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ABSTRACT. The development of mathematical models describing mushy zones is reviewed. Par-
ticular attention is paid to the transport of mass, heat and species in these reacting, two-phase
media. Dynamical interactions between solidification in mushy regions and three different types
of convection are analyzed: convection due to shrinkage or expansion upon change of phase; and
buoyancy driven convection driven either by thermal gradients or by solutal gradients. Directions
for future reseach into the dynamics of mushy regions are suggested.

1. Introduction

Regions of intimately coexisting liquid and solid phases, called “mushy regions” are ubiq-
uitous during the solidification of multi-component systems. They can be viewed as the
consequence of morphological instabilities of would-be, planar solid-liquid phase bound-
aries (Mullins & Sekerka, 1964), and serve to reduce or eliminate regions of constitutional
supercooling in the system (Worster, 1986; Fowler, 1987) that arise due to the slow dif-
fusion of chemical species relative to heat. The micro-scale morphology of mushy layers
varies considerably with the chemical system being solidified (figure 1) but all are char-
acterized by the length scale of internal phase boundaries being very much smaller than
the macroscopic dimensions of the layer. This is a key feature upon which mathematical
models of mushy regions are based. :

It is of great importance to understand the interactions between solidification and flow
of the melt, since fluid flow transports heat, which influences the rate of solidification,
and transports solute, which causes segregation of the constituents of the melt. A wide
range of striking fluid-mechanical effects during solidification are discussed and beautifully
illustrated in a review article by Huppert (1990). Here we shall focus specifically on in-
teractions between fluid flow and mushy regions and consider the effects of flow caused by
three different physical mechanisms: the flow of interdendritic melt due to the expansion
or shrinkage that occurs as one phase changes to another; thermal convection in the region
of melt exterior to the mushy layer driven by undercooling at the mush-ligiud interface;
and compositional convection driven by the rejection of one component of the alloy dur-
ing solidification. In each case, we shall see that the flow is an inevitable consequence of
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Figure 1. (a) Side view of the dendrites in a mushy layer of ammonium-chloride crystals. (b) End-on
view of ice platelets in a mushy layer grown from an aqueous solution. Although different chemical
systems have quite different micro-scale morphologies, the crystals in each case are much smaller
than the overall dimensions of the mushy layer.

the process of solidification and examine the effect of the flow on macrosegregation of the
alloy. Compositional buoyancy typically dominates thermal buoyancy in multi-component
systems, though either can be the primary cause of convection depending on the geometry
of the mould and the position of its cooled boundaries. On Earth, gravitational convec-
tion, whether compositionally or thermally driven, has much larger effects on a casting
than does the convection due to solidification shrinkage. However, in a micro-gravitational
environment, solidification shrinkage can play the dominant réle.

Two examples of experimental castings are shown in figure 2. In each case, one of
the horizontal boundaries of the mould is cooled to below the eutectic temperature, and
a composite solid layer forms, separated from the melt by a mushy layer. The style of
convection is quite different in the two cases, and results in the final castings having different
textures and compositional variations. It is these sorts of variations that theoretical models
aim to explain.

2. Mathematical Modelling of Mushy Regions

Theoretical and numerical models of mushy regions typically seek to provide descriptions
of the evolving two-phase media on the macro scale, much larger than the mean spacing
between solid particles. Seemingly different models of mushy regions have been formulated
independently by metallurgists, engineers and applied mathematicians. On closer exami-
nation, one appreciates that the differences are related more to language and terminology
than to physical content. For many years, metallurgists have made use of the Scheil equa-
tion and the lever rule (Flemings, 1974; Kurz & Fisher, 1986) to deduce microsegregation
from experimental measurements of the temperature of a casting. Macrosegregation was
similarly estimated from the Local Solute Redistribution Equation (Flemings & Nereo,
1967). These equations allow the evaluation of various properties of castings given mea-
sured values of the evolving temperature field. The prediction of the evolution of a casting
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Figure 2. Characteristically different forms of macrosegregation are generated by different types of
convection. a) Experiment in which an aqueous solution of sodium sulphate, of initial composition
Co and eutectic composition C,, was completely solidified by cooling from above (Kerr et al., 1990c).
From the top down, there is a layer of composite, eutectic solid, a mushy layer of sodium-sulphate
crystals, a region of melt that is convecting, and a layer of equiaxed crystals on the floor of the
tank. b) The final solidified block, showing a distinct change of texture at the columnar-equiaxed
transition. c¢) The symbols show the compositional variation measured in the final solid block.
The solid line is the prediction of a mathematical model (Kerr et al., 1990c). d) Experiment
in which an aqueous solution of ammonium chloride was completely solidified by cooling from
below. A composite eutectic solid layer underlies a mushy layer of ammonium-chloride crystals.
The interstitial fluid in the mushy layer is convecting and escapes from the layer through chimneys.
e) Close-up of the final solidified block. The structure is all columnar but there is a textura) change
when ice succeeds ammonium chloride as the primary solidifying phase. f) The compositional
variation measured in the final casting. The different symbols correspond to three different corings
\ of the same casting.
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Figure 3. The equilibrium phase diagram of a simple binary alloy. The shaded regions indicate
what phases are in thermodynamic equilibrium in a sample of given bulk composition and uniform
temperature. If the system remains at equilibrium during cooling then liquid of a particular concen-
tration begins to solidify once the temperature falls below the liquidus curve and is completely solid
once the temperature falls below the solidus curve or below the eutectic temperature T.. When the
temperature T and bulk composition are between the liquidus and solidus curves then liquid of the
liquidus composition Cr(T) is in equilibrium with solid of the solidus composition given by kCr(T),
which defines the local segregation coefficient k(C).

from the external parameters of the process required additional equations describing fluid
flow (Mehrabian et al., 1970) and heat transfer (Fujii et al., 1979). In more recent years, as
computers have become more powerful, fully coupled equations describing the transport of
mass, heat, momentum and species have been developed and utilized in predictive models
of solidifying systems (Szekely & Jassal, 1978; Bennon & Incropera, 1987; Thompson &

Szekely, 1988; and see articles by Amberg, Beckermann and Voller in these proceedings, t
and references therein). A more philosophical approach was taken by Hills et al. (1983) who
formulated a very general set of governing equations, based on diffusive mixture theory, that
are consistent with fundamental thermodynamical principles. Somewhat different again is
the reductionist approach adopted by Huppert & Worster (1985) and Worster (1986), who
formulated very simple models that yet contain sufficient information to isolate and explain
particular features of the solidification process, and enable quantitative comparisons with
laboratory experiments.

t Articles appearing in these proceedings will henceforward be indicated simply by a raised
dagger f.
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Figure 4. (a) A simplified schematic of a dendritic region. The inset (b) shows the local one-
dimensional model used to derive the Scheil equation. (c¢) The variation of concentration through
¥he solid and liquid regions when there is complete back diffusion. (d) Concentration variation when

there is no back diffusion. In each case, the dashed line C represents the bulk composition of the
element.

