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We present a mathematical model of a mushy layer that incorporates transport of heat and solute by the flow of interstitial fluid
caused by expansion during solidification. We also reinterpret the data of Shirtcliffe et al. J. Crystal Growth 113 (1992) 566, by
taking into account the anisotropy of the mushy layer, in order to determine better estimates of the local solid fraction in mushy
layers produced experimentally. Very good agreement is found between the theoretical predictions and the experimental results,
which suggests that certain geometrical effects that were thought to have influenced the experimental measurements may in fact be

negligible.

1. Introduction

In many important cases of natural and indus-
trial solidification (particularly of multi-compo-
nent melts), a mushy layer of dendritic crystals
and interstitial melt forms between the growing
solid region and the original melt. It has long
been realized that flow of the melt due to solidifi-
cation shrinkage (the change in specific volume
that typically accompanies changes of phase) is an
important mechanism causing macrosegregation
in both metallurgical systems [1,2] and in geologi-
cal systems such as magma chambers [3]. In addi-
tion, there have been quantitative estimates made
of the extent of such macrosegregation using
modifications of the Scheil equation coupled with
estimates of the local temperature field during
solidification [2,4]. In this paper, we describe a
model that can be used to make direct predic-
tions of the local solid fraction within a mushy
layer, and hence can be used to calculate the
extent of macrosegregation in a solidifying alloy.

It is also important to know the solid fraction
in a mushy region for other reasons. The mushy
layer forms a porous medium (matrix) through
which the interstitial melt can flow in response to
its own buoyancy in a gravitational field or to

externally applied forces. The permeability of the
mushy layer depends in large part upon the local
liquid fraction, which in turn is determined by
various internal physical processes involved in
solidification. It is essential to know the perme-
ability before any flow of the melt can be ana-
lyzed. To this end, there has recently been re-
newed interest in measuring the liquid fraction of
mushy layers in laboratory experiments [5,6].
Chen and Chen [6] used X-ray tomography to
measure the solid fraction (thence the liquid frac-
tion) in a mushy layer after the completion of an
experiment, while Shirtcliffe et al. [5] (herein
referred to as SHW) developed a simple electri-
cal method for making in situ measurements of
the solid fraction in a mushy layer as it evolves
during an experiment. SHW compared their find-
ings with the predictions of a mathematical model
[7] and found reasonable agreement for a range
of experimental conditions. However, the theory
gave consistently lower values of the solid frac-
tion than SHW determined from their experi-
mental data. The authors attributed this discrep-
ancy to two effects: the neglect in the theory of
the expansion upon change of phase from liquid
to solid, and certain “geometrical effects” in the
experiments such as the preferential growth of
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solid along one of the electrodes of the measur-
ing device. In this paper, we present results of a
new theoretical model that incorporates the ef-
fects of expansion, and we reinterpret the data of
SHW, by taking into account the anisotropy of
the electrical conductivity of the mushy layer, to
show that any geometrical effects are negligible.

In section 2, we describe briefly the experi-
ments of SHW and the method they used to infer
the solid fraction from their measurements of
resistance. In section 3, we describe the or-
thotropic nature of the mushy layer, and develop
a new expression relating the measured resis-
tance to the local solid fraction. The theoretical
model is outlined in section 4, and its predictions
of solid fraction are compared with the experi-
mental results in section 5, where conclusions are
drawn regarding the validity of the theoretical
model and the accuracy of the experimental tech-
nique for measuring solid fractions in general
mushy layers.

2. The experimental method
The experimental arrangement employed by

SHW is shown in fig. 1. Details of the apparatus
are given in their paper. Briefly, an aqueous

To conductance bridge

Coolant flow

Fig. 1. A schematic diagram of the experimental apparatus
used by Shirtcliffe et al. [5].

solution of sodium nitrate was cooled from below
in a rectangular container to produce a mushy
layer of ice crystals with solution enriched in
sodium nitrate between them.

There were three thin wires stretched horizon-
tally at heights z, above the cooled boundary.
Each of these wires formed one electrode of a
conductivity cell, the other electrode in each case
being a carbon block of relatively large surface
area suspended in the solution high above the
cooled boundary. As the mushy layer grew past
each wire, the ice dendrites covered parts of the
wire, decreasing the length of the wire in contact
with the fluid, and thereby increasing the resis-
tance of the medium, since the solid has negligi-
ble conductance compared with the liquid.

