinetic effects are 
important near the mush-liquid interface and cause local supercooling of the liquid. 
If this were taken into account, then the boundary-layer mode of convection should 
be expected to transport supercooled liquid into the body of the liquid region and 
thus to cause the experimentally observed supercooling of the liquid region. 

Once the mushy layer has become thick enough (always assuming that i t  has 
infinite horizontal extent) it must become unstable to the mushy-layer mode. It will 
do so irrespective of the pre-existence of the boundary-layer mode of instability, 
though it is quite possible that the boundary-layer mode might trigger a sub-critical 
instability of the mushy-layer mode. (It can be anticipated that the mushy-layer 
mode will be subcritically unstable since, in the nonlinear regime, the decrease in 
solid fraction caused by upflow will result in greater permeability, which is analogous 
to BBnard convection in a fluid with temperature-dependent viscosity.) 

It can be argued (Worster 1986; Kerr et al. 1990) that the fluid in the interior of 
the mushy layer remains very close to the local liquidus temperature, even when 
kinetic undercooling is significant a t  the mush-liquid interface, owing to the very 
large specific surface area of phase boundaries in the dendritic interior. It has been 
shown further (Worster 1991) that the assumption of equilibrium in the interior of 
the mushy layer and the difference between thermal and solutal diffusivities cause 
the fluid emanating from fully developed chimneys to be unsaturated. Thus chimney 
convection is predicted to maintain the liquid region above the local liquidus and can 
even cause the temperature of the liquid to increase relative to  the liquidus (Worster 
1990), in agreement with the experimental observations of Huppert (1990). 

The boundary-layer mode of instability depends mainly on the physical properties 
of the liquid phase, which have similar magnitudes for most aqueous solutions. 
Therefore, the occurrence of the boundary-layer mode has a similar likelihood in 
laboratory experiments using aqueous solutions. regardless of the salt being 
crystallized. Using the criterion discovered in 8 6 that the boundary-layer mode 
becomes unstable when R,, is greater than about 10, we can deduce that in the 
transient experiments in which aqueous solutions are cooled a t  a constant- 
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temperature base the boundary-layer mode will set in once the depth of the mushy 
layer exceeds about 

where TB is the temperature of the cooled base, which gives a value for ho in the region 
of 1 mm for typical parameter values. 

The occurrence of the mushy-layer mode is much harder to predict, owing mainly 
to the uncertainty in the appropriate values of the permeability of the mushy layer. 
The crystalline morphology varies greatly from one salt to another and this will have 
a profound influence on the permeability. However, some indication of the relative 
likelihood of the mushy-layer mode (and hence chimneys) can be gleaned from the 
results of the present paper. A parameter that varies greatly between the various 
experiments is the concentration ratio g. In typical experiments with ammonium 
chloride, for example, $? has a value of about 20. In contrast, the experiment with 
sodium carbonate reported by Huppert (1990) has a value of % of about 2 .  We have 
seen, in figure 11, that the critical Rayleigh number is extremely sensitive to the 
value of W and that systems with higher vaiues of % are more unstable to the mushy- 
layer mode and might therefore be expected to be more prone to the formation of 
chimneys. 

The results of recent experiments by Tait & Jaupart (1992) using aqueous 
solutions of ammonium chloride allowed the authors to estimate critical Rayleigh 
numbers R, for the onset of the mushy-layer mode of convection. The parameters of 
their experiments correspond to dimensionless parameters of approximately % = 20 
and Y = 5 ,  while 8, was varied between about 0.1 and 1.1. In figure 12, the data of 
Tait & Jaupart (1992) are compared with the predictions of the critical Rayleigh 
number determined by the present analysis. 

It should be borne in mind that the theory is for the steady solidification of a 
mushy layer a t  constant speed, whereas the experiments examined time-dependent 
solidification from a cooled boundary. In addition, Tait & Jaupart (1992) estimated 
the permeability by applying the Kozeny equation to a regular array of smooth 
cylinders. The mushy layer, by contrast, is composed of dendritic crystals that have 
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a larger specific surface area and therefore a lower permeability than the cylinders for 
a given solid fraction. This effect would have led the authors to overestimate the 
critical Rayleigh number. 

It can be seen that, although there is a fair amount of scatter in the data, they are 
in good approximate agreement with the theoretical predictions. In  particular, the 
theory and the experiments are consistent in showing the critical value of R,  
decreasing as 8, increases. This result, which seems counter-intuitive at first, might 
be explained as follows. When the superheat 8, is large, the density profile is almost 
linear, whereas the density profile is concave upwards for general values of the 
superheat. The curvature causes the effective depth over which the density varies to 
be smaller than the depth of the mushy layer, which will cause the system to be more 
stable. 

This paper has elucidated the nature of the linear convective instabilities that can 
occur in a mushy layer that is being cooled from below, and the results indicate that 
attention should focus upon the mushy-layer mode of instability if the initial 
formation of chimneys is to be understood. This mode can conveniently be studied 
in the asymptotic limit D/K+ 0. Chimneys are intrinsically a finite-amplitude 
phenomenon, since there is no mechanism for localization of the flow in the linearized 
system of equations, so there is clearly a need for research into the nonlinear 
evolution of this system. It is also anticipated that a stability analysis similar to the 
present one, in addition to allowing predictions of when chimneys might form, will 
provide constraints on the vigour of convection and the number density of chimneys 
once they are fully developed. An analysis of this is currently being undertaken. 

I am very grateful to S. Tait and C. Jaupart for supplying the data presented in 
figure 12, to M. Liebman for his help in preparing figures 11 and 12, and to S. H. 
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this paper. This research was supported by a Research Initiation Grant from the 
Thermal Systems Program of the National Science Foundation. 
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