2.1 THE SCHEIL EQUATION AND THE LEVER RULE

The mushy layer is a two-phase medium whose properties are determined in large part by
the local volume fraction of solid ¢(x,?), which must be determined as part of the solution
of the mathematical model. In most theories to date, the growth or dissolution of solid
in the interior of mushy regions is assumed to occur instantaneously, so that the layer is
everywhere in local thermodynamic equilibrium. Therefore, the local concentration of the
interstitial liquid C and the local temperature T are related to one another through the
liquidus

T = TL(C), (2.1)

given by the equilibrium phase diagram (figure 3).

The Scheil equation and its close relative, the lever rule, give relationships between ¢
and C. Alternatively, once the equilibrium assumption (2.1) is invoked, these equations can
be used to infer the solid fraction once the local temperature is known. These equations
can be derived (Kurz & Fisher, 1986) from a local one-dimensional problem (figure 4b)
identified from a simplified picture of a dendritic region (figure 4a). The lever rule follows
directly from conservation of solute under the assumption of complete local equilibrium in
which the solid phase has uniform composition Cs = kC, where k(C) is the local value
of the segregation coefficient (figure 4c). A simple mass balance, ignoring any change of
specific volume on change of phase, gives

1 C
o= 1; <1 - 6) , where p=1-k, (2.2)
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and C is the bulk composition of the one-dimensional element (figure 4b).

The lever rule (2.2) is only appropriate if the timescale for diffusion of solute in the solid
phase (so-called ‘back diffusion’) is rapid compared with the timescale for the macroscopic
evolution of the mushy region. In fact, a more reasonable approximation in most circum-
stances is that there is negligible back diffusion, in which case the composition of the solid
phase varies across each dendrite; Cs; = Cy(¢'), 0 < ¢’ < ¢. In this case, the composi-
tion of the solid phase varies with position, and equilibrium is only imposed at the local
solid-liquid interface (figure 4d). Two additional assumptions are made in the derivation
of the Scheil equation, namely that the segregation coefficient k£ is constant, and that the
local bulk composition of the element C does not change during the evolution of the mushy
region. Given these assumptions, it is straightforward to derive the Scheil equation

¢p=1- (%) Up. (2.3)

from conservation of mass of solute.

It has been pointed out (Kurz & Fisher, 1986) that, according to the Scheil equation,
C — oo as ¢ — 1, and that this unphysical singularity is avoided in practice by the process
of back diffusion. However, the Scheil equation should rather be interpreted as saying
that the solid fraction is bounded away from unity in practical situations, in which the
temperature, and hence the local concentration, is always finite, so that the singularity is
never encountered.

Neither the lever rule nor the Scheil equation take account of any global redistribution
of solute and they give poor approximations whenever flow of the interstitial fluid is sig-
nificant. The lever rule can be used (provided the assumption of infinite back diffusion is
appropriate) if one can determine how the bulk composition is altered by the flow. How-
ever, the Scheil equation is never valid once the local bulk composition varies with time.
Another way of understanding this is to realise that, if there is no back diffusion or only
finite back diffusion, the solid fraction depends not only on the instantaneous value of the
bulk composition but on the entire history of its evolution.

2.2 THE MUSHY LAYER AS A CONTINUUM

The need to predict the macroscopic redistribution of solute within the mushy layer requires
the development of appropriate transport equations (Flemings & Nereo, 1967; Flemings,
1981; Hills et al., 1983; Worster, 1986; Bennon & Incropera, 1987). Such equations are for-
mulated from fundamental conservation laws applied to ‘infinitesimal’ control volumes that
nevertheless are considered to encompass representative samples of both phases. In this
sense, the mushy region is considered as a new continuum phase. Therefore, the resulting
description cannot resolve any details on the scale of the spacing between dendrites. Put
more positively, the macroscopic predictions of the models that emerge are independent of
the structure of the micro scale and can therefore be applied in a wide range of circum-
stances. For the sake of simplicity, we consider only cases when the solid phase is immobile.
The principal assumptions of the model are that, within each infinitesimal control volume,
the temperature T is uniform across the solid and liquid phases, the composition of the
liquid phase C is uniform and there is no back diffusion of solute within the solid phase.
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The properties of the mushy region are local mean properties. For example, the local
density is

P=¢ps+(1-9)p, (2.4)

where p, and p; are the densities of the liquid and solid phases, which are assumed to be

constant. Mass is only transported by advection of the interstitial fluid, so conservation of
mass is expressed by

dp

20 TV (00)=0, (2.5)

where U is the flow rate of the interstitial fluid per unit area. From equation (2.5), it can
be determined that the veloctiy field generally has a non-zero divergence given by

V.-U-= (1—7‘)% (2.6)

where 7 = ps/pi. Such a velocity can be generated solely in response to the expansion or
contraction that occurs due to the difference in density between the liquid and solid phases,
and does not require the exertion of any external force such as gravity. The transport
caused by this interstitial flow strictly invalidates the Scheil equation and the lever rule,
though these often provide adequate approximations in practical situations, especially if

the density ratio r is close to unity.
With the approximations stated above, the local mean concentration of solute C in the

mushy region is given by
_ ¢
PC=p. [ Cu#)dd' +pi(1 - $)C. (2.7)
0
Conservation of solute requires that

0 _— —
557C +V - (pCU) = pi¥ - (DVC), (2.8)
where D is the local mean solutal diffusivity of the mushy layer. Equation (2.8) can be
expanded and combined with equation (2.6) to give

1= ¢)%—f +U-VC=V-(DVC)+r(1 - k)C%?. (2.9)

This is a diffusion-advection equation with a source term related to the rate of expulsion
of solvent as the local solid fraction ¢ increases.