The experiments performed by SHW consisted
of measuring the resistance of the conductivity
cell. Two assumptions were then made: that the
resistance of the cell was governed principally by
the resistance of the medium in the vicinity of the
thin wire forming the lower electrode of the cell;
and that a proportion ¢ (equal to the local solid
fraction of the mushy layer) of the wire was
covered in ice, through which no current flowed.
The solid fraction ¢ was therefore determined
from the expression

1—¢é=K/yR, (2.1)

where R is the measured resistance of the con-
ductivity cell, and y is the electrical conductivity
of the interstitial fluid near the wire. The cell
constant K was determined from K=1yyR,,
where R, and v, are, respectively, the resistance
of the cell and conductivity of the solution at the
start of an experiment, before ice had begun to
grow. The local electrical conductivity of the in-
terstitial fluid vy depends upon the temperature
and concentration of the fluid, which variation
can be adequately approximated by

y =y,[1-0.015(20 - T)], (2.2)

where 7 is the temperature of the liquid in
degrees Celcius, and vy, is given by

y,(C) = (0.9809C — 1.79 X 1072C?
+1.13%x1074C3) 2 'm™ ", (2.3)
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Fig. 2. Comparison of the measurements of solid fraction

determined using eq. (2.1) with the predictions of a theoreti-

cal model that neglects any convection of interstitial fluid

caused by expansion during solidification. The initial concen-

tration of the solution was 5.5 wt% NaNOj. The other param-

eter values are given in table 1. The experimental data are
from ref. [5].

Fig. 2 shows a plot of the measured values of ¢,
according to eq. (2.1), compared with the theory
of Worster [7] for an initial concentration C, = 5.6
wt% NaNO,. This plot did not appear in SHW,
since these authors further adjusted their data to
account for possible geometrical effects in the
experiments. We see that the theory predicts
values of ¢ that are about 10% less than those
determined experimentally. We believe that this
discrepancy is due partly to simplifying assump-
tions in the theory and partly to the eq. (2.1) used
to infer the solid fraction from the measurements
of resistance.

Table 1

The parameter values used in the calculations leading to fig. 5
Parameter Value Units

m 0.4 °C

L 73.6 cal em 3

kg 53%x1073 calg=tsleC!
k, 1.3x1073 calg ls™toC™!
O 0.92 gem™?

o 1.25 gem 3

c, 0.44 calem™3°C!

< 1.0 calcm~3°C™!
T, 20 °C

Ts —14.0 °C

3. The orthotropic conductivity of the mushy layer

The mushy layer usually takes the form of a
forest of solid, dendritic or sheet-like crystals,
oriented principally along the direction of
strongest thermal gradient, with fluid filling the
interstices. The ice dendrites in the experiments
of SHW are therefore growing preferentially per-
pendicular to the axis of the wire that forms the
lower electrode of the conductivity cell. Given
this geometrical arrangement of the insulating ice
crystals, the conductivity of the mushy layer can
be thought of as being locally orthotropic, with a
conductivity tensor given by

v, 0 0
=10 vy, 0], 3.1)
0 0 Yh

where v, is the effective conductivity in the verti-
cal direction (parallel to the primary arms of the
dendrites) and v, is the effective conductivity of
the medium in the horizontal plane. We can
estimate the effect of anisotropic conductivity
upon the current through the cell by considering
the current from a thin horizontal wire in a
semi-infinite domain. Such a calculation shows
that the resistance R of the cell and the conduc-
tivity of the medium are related approximately by

1/R o« (yyy,)"" (3.2)

