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The stability of the flow of interstitial liquid in a mushy layer driven by expansion 
or contraction upon solidification is analysed. The full perturbation equations are re- 
duced in a particular aymptotic limit that allows the principal mechanisms controlling 
instability to be identified. Comparisons are made with the acid-etching instabilities 
in porous rocks. The full equations are then solved to determine the parametric 
dependences of the instability. It is found that, though the potential for instability 
exists, it is unlikely to occur in practice. 

1. Introduction 
When fluid flows through a porous medium and reacts with the medium to alter its 

permeability, an instability can result whereby the flow becomes focused into narrow 
fingers or channels. A previously studied example of this occurs during enhanced oil 
recovery, when acid is pumped through oil-bearing porous rocks in order to increase 
the permeability of the rock and stimulate the extraction of oil. It has been determined 
(Chadam et al. 1986; Sherwood 1987; Hinch & Bhatt 1990) that a propagating planar 
reaction front or reaction zone, in which the acid partially dissolves the rock, suffers 
an instability that results in the front being distorted into fingers and the preferential 
flow of acid along these fingers. 

Another example of such focusing is sometimes observed during the solidification 
of alloys when a mushy layer forms. A mushy layer is a porous medium comprising 
a matrix of crystals bathed in the melt from which they grew. Convection driven by 
compositional buoyancy is observed in some cases to produce within the mushy layer 
vertical channels (chimneys) of zero solid fraction from which emanate plumes of 
relatively dilute fluid (Copley et al. 1970). In this case, the primary linear instability is 
due to buoyancy forces (Fowler 1985; Worster 1992a; Emms & Fowler 1994; Chen, 
Lu & Yang 1994). Focusing of the convection into narrow regions of upflow results 
nonlinearly from local increases in permeability as crystals are redissolved within 
the mushy layer (Tait, Jahrling & Jaupart 1992; Amberg & Homsy 1993). Such 
dissolution can occur in mushy layers when there is a component of the flow of the 
interstitial liquid in the direction of the temperature gradient (Flemings 1974; Fowler 
1985). 

Chimneys formed in mushy layers during casting produce structural and composi- 
tional inhomogeneities that can be detrimental to the product being manufactured. 
For this reason, it has been proposed that casting of high-perfomance alloys might 
benefit from being done in Space, where the micro-gravitational environment will 
weaken or eliminate buoyancy-driven convection within the mushy layer. However, 
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in any environment, interstitial flow can be driven purely by the expansion (or con- 
traction) of the alloy during solidification. In this paper, we investigate the stability 
of such flows to determine whether inhomogeneities in a casting might be caused by 
this mechanism in the absence of buoyancy-driven convection. This study provides 
new insight into the interactions between solidification and flow within mushy lay- 
ers via a relatively straightforward linear analysis and, more generally, extends our 
understanding of flow through reactive porous media. 

The equations governing solidification of a mushy layer at constant speed in the 
absence of buoyancy forces are presented in $2 and a steady analytic solution of 
these equations is derived in $3. This solution provides the basic state for a linear 
stability analysis, which is described in full generality in $4. The equations describing 
the mushy layer are very complex with many independent dimensionless parameters. 
A special limit is taken in $5 that reduces the system of equations to the bare 
essentials required to describe the physical interactions that can lead to instability. 
The reduced system is solved to determine the character of the dispersion relation, 
which is compared and contrasted with previous results for reacting flows in porous 
media. In $6, the full perturbation equations are solved numerically to determine how 
the conditions for instability vary with the dimensionless parameters of the solidifying 
system. The implications of this study are discussed in the concluding section. 

2. Governing equations 
The geometry of the system to be analysed is illustrated in figure 1. An alloy 

is being cast directionally at constant speed V .  The domain of primary interest 
to us is the mushy layer that separates the completely solid region, which exists at 
temperatures below the eutectic point, from the completely liquid melt. In a Cartesian 
frame of reference (x, y ,  z) moving with speed V in the z-direction, the eutectic front 
is assumed to remain fixed at z = 0 while the mush-liquid interface z = h(x ,  y, t )  is a 
free boundary to be determined as part of the solution. The temperature is equal to 
the eutectic temperature T, at z = 0 and increases with z to T,  far from the region 
of solidification, where the concentration of the melt is CO. The solid and liquid are 
taken to have different, uniform and constant densities p s  and p ~ .  The compositional 
diffusivity is assumed to be zero in the solid phase, while all other physical and 
thermal properties are assumed to be the same in each phase. 