We shall see later that it is appropriate to neglect the diffusion of solute within the
mushy layer provided that the ratio of the solutal diffusivity D to the thermal diffusivity
k is small. With this approximation, and incorporating the equilibrium condition (2.1),
equation (2.9) can be written as

_QK__ 1 1_}_U-VT X
aC — r(1-k) or c’
ot

(2.10)




120

where x = 1—¢ is the local volume fraction of liquid. This is the Local Solute Redistribution
Equation (LSRE), first derived by Flemings & Nereo (1967). They used the equation
to determine the macrosegregation in a casting from estimates of the flow field U and
measurements of the temperature field T

Note that, in the special case of no flow of the interstitial fluid, the LSRE (2.10) can
readily be integrated to recover the Scheil equation (2.3).

An equation governing the temperature field in the mushy region is most readily and
systematically derived in terms of the local enthalpy H, where

ﬁTf = ¢psHs + (1 — ¢)p1Hy, (2.11)
and H, and H; are the local enthalpies per unit mass of the solid and liquid phases re-

spectively. In terms of enthalpy, the equation expressing conservation of heat is identical
in form to the equation for conservation of solute (2.8) and is given by

%ﬁFJr V- (piHU) =V - (kVT), (2.12)

where % is the mean thermal conductivity of the mushy region. Expanding equation (2.12)
using equations (2.6) and (2.11) yields the equation governing the temperature field,

2 +¢qU-VT =V -(kVT) + psLa—¢, (2.13)
ot ot
where
T =¢cs + (1 - ¢)C[,
and
Py st,I
s, = Ps,l dT

are the specific heat capacities per unit volume of the solid and liquid phases. The latent
heat of solidification per unit mass is defined by L = H; — H,. Note that in general, L is
a function of both temperature and concentration. However, if the phase change always
occurs at the equilibrium temperature, given by equation (2.1), then L can be viewed as a
function solely of the concentration C of the interstitial liquid.

The three equations (2.6), (2.9) and (2.13) are all coupled through ¢;, the rate of change
of solid fraction. To complete the model, an evolution equation for ¢ is required. Alterna-
tively, ¢ can be determined implicitly by invoking an assumption of instantaneous reaction,
which leads to the application of the equilibrium liquidus relationship (2.1) throughout the
mushy region. Thus the temperature T and concentration C are essentially the same
variable, mathematically speaking, and the diffusion term in equation (2.9) can safely be
neglected, without causing a singular perturbation, when the solutal diffusivity is much
smaller than the thermal diffusivity, as is usually the case.

When flow is driven by external agents, such as a gravitational field, or when shrinkage
occurs in more than one dimension, a dynamical equation is required for the velocity field
in addition to the kinematic equation (2.6). In the fully liquid region, the appropriate
equation is the Navier-Stokes equation for viscous fluid flow. In the mushy region, there is
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considerable resistance to flow as the fluid passes between the dendrites. It seems appro-
priate to model the mushy region as a porous medium, the simplest descrlptlon of which
is given by Darcy’s equation

U =1 [(pi - po)g — V1), - (2

where pg is a reference value of the fluid density, p is the hydrodynamic pressure of the
interstitial fluid, and II is the permeability of the medium. Many investigators, particularly
those conducting numerical simulations, have replaced equation (2.14) with hybrids of
Darcy’s equation and the Navier-Stokes equation (Bennon & Incropera, 1987; Voller et al.,
1989; Nandapurkar et al., 1989). This has the advantage of allowing numerical solution
of the governing equations on a single computational domain. However, it introduces
additional physical parameters to the description of the system that must be estimated
before realistic computations can be made. _

The transport properties of the mushy region D, k, and II are all functions of the local
solid fraction ¢ and of the microscopic morphology of the medium (Beran, 1968). For
practical purposes, it has been found that simple volume-fraction weighted averages D =
(1-9)D; and k = (1— ¢)k; + ¢k are adequate to describe the mean solutal diffusivity and
thermal conductivity. No experimental determination has yet been made of the appropriate
form of the permeability of a mushy region, though a variety of expressions have been used
in numerical and analytical calculations and in the interpretation of experimental results.
The most common have been the Kozeny-Carmen relationship II = (1 — ¢)3/¢ (Bennon &
Incropera, 1987; Chen & Chen, 1991; Tait & Jaupart, 1992) and simple power laws such
as Il = (1 — ¢)? (Roberts & Loper, 1983; Fowler, 1985) and II = (1 — ¢)® (Worster, 1992).

2.3 INTERFACIAL CONDITIONS

When solving a problem involving solidification, there are prescribed boundary conditions
applied at the surfaces of the mould. In addition, there are free internal interfaces between
solid and liquid regions or between mushy and liquid regions, for example. The motion
of these interfaces is partly determined by conservation laws that can be derived directly
from the governing equations for mushy regions. Equations (2.6), (2.9) and (2.13) can be
integrated over a small volume spanning the interface, in a frame of reference moving with
the normal velocity of the interface V, to yield

[n-U]=—(1-r)V[g], (2.15)
r(1-k)C[¢]V = [Dn-VC] (2.16)

and
psL[glV = [kn-VT], (2.17)

where [ ] denotes the change in the enclosed quantity across the interface. Conditions (2.16)
and (2.17) are derived under the assumption that the temperature and the composition
of the liquid phase are continuous across a mush-liquid interface, and can be used at a
solid-liquid interface with C interpreted as the concentration in the liquid region at the
interface. However, there may be discontinuities of the solid fraction across the interface.