It remains to estimate vy, and vy, in the mushy
layer in terms of the local solid fraction ¢. Since
the solid phase takes the approximate form of
rods or sheets aligned vertically, the conductivity
along the direction of preferential growth can be
estimated by

y=y(1-9), (3.3)

where 7 is the local conductivity of the interstitial
fluid. If expression (3.3) were also used to deter-
mine vy,, then expression (2.1) used by SHW
would be recovered. In fact, eq. (3.3) gives an
upper bound for the conductivity of a general
medium, and this bound is attained for the spe-
cial case of parallel rods or lamallac when the
heat flux vector is in the same parallel direction
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[8]. Lower upper bounds for statistically isotropic
two- and three-dimensional media have been de-
rived by Hashin and Shtrikman [9] (ref. [8], p.
198). Therefore, on the assumption that the mushy
layer is statistically isotropic in horizontal planes,
we use the Hashin-Shtrikman upper bound for
two-dimensional media to estimate

1-¢
Yh~71+¢, (3.4)
assuming that the ice crystals are perfectly insu-
lating. The Hashin—-Shtrikman lower bound is
zero in this case. This is a tight bound, since it is
achieved by a medium composed of composite
spheres (ref. [8], p. 198) We note also that eq.
(3.4) gives the correct asymptotes for a dilute
array of circles (¢ < 1) [10] and for a concen-
trated rectangular array of squares (1 — ¢ < 1).
By combining expressions (3.2)-(3.4), we find that
1 —
¢ = £ =4, (3.5)

vi+do YR

which can be solved for ¢ to give
b =3(2+A47-VAa*+84%). (3.6)

Expression (3.6) will be used later (in fig. 5) in
place of (2.1) to estimate the solid fraction from
the measured resistances.

4. A theoretical model of the mushy layer

When a melt solidifies, the solid usually has a
different density than the melt. The difference in
specific volume induces a flow of the melt to-
wards the solid if the solid has a greater density
than the melt, or away from the solid otherwise.
This flow alters the rate of transport of heat and
mass, thereby affecting the rate of solidification
and the macrosegregation of a binary system.
These effects are particularly important when the
liquid fraction of the medium is small.

Quantitative estimates of the macrosegrega-
tion caused by shrinkage have previously been
made by Flemings and Nereo [2] and by Mehra-
bian et al. [4] using measured values of the evolv-

ing temperature field. More accurate calculations
can be made by solving the full set of coupled
transport equations for mass, heat and solute.

In this section, we extend the mathematical
model of a mushy layer developed by Worster [7]
by incorporating effects due to the expansion of
the melt phase as it solidifies. We take the segre-
gation coefficient to be zero, which is a good
approximation for aqueous salt solutions. Many
additional features of this model will be discussed
in a future publication.

The governing equations for the mushy layer
are given by the local conservation equations for
heat and solute, which can be expressed in the
following differential form:

oT A
mr +cU-VI=V-(k, VT) +,th—, (4.1)

oC )
(1-) +U-VC=rC_-. (4.2)

The temperature 7 and the composition of the
interstitial liquid C are assumed to be uniform
over length scales typical of the interdendritic
spacing. The volume fraction of solid dendrites is
denoted by ¢, while U represents the volume flux
of interdendritic fluid. The physical parameters
in these equations are the specific heat per unit
volume c¢, the latent heat per unit volume of solid
%, the thermal diffusivity k, and the density ratio
r = p./p;, where the subscripts “s”, “1” and “m”
denote properties of the solid, liquid, and mushy
phases, respectively. The thermal properties of
the mush are taken to be volume-fraction-
weighted averages of the properties of the indi-
vidual phases, so that

cp=dc,+ (1 -d)c, (4.3)
km=d)ks+(l_d))kl’ (44)

and the diffusion of solute is neglected. Expres-
sion (4.4) is only approximate, since transport
properties depend on the internal morphology of
the two-phase medium [8], but it has been found
to lead to good agreement with experimental
results, as shown by Worster [7] and Kerr et al.
[11].
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Unlike the model of Worster [7], egs. (4.1) and
(4.2) include the transport of heat and solute by
convection as well as by diffusion. The velocity
field U is determined by mass conservation, rep-
resented by the continuity equation

V-U=(1-r) dd/ot. (4.5)

Notice that the divergence of the velocity field is
not zero, rather it depends on the rate of change
of the solid fraction in a way determined by the
density ratio r. The terms %, 9¢ /3¢t and rC
9¢p /0t on the right-hand sides of the above con-
servation equations, respectively, express the re-
lease of latent heat into the mush and of solute
into the interstitial fluid. The rate of change of
the solid fraction couples egs. (4.1), (4.2) and
(4.5), and is obtained implicitly through the equi-
librium condition

T=T(C)=-mC, (4.6)

which says that the temperature everywhere is
equal to the local liquidus, where m is the slope
of the liquidus curve.