Dimensionless variables are introduced by scaling the fluid velocity U with the 
solidification rate V ,  distances with the thermal-diffusion lengthscale 1, = K / V ,  time 
t with K / V ~  and pressure p with p V / n * ,  where ic is the thermal diffusivity, p is the 
dynamic viscosity of the liquid, and n* is a characteristic permeability of the mushy 
layer. Dimensionless variables for temperature and concentration are defined by 

c - co and 0 =-- 
AT AC ' 

T - TL(C0) e =  (2.la, b)  

where AT = TAC = T ~ ( c 0 )  - T,, and TL(C) is the liquidus relationship, which is 
assumed to be linear with slope -r. 

The governing equations in the fully liquid region, z > h, are diffusion-advection 
equations for heat and solute and the Navier-Stokes equations 

+ u-ve = v2e, 

+ u-vo = eV20, 

ae ae 
at  a2 

a o  a o  
at aZ 

- - _  

__- -  
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RGURE 1. A schematic diagram of the proposed problem. A mushy layer is growing at a constant 
speed V in the absence of gravity. There is a flow in the interior of the mushy layer created by 
expansion as the melt solidifies. The eutectic front z = 0 is assumed to remain planar, while the 
mush-liquid interface z = h(x, r )  is free to deform. 

+ u-vu = v2u - xvp, ) 
-(--- 1 au au 
D at aZ 

v-u = 0, (2-5)  

where E = D / K  is the ratio of diffusivities of solute and heat, D = V / K  is the Prandtl 
number, and A?' = 1:/n* is a mobility ratio. The parameter &', which is typically 
very large, can be thought of as the square of the ratio of the thermal lengthscale 
(on which the depth of the mushy layer principally depends) to the average spacing 
between dendrites within the mushy layer. 

The boundary conditions for the liquid region are 

0 + 0, e -+ em, u -, (1 - r ) i  (Z + CO), ( 2 . 6 ~ - C )  

6 = 0, n.V8 = nmV0, [ n o  U ]  = 0, U - (n. U)n = 0 (Z = h), ( 2 . 7 ~ - d )  

where r = ps/pl,  0, = (T ,  - TL(C0))/AT is the dimensionless far-field temperature, n 
is the unit normal to the mush-liquid interface, pointing into the liquid, and where [ 3 
denotes a jump in the enclosed quantity across the interface. The far-field boundary 
condition on the velocity field ( 2 . 6 ~ )  is determined by global mass conservation. 
Condition ( 2 . 7 ~ )  is the liquidus relationship applied at the interface, while (2.7b) is 
the condition of marginal equilibrium (Worster 1986). Conditions ( 2 . 7 ~ )  and (2.7d) 
express continuity of the normal mass flux across the mush-liquid interface and the 
no-slip condition applied to the liquid adjacent to the interface with the mushy layer, 
respectively. 

Local thermodynamic equilibrium prevails throughout the mushy layer, so that 
8 = 0 in 0 < z < h. The governing equations there are 

+u-ve=v2e+y --- (2 2)' ae ae 
at az - _ _  

representing conservation of heat, 
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representing conservation of solute, 
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V * U = ( l - r )  ($-%), 
representing conservation of mass, and Darcy’s equation 

u = -n(X)Vp. 

(2.10) 

(2.11) 

The permeability is assumed to be locally isotropic but to vary with the local 
porosity x = 1 - 4. Note that, within the mushy layer, U represents the Darcy 
velocity, i.e. the mean volume flux per unit area. These equations, in which the effects 
of expansion are incorporated, have been presented previously and their derivation 
discussed by Worster (1992b) and by Chiareli, Huppert & Worster (1994). 

The dimensionless parameters governing this system of equations are r,  em, the 
Stefan number 

(2.12) 

where L is the latent heat of fusion per unit mass and C,, is the specific heat capacity, 
and a concentration ratio 

(2.13) 

where C, is the composition of the solid phase within the mushy layer. 
The key feature of the present study, which has the potential of causing flow- 

focusing instabilities, is that the permeability n ( ~ )  is a function of the local liquid 
fraction 2, Many empirical formulae have been determined for the permeabilities of 
various porous media (Bear 1988). Here, we investigate the simple family of functions 

n(x) = x9, (2.14) 

where 9 is a constant that represents the sensitivity of the permeabili.ty to changes 
in porosity. The sensitivity can be defined as 

(2.15) 

which is directly proportional to 9 and in general is a function of position in the 
mushy layer owing to the variation of porosity x .  