If the jump in ¢ is prescribed, for example [¢] = 1 across a solid-liquid interface, then
conditions (2.15)-(2.17) are sufficient to determine the evolution of the interface, in the
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absence of any free energy associated with the curvature of the interface. In the case of an
interface between a mushy layer and either a completely solid region or a completely liquid
region, another equation is required in order to determine [¢]. Since the governing equations
are only first-order for ¢, only one jump condition can be applied in a given problem. Some
authors have imposed continuity of ¢ simultaneously at the mush-liquid interface and at
the solid-mush interface, at the expense of one of the conservation laws (2.15)-(2.17).
Another common practice is to impose continuity of ¢ at mush-liquid interfaces, though
there seems no good reason for doing this a priori. An alternative condition, suggested
by Worster (1986), is the “marginal equilbrium condition” that the normal temperature
derivative at the mush-liquid interface be equal to the normal derivative of the local liquidus
temperature,

[n-VT] = [n- VIL(C)] = T4(C)[n - VC]. (2.18)

Worster (1986) shows that this condition sometimes leads to [#] being non-zero and that in
such cases setting [¢] = 0 as the interfacial condition instead of (2.18) renders the governing
equations insoluble. However, under most common operating conditions, equation (2.18)
coupled with equations (2.16) and (2.17) implies that, in fact, [¢] = 0 at advancing mush—
liquid interfaces. Indeed, equation (2.18) shows that the temperature and concentration
gradients have equal orders of magnitude in the limit as D/x — 0, where  is the thermal
diffusivity, so the right-hand side of equation (2.16) is negligible in this limit. This same
equation thus shows that [¢] = 0 when the diffusivity ratio is small, while equation (2.17)
then implies that the temperature gradient is continuous across the interface.

An alternative approach to tracking the interfaces between the phases is to solve the
governing equations on a single computational domain. This method, which is used mainly
for numerical calculations, obviates the need for interfacial conditions. In such calculations,
it is usual for the enthalpy to be used as a dependent variable in place of the temperature
and for the position of the interfaces to be found a posteriori from calculations of the local
solid fraction.

3. Phase-Change Convection (Solidification Shrinkage)

One of the purposes of the mathematical model presented in section 2 is to allow quan-
titative predictions to be made of macrosegregation within a casting. Such undesirable
separation of the constituents of an initially uniform melt during casting is effected by
various convective processes within the melt. It is sometimes possible to reduce or even
to eliminate convection due to buoyancy forces by cooling from below, provided that the
primary solidifying phase leaves behind a dense residual (Huppert & Worster, 1985). Al-
ternatively, the alloy could be cast in a micro-gravitational environment such as inside an
orbiting space station. However, none of these contingencies will eliminate the flow of melt
due to the expansion or contraction that occurs as a result of the solid and liquid phases
having different specific volumes.

It has long been realized that solidification shrinkage is an important mechanism caus-
ing macrosegregation in both metallurgical systems (Flemings & Nereo, 1967, 1968) and
in geological systems such as magma chambers (Petersen, 1987). In addition there have
been quantitative estimates made of the extent of macrosegregation using modifications
of the Scheil equation coupled with estimates of the local temperature field during solid-
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ification (Flemings & Nereo, 1968; Mehrabian et al., 1970). More accurate calculations
can be made by solving the full set of coupled transport equations given in the previous
section. In complicated mould geometries, numerical solution of the equations must be
sought (BeckermannT), but if the mould is cooled from a single planar boundary then one-
dimensional, similarity solutions can be found (Vas’kin, 1986; Chiareli & Worster, 1992).
These solutions, which serve to illustrate the dependence of the degree of macrosegregation
on the external control parameters, will be described briefly here.

Figure 5. A schematic diagram of a mushy layer growing from a cooled plane boundary when the
temperature of the boundary T is higher than the eutectic temperature. The temperature T and
the local liquidus temperature T (C) are illustrated. Far from the cooled boundary, the temperature
is T, and the concentration is Cp.

The one-dimensional geometry to be analyzed is illustrated in figure 5. A mushy layer
grows in the positive z-direction and has depth h(t) after a time ¢ has elapsed. The bound-
ary z = 0 is maintained at the fixed temperature T}, while the melt far from the interface
has temperature T, and concentration Cy. The governing equations and interfacial con-
ditions presented in section 2 admit a similarity solution, in which the dependent variables

are functions of the single variable
z

(v

where x; is the thermal diffusivity of the liquid phase, and the height of the mush-liquid

interface is given by
h(t) = 2M\V/kit, (3.2)

where ) is a constant to be found as part of the solution. With this transformation of
variables, the governing equations reduce to a set of ordinary-differential equations for
T(n), C(n), U(n) and ¢(n). In figure 6, the bulk composition C at the base of the mushy
layer (n = 0) is plotted as a function of the density ratio 7 = ps/p;. The difference between
this bulk composition and the initial concentration of the melt gives a measure of the
degree of macrosegregation that has taken place during solidification. It can be seen that
the bulk concentration of the casting increases with the density ratio, as shrinkage causes

(3.1)
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advection of solute into the mushy layer.

In addition to causing macrosegregation, the flow of interstitial fluid alters the solid
fraction of the mushy layer and hence its permeability to flow generated by external forces.
Because of the importance of the permeability in determing the strength of convective flow
in mushy layers (see section 5) there has been interest recently in measuring the porosity
of mushy layers (Chen & Chen, 1991; Shirtcliffe et al., 1991). The latter authors measured
the porosity in a system in which ice was solidified from an aqueous solution of sodium
nitrate, and compared their measurements with analytical predictions made by Worster
(1986). These predictions, in which the expansion during the solidification of ice is ignored,
correspond approximately to what would be determined from the Scheil equation. If one
takes into account the redistribution of solute caused by expansion then one obtains much
better theoretical agreement with the experimental results (figure 7, Chiareli & Worster,
1992). We see from figure 7 that ignoring expansion causes a 10% error in the prediction
of the solid fraction. More importantly, the error in the prediction of the porosity (liquid
fraction) near the base of the layer is about 50% in this case, which would make a significant
difference to the mobility of the interstitial fluid in the presence of external forces.

4. Thermal Convection of the Melt.

Buoyancy forces generated by gradients of temperature and concentration within the melt
are the major cause of convection during solidification on Earth. Within the mushy layer,
where local equilibrium (equation 2.1) is imposed, the net buoyancy of the interstitial fluid
is

Ap = BAC — aAT = (8 — aT') AC, (4.1)

where o and 3 are expansion coefficients for temperature and solute, I is the slope of the
liquidus curve, and AT and AC are the temperature and concentration variations across
the mushy layer. Under the assumption of local equilibrium, the temperature and solute
fields are not free to diffuse independently. Therefore, since 3/Ta is usually larger than
unity, gravitational convection within the mushy layer is determined principally by the
solute field.