The equations above constitute a full set of
governing equations for the mushy layer. Three
interfacial conditions that express conservation of
heat, solute and mass at the mush-liquid inter-
face can be derived from egs. (4.1), (4.2) and
(4.5). These can be expressed as

¢=0, (4.7a)
[n-U]=0, (4.70)
[n-VT]=0, (4.7¢)

where n is a unit vector normal to the interface
and [---] denotes the jump in the enclosed
quantity across the interface. The interfacial con-
ditions (4.7) are appropriate once the condition
of marginal equilibrium [7] is taken into account,
and the the limit of zero solutal diffusivity is
applied [11].

5. Results and discussion

As in previous studies [7], the system of partial
differential equations described in section 4 ad-

T(Cy) Too
LIQUID T T
z=h(t)
: MUSHY
LAYER
2=0 T-To

Fig. 3. A mushy layer grows in the positive z-direction and has
depth h(¢) after a time ¢ has elapsed. The boundary z =0 is
maintained at the fixed temperature T, while the melt far
from the interface has temperature 7., and concentration Cj,.

mits a similarity solution for solidification from a
cooled, planar boundary, as illustrated in fig. 3, in
which the mush-liquid interface has position

h(t) =2Ayk;t, 6.1

where k =k /c is the thermal diffusivity and A is
a constant to be determined as part of the solu-
tion. The dependent variables are then functions
only of the similarity variable

£=2/2fxt (52)

Thus, for example, the solid fraction ¢({) is a
function of the single variable

L =z2/h(t) = &/A. (53)
The system of equations presented in section 4

was solved numerically in similarity form and the
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Fig. 4. Comparison of the measurements of solid fraction

determined using eq. (2.1) with the predictions of a theoreti-

cal model that incorporates convection of interstitial fluid

caused by expansion during solidification. The initial concen-

tration of the solution was 5.6 wt% NaNO,. The other param-

eter values are given in table 1. The experimental data are
from ref. [5].
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results for one set of parameters is displayed in
fig. 4 along with the experimental values that
were interpreted using (2.1) to calculate the solid
fraction. Notice that the agreement between the
theoretical and experimental results is better than
when expansion was ignored in the theory (fig. 2)
but the discrepancy is still about 5%. When,
however, expression (3.6), rather than (2.1), is
used to calculate the solid fraction from the mea-
sured resistances, one obtains the results dis-
played in figs. 5a-5d. In these figures, the theo-
retical calculations for ¢ as function of { are
compared with the experimental data interpreted
in the way described in section 3. As can be scen,
there is now very good agreement between the
experimental data and the theoretical predic-
tions.

The experimental method, pioneered by SHW
and extended herein, and the theoretical model
detailed in section 4 are both new techniques for
determining the solid fraction in mushy layers.
The theoretical model is based upon many ap-
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proximations, and the experimental method re-
quires that a number of assumptions be made in
order for the solid fraction to be deduced from
the measurements of resistance. That the results
of the two approaches agree so well is very en-
couraging but should not yet be taken as conclu-
sive evidence of the validity of either the theory
or the experimental technique. However, the good
agreement shown in fig. 5 is suggestive that the
geometrical effects proposed by SHW to explain
some of the discrepancy they found between the-
ory and experiment may be negligible.