The boundary conditions for the mushy layer are 
6 = -1, W = (I  - r) ( l  - 4) (z = 0) (2.16a, b) 

and 
[el = 0, 4 = 0, [n-ve]  = 0, b] = o ( z  = h), (2.17~-d) 

where W is the z-component of velocity. Condition (2.16b) is a consequence of mass 
conservation at the eutectic front, while conditions (2.17b) and (2.17~) are derived from 
the expressions for conservation of heat and solute once the condition of marginal 
equilibrium is taken into account. 

3. A steady solution 
The equations presented in the previous section admit a steady, one-dimensional 

solution that depends only on z .  This is an extension of the steady solution that has 
been found previously for the case of no expansion or contraction (Hills, Loper & 
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Roberts 1983; Worster 1991). In one dimension, the velocity field U = Woi? can be 
determined from the mass conservation equation (2.10) to be 

(3.1) 

(3-2) 

(3.3) 
and 

(3-4) 
once the boundary conditions (2.6) and ( 2 . 7 ~ )  are taken into account. The temperature 
at the mush-liquid interface Oi is determined from (2.7b) to be 

WO = (1 - r )  

wo = (1 - r)(l - 40)  

6, = em + (Oi - 6,)e-r(z-b) 

in the liquid region and 

in the mushy region. Equations (2.2) and (2.3) are then readily integrated to give 

eo = Oie-r(z-hO)/F 

E 
6,. (3-5) 6.  - -- 

1 - €  I -  

We shall adopt the limit e + 0, which is physically reasonable since typically D ~ K ,  
so the dimensionless interfacial temperature/concentration becomes 

6i = 0, (3.6) 
which then also gives 0 = 0 in the liquid region. 

of solute conservation (2.9) to obtain 
In the mushy layer, the solid fraction 40 is determined by integrating the equation 

using the boundary condition (2.17b). The equation of heat conservation (2.8) can be 
integrated once to give 

dB0 9 6 0  - =r6m-60---(l-r)%?ln 
dz v - 60 

The unperturbed depth of the mushy layer ho can be determined by inverting (3.8) 
to obtain dz/dOo and integrating from Oo = -1 to 60 = 0. Finally the pressure field 
is constant (zero) in the liquid region and, in the mushy region, is determined from 
Darcy’s equation, which can be written as 

X O  -- dPo - --(I - r)n(xo). 
dz (3.9) 

We shall investigate these equations analytically in a special limit in 55 and numerically 
in 56, simultaneously with the perturbation equations derived in the next section. 

4. Linear perturbation equations 
The stability of the system is examined by determining the growth or decay of 

infinitesimal disturbances to the steady solution. The disturbed fields are written in 
the form 
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where o is the complex growth rate and a is the wavenumber parallel to the 
undisturbed interface. The concentration 0 remains identically zero in the liquid 
region. The governing equations are linearized about the basic state, which gives 
rise to the following perturbation equations and boundary conditions, in which we 
have dropped the tildes from the disturbance amplitudes and used primes to denote 
derivatives of the basic state. 

In the liquid region, 

[D’ + (D - 0 )  - WoD - a2] 8 = 8; W ,  

(D2 - a2)W = SZ, 

where D = d/dz, and SZ is a variable representing the vertical component of the curl 
of vorticity which is introduced for convenience. 

In the mushy region, 

(4.5) 
[(l - # o ) ~  - (1 - b0 - Wo)D + r#b] 8 + ObW = [r(% - Oo)(D - O)  - Oh] +, (4.6) 

(4.7) 
(4.8) 

e -, 0, w + 0, DW -, o (z -+ m), (4.9a-c) 

[D’ + (D - 0 )  - WoD - 01’1 O = ObW + Y(D - a)#, 

-(1- r)(D - a)# - a217(xo)p = DW, 
(1 - r ) 9 +  + W = -ZZ(xo)Dp. 