If a casting is cooled from a horizontal, upper boundary and the primary solidifying
phase rejects a less-dense residual then there is no tendency for the interstitial fluid in
the mushy layer to convect gravitationally. However, thermal convection of the melt can
ensue, since it is being cooled from above. The mushy layer itself can be modelled using
the equations of section 2, with r set equal to unity if attention is to be focused on the role
of thermal convection (Kerr et al., 1990a). The effect of thermal convection in the melt is
felt only through the interfacial condition (2.17), in which account must be taken of the
convective heat flux from the melt to the mushy layer. Such convection influences the rate
of growth of the mushy layer (Turner et al., 1986; Kerr et al., 1990a) but does not by itself
cause any macrosegregation of the casting.

However, in laboratory experiments in which aqueous solutions were cooled from above,
with all other boundaries of the system insulated, significant macrosegregation of the so-
lidified product has been observed (Turner et al., 1986, Kerr et al., 1990c; figure 2¢). The
interface between the upper region, where the bulk composition decreases with depth,
and the lower region, where the composition increases with depth, was also marked by a
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Figure 6. The theoretical macrosegregation caused by solidification shrinkage as a function of the
density ratio between solid and liquid. The bulk composition at the base of the mushy layer is C,
while the initial composition of the melt is Cy. The calculations for this graph were made by A.O.P.
Chiareli (Ph.D. Northwestern University).

h(t)

0 0.2 0.4 0.6 ¢ 0.8 1

Figure 7. The volume fraction of solid ¢ in a mushy layer as a function of the relative depth in
the layer, z/h(t), where h(t) is the height of the layer. The circles are data from experiments
of Shirtcliffe et al. (1991), using aqueous solutions of sodium nitrate, reinterpreted by Chiareli &
Worster (1992). The dashed line is the prediction of a model that negletcts solidification shrinkage
(r = ps/p1 = 1), while the solid line takes full account of the interactions between solidification and
the velocity field induced by shrinkage (r = 0.74).
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so-called “columnar-equiaxed transition”. At this interface, vertically-aligned, dendritic
crystals attached to the roof of the container met randomly-oriented crystals that had
grown in the interior of the melt and had settled and continued to grow at the base of the
container.

The columnar-equiaxed transition is very important metallurgically since the different
crystal morphologies influence the structural properties of the casting significantly. The
growth of equiaxed grains in the interior of the melt (away from the cooled boundaries)
cannot be explained by theoretical models that employ all the assumptions of equilibrium
thermodynamics since, according to such models, the melt cannot be cooled below its
liquidus temperature (Brandeis & Marsh, 1989; Kerr et al., 1990a).

There are two places where equilibrium is imposed in the theoretical model described in
section 2: in the interior of the mushy layer; and at the advancing interface between the
mushy layer and the liquid region. In reality, there must exist some degree of undercooling
(disequilibrium) at all evolving solid-liquid phase boundaries in order to drive solidification,
so there must be some disequilibrium associated with the surfaces of individual dendrites
within the mushy layer. However, any disequilibrium will also promote morphological
instabilities of the dendrite leading to secondary and tertiary side branches. The side-
branching activity within the mushy layer will tend to reduce the level of disequilibrium as
the consequent increase in specific surface area of micro-scale phase boundaries promotes
the release of latent heat and solute into the interstices. Thus the level of disequilibrium
can be kept very small in the interior of the mushy layer, and the assumption of local
equilibrium there is a good one. Note that the morphological instabilities that lead to
side branching are inhibited by the surface energy associated with the curvature of the
solid-liquid interface. Therefore, the assumption of internal equilibrium will be less good
in systems that have large interfacial energies, especially those systems that display faceted
rather than dendritic crystals.

The “interface” between the mushy region and the liquid region does not have a well-
defined position on the micro scale. Rather it is a region of some small but finite thickness
inhabited by the tips of dendrites. The specific surface area of solid-liquid phase boundaries
in this interfacial region may be quite small since significant side-branching only occurs
at some distance from the tips of dendrites. Thus the level of disequilibrium may be
significant at the mush-liquid interface. It is possible to explain the growth of equiaxed
grains in the interior of the melt and the macrosegregation that can additionally occur
by relaxing the condition of interfacial equilibrium while maintaining the assumption of
internal equilibrium. )

A model incorporating a prescribed constant level of undercooling at the interface was
proposed by Clyne (1981) and was subsequently extended to include a dynamically variable
undercooling by Flood & Hunt (1987). These authors modelled the mushy region using the
Scheil equation and an equation equivalent to (2.13) to determine the local temperature.
We can describe the way in which disequilibrium was accounted for by these authors,
using the terminology of the present paper, as follows. In the limit of zero diffusivity
ratio (D/k — 0), the condition of marginal equilibrium at the mush-liquid interface (2.18)
implies that the temperature of the interface is given by

T; = T1(Coo), (4.2)

where Co, is the composition of the liquid far from the interface (strictly, the composition
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just outside the compositional boundary layer). Clyne (1981) replaced this condition by
T; =T(Co) — Tu, (4.3)

where T is an assumed-constant value of the interfacial undercooling, while Flood & Hunt

(1987) used the condition
V=F[Ty(Cx)-Ti. (4.4)

In the kinetic condition (4.4), V is the normal velocity of the interface and F(AT) is
some function of the undercooling AT = TL(Cs) — T;. In fact, Flood & Hunt (1987)
used the function F(AT) = G(AT)?, which is appropriate for crystal interfaces growing
by screw dislocations (Kirkpatrick, 1975). A similar analysis was carried out by Kerr et
al. (1990Db) using the function F(AT) = GAT, which is more appropriate for molecularly
rough crystals. In addition, Kerr et al. (1990b) conducted experiments in which a mushy
layer of ice crystals was grown from a mixture of water and isopropanol, and were able
both to confirm the linearity of the kinetic growth law for that system and to determine
the value of the coefficient G.

Although disequilibrium is only imposed locally at the mush-liquid interface, thermal
convection of the melt can sweep undercooled liquid from the neighbourhood of the interface
into the bulk of the region of melt. Thus the whole melt region becomes supercooled, and
any nuclei within the melt can grow to produce large crystals. The heat transfer from these
crystals is not directed (as it is in the mushy layer), so the crystals are randomly oriented
(equiaxed).