One of the assumptions on which the experi-
mental technique is based is that the resistance of
the conductivity cell depends dominantly on the
electrical conductivity of the neighborhood of the
thin wire that forms the lower electrode. Another
implicit assumption is that the shape of the cur-
rent paths are not influenced by the presence of
the mushy layer. Neither of these assumptions
are strictly valid. The electric field around a long
cylindrical wire only decays inversely with dis-

b
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0.8 1
z r=0.74
h(t)
06 \ T
<
\
0.4 | \ 4
r=10"
Q2 \ 7
\
0 1 1 1 \ 1
0 0.2 0.4 0.6 0.8 1
o
1 T T T T d
o
0.8 b
_Z \O\
h(t) Q r=0.74
. 06 T ]
\NO
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| r=10 \\ ]
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Fig. 5. Comparison of the measurements of solid fraction with the predictions of a theoretical model that takes into account the

convection of interstitial fluid caused by expansion during solidification. The initial concentration of the solution is: (a) 5.6 wt%

NaNOj;, (b) 10.75 wt% NaNO3, (¢) 15.0 wt% NaNO; and (d) 17.8 wt% NaNO;. The other parameter values are given in table 1.
The original experimental data were supplied by T.G.L. Shirtcliffe and interpreted according to eq. (3.6).
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tance from the center of the wire, which means
that the resistance between the wire and a con-
centric outer cylinder (for example) increases log-
arithmically with the distance between the wire
and the cylinder. Thus the instrument is measur-
ing some integrated property of the mushy layer
and not simply the local properties of the layer
near the wire. The second assumption should also
be questioned, since the current paths must pass
through a medium of variable conductivity and
will therefore be refracted by the medium.
These concerns point to the need to devise
more controlled experiments, and perhaps to im-
prove the measurement technique before the ex-
perimental results can be used conclusively to
confirm the accuracy of the theoretical predic-
tions. A modified set up for the experiment de-
scribed in section 2 has been proposed and used
by Shirtcliffe and Kerr [12] in which the two
electrodes measuring the resistance of the cell
are two wires stretched horizontally across the
tank at the same height. These wires are sepa-
rated by 5 mm horizontally, and have a diameter
of 0.20 mm. The electric field around the two
wires has dipole character and decays inversely
with the square of the distance from the center of
the dipole. This set up should in principle, there-
fore, provide a more local measurement of the
conductivity of the mushy layer and allow better
measurements of the solid fraction ¢ to be made.
The parameters for the two wire experiment as
well as values of ¢ interpreted from the resis-
tance measurements using expression (2.1) were
made available to us by Shirtcliffe and Kerr. The
parameters for the experiment were used to gen-
erate a theoretical plot of the change in solid
fraction throughout the depth of the mushy layer.
The experimental values of ¢ were recalculated
using expression (3.6) and compared to the theo-
retical values. The agreement between the theo-
retical and the experimental results was found to
be no better than 10%. While it is possible that
ice grew preferentially on the electrodes causing
the resistance measurements to be too high, as
suggested by Shirtcliffe and Kerr, some explana-
tion is required for why such effects are appar-
ently negligible in the single-wire method. An-
other possible source of error is that the spacing

between the wires in the two-wire experiment
should be large compared to the typical spacing
between the solid particles in order that the mushy
layer can be treated effectively as a random
medium. The typical spacing between dendrites is
about 1 mm, so a spacing of 5 mm between the
two wires might not have been large enough.
There is clearly a need for further investigations
in order to establish the accuracy of the various
experimental techniques that have been pro-
posed.

6. Conclusions

In this paper, we have extended a theoretical
model of mushy layers [7] to include the effects of
expansion upon change of phase, and we have
reinterpreted the data from previous experiments
by taking into account the anisotropy of the elec-
trical conductivity of the mushy layer. As a result,
we have obtained much better agreement be-
tween theory and experiment than has previously
been reported [5].

The purpose of this continuing work is two-
fold: to develop an accurate instrument for the
measurement of solid fractions in mushy layers
that can be used in many different experimental
situations, particularly those in which convection
of the interstitial fluid is important; and to con-
firm the predictions of mathematical models of
the solidification of alloys than can then be used
with confidence to determine the behavior of
experimentally inaccessible systems.

The convection due to expansion during change
of phase, which has been incorporated in the
theoretical model described in section 4, is an
important process affecting global transport of
solute within the system. Such transport can cause
significant macrosegregation in castings [2] and in
geological systems such as magma chambers [3].
Although in terrestrial environments, buoyancy-
driven convection is usually a more significant
cause of macrosegregation, in a micro-gravita-
tional environment, convection due to expansion
may be the dominant process leading to
macrosegregation within cast alloys.
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