These equations are subject to the linearized boundary conditions 

DW = 0 (Z = h+), ( 4 . 1 0 ~ ~ )  

O]q (z = ho-), ( 4 . 1 1 ~ 4 )  [0] = 0, [DO] = -9-q, # = -q, [PI = -[p’ 

8 = 0, W = -(1 - r)# (z = 0), (4.12a,b) 
where q is the perturbation to the position of the mush-liquid interface, i.e. h(x, z, t) = 
ho + q(x,z, t). The interfacial condition on the pressure field (4.11d) can be used to 
determine 

rO, 
% 

8 = -rO,q, [W]  = (1 - r)-q, 
re,  re ,  
v % 

DWmuh = -$(I - r)q - (1  - r)(D - o)$ 

(Z = ho), (4.13) I liquid 

1 +H-’ DSZ + -{r(SZ + a’ W )  - oDW} 
[ a  

which we approximate here by 

Dwmuh = - ( I -  r )  [a2q 4- (D -@)$I (z = ho) (4.14) 

on the assumption that H+l. Equivalently 

Pmush = (1 - r)? (z = h0). (4.15) 

Note that this reduces to the condition of constant pressure used by Emms & Fowler 
(1994) in the case r = 1. 

The perturbation equations presented in this section are quite complicated and will 
be solved numerically in $6. First, a reduced system will be derived and solved in 
$5, which will identify the fundamental mechanisms that control the instability of the 
flow in the mushy layer. 
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5. A reduced system 
The equations governing the evolution of a mushy layer take a particularly simple 

form that nevertheless retains many of the significant physical interactions in what 
Fowler (1985) calls a ‘near-eutectic’ limit. In this limit, the solid fraction is small and 
the permeability is almost uniform. The important physical effects of permeability 
variations are retained by assuming that the sensitivity of the medium is large. Other 
simplifying features of this limit are that the basic-state temperature field is linear 
and the basic-state velocity field is uniform. In the present formulation, this limit is 
achieved by letting 

V 
a m  

V -+ coy 0, -+ oc), with - = O(1). 

It is readily shown from the full equations given in $3 that, in this limit, the steady 
state of the mushy layer is given to leading order by 

. ( 5 . 2 ~ 4 )  
1 u0 = @,I- r),  e, = -1 + r&z, bo = W ( 1 -  re,Z), ho = - 

r&l 

These solutions prompt the following rescaling of the variables and parameters : 

(5.3a-e) 

The leading-order perturbation equations in the mushy layer become 

(D; - k2)0 = 0, (5.4) 

(a - rDc)B + W = r(DC - h)$, 

(D; - $ 7 ~ ~  - k2)w = h2(1 - r>@& 

(5.5) 

(5.6) 

where @ = B/%. This scaling of B is necessary to retain the important effect of 
permeability variations in equation (5.6) once 4 = O(‘%?’), For simplicity, we make 
the additional assumption that the position of the mush-liquid interface remains 
unperturbed (i.e. 4 = 0), which could be achieved in principle by maintaining the 
temperature of the interface fixed. This is an ad hoc assumption that is not derived 
from the asymptotic scaling. Its effect is to decouple the mushy layer from the 
overlying liquid region, and it should not significantly affect the dynamics of the 
interior of the mushy layer. Therefore this reduced model will still give a good 
indication of the controlling mechanisms for dissolution that lead to focusing of the 
flow. The boundary conditions for the mushy layer are then 

6 =o, w = o  (l =O), (5.7aY b) 

e = 0, D ~ W  = 0, 4 = o (c  = 1). ( 5 . 8 ~ - C )  

Since the temperature perturbation satisfies a homogeneous equation (5.4) and bound- 
ary conditions (5.7a) and (5.8a), we deduce that 8 = 0. The remaining third-order 
eigenvalue problem has solution 

n=l 
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FIGURE 2. (a)  Dispersion relation i, us. 8 for equation! in the ‘near-eutectic’ limit. It can be see? 
that the system is completely stable for small values of 8, whereas, for sufficiently large values of 8, 
there is a range of unstable wavenumbers 8 bounfled away from zero and infinity. (b)  A marginal 
stability curve 3 us. 8 showing the critical value PC, which is defined as the minimum value of the 
permeability variation parameter for which the system is unstable. These curves were calculated 
with r = 0.5. 

where m, are the roots of 

The boundary conditions (5.7) and (5.8) give the eigenvalue equation 
em2 
m2 

m:-u2 m:-Cr2 m:-a2  

(5.10) 

(5.11) 

which is an algebraic equation for &(&,&). The calculations of 6 were done partly 
symbolically and partly numerically using Mathematica. Illustrative results are shown 
in figure 2. It can be seen that the system is completely stable for small values of &, 
whereas, for sufficiently large values of &, there is a range of unstable wavenumbers 
bounded away from zero and infinity. 