In the model of Flood & Hunt (1987), the equiaxed crystals in the melt were assumed to
grow from pre-inserted nucleation sites and remained fixed in space. Therefore, although,
the authors were able to draw conclusions regarding the columnar-equiaxed transition,
their model did not produce any macrosegregation. By contrast, Kerr et al. (1990b) made
the assumption that all crystals grown in the interior of the melt settled instantaneously to
the bottom of the container to form a uniform layer of solid there. This settling, and the
consequent enrichment of the melt of the secondary component causes macrosegregation
of the form illustrated in figure 2c. The assumption of instantaneous settling results in an
over prediction of the degree of macrosegregation, as does the assumption that the settled
crystals form a solid layer rather than a porous pile. As to the cause of macrosegregation
in this case; while it is true that there would be none without the settling of crystals
or, equivalently, the convection of depleted melt from the neighbourhood of the interior
crystals, the root mechanism is the interactive coupling of thermal convection of the melt
with the kinetic undercooling of the crystals at the mush-liquid interface.

5. Compositional Convection in the Mushy Region

Buoyancy-driven convection within mushy layers can occur when the composition of the
interstitial fluid is unstably stratified. Such is the case for example when an alloy is solidified
from below and the primary solidifying phase leaves a less dense residual. Convection of this
type was first observed by Copley et al. (1970) in experiments in which an aqueous solution
of ammonium chloride was solidified from below to form a mushy layer of ammonium-
chloride crystals. Similar experiments have since been reported by a number of authors
(Roberts & Loper, 1983; Sample & Hellawell, 1984; Chen & Chen, 1991; Tait & Jaupart,
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Figure 8. Photographs of the two different types of convection seen in experiments in which solutions
of ammonium chloride are cooled and solidified from below. a) Early in the experiment double-
diffusive fingers emanate from the vicinity of the mush-liquid interface. b) Later, isolated plumes
rise through vents (chimneys) in the mushy layer into the overlying solution.

1992). The evolution of such experiments follows three distinct phases. Initially, a uniform
mushy layer grows with a planar interface, and double-diffusive, finger convection rises
from the interface a few centimetres into the solution (figure 8a). Once the mushy layer
has reached a certain depth, the top of the layer becomes hummocked and chimneys begin
to form, through which emanate plumes of buoyant fluid (figure 8b). As the strength of
convection through chimneys becomes stronger, the finger convection wanes and eventually
disappears. The later stages of the experiments are marked by a gradual decrease in the
number of chimneys as the mushy layer deepens.

A full theoretical understanding of these experiments has still not been acheived, though
aspects of the observed phenomena have been at least partially explained. One of the
principal questions that has intrigued researchers in this field is the mechanism of chimney
formation. Perhaps guided by observations of similar structures in fluidized beds (for
example in a pot of boiling rice), it was suggested that chimneys might be produced
mechanically by convective upflow breaking off the side branches of dendrites (Roberts &
Loper, 1983). Hellawell (1987) noticed that he could induce the formation of a chimney
by sucking fluid vertically through a pipette near the upper surface of the mushy layer.
This observation led to the conjecture that upflow in the double-diffusive fingers above the
mushy layer might be the root cause of chimney formation. Mehrabian et al. (1970) used
the LSRE to deduce the incipiant formation of chimneys in the interior of a mushy region
whenever the vertical velocity exceeds the local velocity of the isotherms. The mechanism
of formation in this case is the local dissolution of solid (dendrites) within the layer. This
idea was echoed by Fowler (1985) who argued additionally that this condition on the
velocity field would first be met at the mush-liquid interface and that, therefore, chimneys
should be observed growing downwards from the interface into the interior. Dissolution
has been shown to be a possible mechanism for chimney formation in large-scale numerical
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Figure 9. a) A schematic diagram of a binary melt being solidified at a constant rate from below.
The temperature is fixed at the eutectic temperature at the horizontal position z = 0 in a frame
moving with the constant solidification speed V. The temperature field T and the local liquidus
temperature Tr(C) are illustrated. b) The density distributions caused by the temperature field
pr, the solute field pc and the total density of the liquid p. The density field in the mushy layer
is statically unstable in a gravitational field directed vertically downwards, as is the density in the
compositional.boundary layer just above the mush-liquid interface.

calculations by Bennon & Incropera (1988) and in a linear-stability analysis by Worster
(1992). All this does not rule out the possibility of a substantial réle being played by
mechanical shearing of side branches, however. Recent work by Glicksman! shows how
local dissolution and ripening effects cause a necking of the side branches, possibly to a
point where they can be easily torn off by a weak flow. In addition, observations by Sarazin
& Hellawell clearly show crystal fragments being carried upwards out of chimneys by the
convecting plumes.

5.1 STABILITY THEORY

The prediction of when, rather than how, chimneys form can begin to be answered by an
analysis of the stability of a mushy layer to the onset of buoyancy-driven convection. The
governing equations presented in section 2 have a steady solution in a frame of reference
moving with a prescribed vertical speed V, (see figure 9a). In the absence of any flow,
the steady temperature and concentration fields give rise to the density field illustrated
in figure 9b. The mushy layer is unstably stratified and, in addition, there is a narrow
unstable boundary layer just above the mush-liquid interface.

The first analysis of the convective stability of a mushy layer was conducted by Fowler
(1985), who analyzed a special limit of the governing equations, in which the compositional
boundary layer has negligible thickness and the solid fraction in the mushy layer is zero.
The stability problem reduces to that of the stability of a fixed porous medium with a
solid lower boundary and a condition of zero pressure applied to the upper boundary.
Chen & Chen (1988) presented an analysis of the stability of a fluid layer above a fixed
porous medium, with a uniform, unstable temperature gradient applied across them. This
arrangement mimics the compositional boundary layer above the mushy layer illustrated
in figure 9b. They found a bi-modal marginal-stability curve similar in form to that shown
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in figure 10. A stability analysis using the full transport equations for the mushy layer was
conducted by Nandapurkar et al. (1989). However, they did not allow perturbations of the
solid fraction, and thereby suppressed any interaction between the convective flow and the
growth of solid. They considered a single set of physical parameters and found just one
mode of convection that did not penetrate the mushy layer.

Fully coupled interactions between flow and solidification were also considered in a
normal-mode analysis by Worster (1992). He found that, in general, the marginal-stability
curve is bimodal (figure 10), with the structure of the flow in the two modes as shown in
figure 11. One mode, the “mushy-layer mode”, has a horizontal wavelength comparable to
the depth of the mushy layer, while the other, the “boundary-layer mode” has a wavelength
comparable to the thickness of the compositional boundary layer above the mush-liquid
interface. In effect, Fowler (1985) had analyzed a special case of the mushy-layer mode,
while Nandapurkar et al. (1989) had found the boundary-layer mode. Either mode can be
the more unstable depending on the parameters of the system (Worster, 1992), though for
the parameter values of a typical laboratory experiment, the boundary-layer mode is found
to be unstable long before the mushy-layer mode.

Since the flow in the boundary-layer mode does not penetrate the mushy layer, this
mode has little influence on the solid fraction within the layer. By contrast, the mushy-
layer mode causes the perturbations to solid fraction shown in figure 12. The interface is
elevated in regions of upflow and the solid fraction through most of the depth of the layer
is decreased there. These features are consistent with the form of chimneys observed in
laboratory experiments, and suggest that it is the mushy-layer mode of convection that is
primarily responsible for the formation of chimneys.

The sequence of events in a typical laboratory experiment might be explained as follows.
Very soon after the start of an experiment, the boundary-layer mode becomes unstable
and gives rise to double-diffusive plumes above the mushy layer. Sometime later, when the
mushy layer is deeper, the Rayleigh number associated with the layer exceeds the critical
value for the mushy-layer mode, and convection throughout the layer is initiated. This
convection causes the interface to be elevated in regions of upflow, and depressed elsewhere,
which gives rise to the hummocky appearance of the mushy layer. If the mushy-layer mode
is sub-critically unstable then large perturbations, such as sucking, might trigger the early
onset of the mode, which would explain the observations of Hellawell (1987).

If it is true that the mushy-layer mode gives rise to chimneys then it is of some importance
to determine the conditions under which it is unstable. The Rayleigh number determining
the convective stabilty of the mushy layer is

R,, = 20000 (5.1)

KV

where g is the acceleration due to gravity, v is the kinematic viscosity of the fluid, H is a
length scale, such as the unperturbed depth of the mushy layer, and II* is a representative
value of the permeability of the layer. Quantitative prediction of the onset of convection
in a physical situation is complicated by the difficulty of determining the permeability of a
mushy layer. Tait & Jaupart (1992) made estimates of the permeability in their experiments
with ammonium chloride by measuring the mean separation of primary dendrite arms and
applying an equation derived for the permeability of a vertical array of cylinders. This
allowed them to estimate the critical Rayleigh number from observations of when the
mushy layer first appeared hummocky. Some of their results are reproduced in figure 13,
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Figure 10. The marginal-stability curve for the onset of compositional convection in the system
illustrated in figure 9. The two minima correspond to distinct modes of convection, as illustrated
below. This graph was calculated for the diffusivity ratio D/x = 0.025 and the ratio H?/II* =
10%, where H = &/V is the length scale for thermal diffusion and II* is a reference value of the

permeability of the mushy layer. Either mode can be the more unstable depending on the values of
these parameters (Worster, 1992).

Figure 11. Streamlines for the marginally-stable modes corresponding to the two minima in figure 10.
a) The mushy-layer mode has a wavelength comparable to the depth of the mushy layer and the flow
penetrates the layer. b) The boundary-layer mode has a wavelength comparable to the thickness
of the compositional boundary layer above the mush-liquid interface. The flow in this mode barely

influences the underlying mushy layer.
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Figure 12. The perturbations to the solid fraction caused by the mushy-layer mode of convective
instability. Dark regions show where the solid fraction has increased while lighter regions indicate
where the crystals have dissolved. In regions of upflow, the solid fraction is generally decreased
while the mush-liquid interface is elevated (indicated by the dark patch near the top of the mushy
layer).

where they are compared with the predictions of the linear-stability analysis of Worster
(1992). There is some scatter in the data but the general trend that the critical Rayleigh
number decreases as the far-field temperature increases is found both in the theory and
the experiments.

5.2 FULLY-DEVELOPED CHIMNEYS

As important as knowing when chimneys will occur is to know what their effect is once
their occurence is unavoidable. For example, the convective flow through chimneys causes
an exchange of solute between the mushy layer and the overlying region of melt that
results in macrosegregation of the casting (figure 2f). In order to make predictions of the
extent of macrosegregation it is necessary to be able to calculate the flux of solute through
the chimneys. The flow through the mushy layer feeding the upflow through chimneys
was first addressed by Roberts & Loper (1983). They showed that the flow through each
chimney is similar to that through a thermosyphon (Lighthill, 1953) and calculated the flow
through the surrounding mushy layer, whose solid fraction was taken as a fixed function
of depth. These calculations were extended by Worster (1991), who analyzed the flow in
the asymptotic limit of large Rayleigh number. He found that, in this limit, there is a
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Figure 13. The critical Rayleigh number as a function of the far-field temperature of the melt given
parameter values appropriate for an aqueous solution of ammonium chloride. The solid line shows
the prediction of a stability analysis. The data are from experiments by Tait & Jaupart (1992).

thermal boundary layer around each chimney, in which the solid fraction is larger than
in the rest of the mushy layer as a result of additional cooling by the fluid rising through
the chimney. This increased crystal growth can be seen in experiments, and is the likely
cause of the ‘volcanic vent’ around the top of each chimney (figure 8b). The asymptotic
analysis allows calculation of the fluxes of mass, heat and solute through each chimney.
The overall strength of the convective exchange between the mushy layer and the overlying
liquid depends, in addition, on the areal number density of chimneys.

From his asymptotic analysis, Worster (1991) determined a family of solutions for the
temperature, composition and solid fraction in the mushy layer, parameterized by the
number density of chimneys. The fluxes of heat Fr and solute F¢ from the mushy layer
to the overlying fluid are given by

Fr = —pCpFV(Teo — T1(Co)) (5.2)

and
Fe = —%fV(Co - Ch), (5.3)
where T, and Cp are the temperature and composition of the melt, C is the composition
of the interstitial fluid at the base of the mushy layer, V is the rate of solidification, and
F is a parameter proportional to the number density of chimneys. These expressions can
be used to determine a relationship between the temperature and the composition of the
liquid region
C-Cy

2 = 2
Ga] ~me-m(5=g) - 6

T= TL(C()) + (Too - TL(C())) [l -
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Figure 14. The evolution of the temperature and composition of the melt above a mushy layer
caused by convection through chimneys in the layer. The data are from an experiment using an
aqueous solution of ammoinium chloride. The dashed line is the predition of an asymptotic analysis
in the limit of large Rayleigh number (Worster, 1990, 1991).

This expression is plotted in figure 14, where it is compared with measurements from an
experiment using an aqueous solution of ammonium chloride. There is good agreement
between the theoretical results and the experimental measurements, but the result is of
limited use. In order to make individual predictions of the evolution of the temperature
and solute fields, and hence the rate of solidification and the extent of macrosegregation, it
is necessary to find some way to predict the number density of chimneys, or alternatively
to determine the parameter F directly.

However, expression (5.4) and figure 14 do serve to illustrate a particular feature of
chimney convection, namely that the temperature of the melt remains above the liquidus
temperature. Huppert (1990) pointed out that this behaviour is distinct from what is found
in experiments using some other aqueous solutions, in which the melt became supercooled.
In these experiments, convection is only seen emanating from the vicinity of the mush-liquid
interface, so it might be associated with the boundary-layer mode. As discussed in section 4,
significant disequilibrium (undercooling) can exist at the mush-liquid interface, which could
be carried into the interior of the melt by the boundary-layer mode of convection. By
contrast, when chimneys are present, the flow is primarily downwards into the mushy
layer, where the fluid can be restored to near-equilibrium conditions before being ejected
through chimneys. During ascent through a chimney, the fluid reaches thermal equilibrium
with its surroundings but its composition remains unchanged. It therefore emerges from
the chimney undersaturated (superheated). Whether the melt becomes supercooled or
not will have a profound influence on the form of macrosegregation and the possibility of
columnar-equiaxed transitions.
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6. Future Directions

In this review, I have tried to highlight with a few specific examples key interactions that
can occur between soldification in mushy layers and the flow of the melt. It is apparent
that significant advances have been made in our understanding of mushy layers through
a combination of mathematical models and quantitative laboratory experiments. In par-
ticular, it now seems certain, from the excellent agreement obtainable between theoretical
predictions and experimental data, that mushy layers in which the interstitial fluid is stag-
nant, or which only moves in response to shrinkage, are well characterized and quantified
by the continuum theories. However, while many qualitative aspects of buoyancy-driven
convection through the interstices of mushy layers are understood, considerable work still
needs to be done before accurate quantitative predictions can be made.

Perhaps the most important subject that needs to be addressed is the appropriate form of
the momentum equation in mushy layers and the determination of the associated transport
parameters. Even in the simplest cases when Darcy’s equation is appropriate, there is a
need to determine how the permeability varies as the mushy layer evolves. In general, the
permeability II of a porous medium depends on its porosity x (liquid fraction) and on the
specific surface area M of its internal, wetted surfaces (phase boundaries).

Experimental determinations of the porosity of mushy layers are already being under-
taken (Chen & Chen, 1991; Shirtcliffe et al., 1991) and the experimental techniques for
doing so will undoubtedly improve in the next few years. Measuring the specific surface
area of internal phase boundaries will pose greater difficulties but may not be beyond mod-
ern computerized imaging techniques, for example. Even once these two properties of the
medium are determined, obtaining the permeability is not straightforward. Many different
relationships for the permeability in terms of the porosity and the specific surface area
have been proposed, a popular choice being the Kozeny equation (Bear, 1988) which gives
Il = cox®/M?, where ¢ is a constant.

From a theoretical point of view, the variation of porosity has already been taken into
account in theories of mushy layers but little attention has yet been given to the evolution
of the specific surface area of internal phase boundaries. There are at least two compet-
ing influences on the surface area: morphological instabilities that lead to side branches;
and surface-energy effects that lead to coarsening. The instabilities of individual, isolated
dendrites have been addressed in the past (Langer, 1980) though one suspects that the char-
acteristics of these instabilities will be changed considerably once the dendrite forms part of
an array within a mushy region. There have also been experimental (Marsh & Glicksman,
1987) and theoretical (Voorhees, 1985) studies of coarsening in single-component systems.
The theoretical studies have a statistical nature that is suitable for application to mushy
layers but there is a need to extend them to binary systems and to systems that are evolving
due to imposed macroscopic temperature gradients.

Evolution of the internal phase boundaries will only take place in the presence of micro-
scale gradients of temperature and/or solute concentration. This signals the need to relax
two of the principal assumptions upon which current theories of mushy layers are based,
namely the uniformity of the interstities and local equilibrium of the mushy region. We have
already seen that local disequilibrium at a mush-liquid interface, coupled with convection,
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has important consequences for macrosegregation of a casting. Depending o:: 'he geometry
of the casting and the nature of the crystals, flow of the melt will penetra.te different
depths of a mushy region and it is therefore important to know the'extent of significant
disequilibrium. LoperJr has formulated a non-equilibrium theory of a mushy region which
might form the basis for future investigations.

Disequilibrium is also a significant issue in the study of melting within mushy regions,
which has yet received little attention. Some aspects of the melting of binary solids have
been analyzed by Woods (1992), and the melting of side braches of dendrites has been inves-

tigated experimentally by Glicksman!. Localized melting of the solid phase within mushy
regions is important for the formation of chimneys, for example, and similar phenomena
occur during the slow percolation of groundwater thorugh porous rocks (Phillips, 1991).
Whereas morphological instabilities act to keep the specific surface area of internal phase
boundaries large during solidification, no such effect occurs during melting, so the micro-
scale gradients of temperature and solute concentration that cause internal disequilibrium
can be sustained.

One of the major strengths of the theoretical models of mushy regions that have been
developed and utilized during the past several years is their independence of the morphol-
ogy of internal phase boundaries. This has rendered them universally applicable regardless
of the chemical species being solidified. To address the challenges of the future (disequilib-
rium, permeability to fluid flow, coarsening and melting) much more specific information
about the chemical system will be required. In addition, there will be an increasing need to
include micro-scale phenomena into models of macro-scale processes. Interactions between
scientists from the various disciplines dealing with solidification and transport processes
will be greatly advantageous in this endeavour.
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