It is interesting to contrast this behaviour with the results of stability analyses of 
forced flow through reactive porous media (figure 3). Sherwood (1987) considered a 
reaction front of zero thickness and found that the growth rate o increased logarithmi- 
cally with wavenumber u as a+ 00. Hinch & Bhatt (1990) considered a reaction front 
of finite thickness and found, by contrast, that o tended to a constant as u -, 00. Nei- 
ther of these studies included the effects of diffusion of reactant. Chadam et al. (1986) 
did include such diffusion and found that short-wavelength disturbances were thus 
stabilized. All three of these studies found the same behaviour at small wavenumbers; 
namely that disturbances of zero wavenumber are neutrally stable, while disturbances 
of small but finite wavenumber (long wavelength) are unstable. These studies thus all 
concluded that a reacting flow through a porous medium is unconditionally unstable. 
In our study, the reacting porous medium is the mushy layer. 

There are two critical differences between these previous studies and the present. 
One is that here the porous medium is finite in extent, rather than infinite, which 
suppresses long-wavelength perturbations to the pressure field. The other difference 
is that overall the mushy layer is solidifying, which means that small perturbations 
can ‘heal’ if they are advected (by the moving frame) through their own length faster 
than the local rate of dissolution caused by the flow. 

This is quite a different mechanism for the stabilization of short-wavelength dis- 
turbances than the diffusive mechanism incorporated in the study by Chadam et al. 
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Hinch & Bhatt R- \ Chadam et at'. 

FIGURE 3. A comparison between the dispersion relation obtained in this paper and those obtained 
in various studies of forced flow through reactive porous media (Sherwood 1987; Hinch & Bhatt 
1990; Chadam et al. 1986). 

(1986). It is characterized by the decay rate being proportional to a, when a is large, 
rather than a2, the latter being characteristic of diffusive damping. Note that diffu- 
sion is restored as the chief damping mechanism in the full perturbation equations 
analysed in the next section. 

6. Critical conditions for instability 
The fully liquid region is expected to have little influence on the instability being 

analysed here. Its hydrodynamic influence is negligible in the limit %s- I, as discussed 
in the previous section, while its thermodynamic influence is felt only through the 
Stefan condition (4.11b). We proceed on the assumption that the perturbation to the 
heat flux from the liquid is negligible and solve (4.5)-(4.8) using boundary conditions 

r Y 8 ,  re, 
%? 

6 = - r 6 d ,  D6 = y q ,  4 = -q, b] = ( 1  - r)q ( z  = b), (6.1~-d) 

8 = 0, W = -(1 - r ) 4  (z  = 0). (6.2a,b) 
These equations were solved numerically (see Chiareli 1994 for details of the numerical 
scheme), simultaneously with equation (3.8) for the steady state, to determine the 
conditions for marginal stability (a = 0). Checks for consistency were made between 
the numerical results and the results of the asymptotic theory presented in the last 
section (Chiareli 1994). Typical eigenfunctions are shown in figure 4, where it can 
be seen that the upward flow caused by expansion is focused into regions of low 
permeability, and that this occurs predominantly near the base of the mushy layer. 
This may be because the basic-state permeability is largest near the base, so the 
system can gain most advantage by creating channels of low permeability there. 

The critical conditions for linear instability are found by tracing the minimum of 
the neutral curve (cf. figure 2b) as it varies with the dimensionless parameters of the 
system. The results are shown in figure 5. 

Firstly, it should be noted that the system is completely stable for r > 1, which 
corresponds to contraction upon solidification. This is because then the flow of 
interstitial liquid in the mushy layer is in a direction opposite to the temperature 
gradient. Most pure materials do contract when they solidify, with notable exceptions 
being water/ice and silicon. However, with an alloy the possibility exists that the solid 
formed (being depleted of one of the components of the alloy) is less dense than the 
liquid mixture even though the pure constituents of the alloy would each contract upon 
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FIGURE 4. Streamlines superimposed on a density plot of the perturbation to the solid fraction in the 
mushy layer. Light regions correspond to negative perturbations that represent local melting of the 
dendrites. Darker rcgions show where solidification is enhanced. The non-dimensional parameter 
values used in the calculation of these marginal eigenfunctions were 9 = 42, .Y = V = 8, = 1, 
and r =0.9. 

solidification. For example, the mineral plagioclase is less dense than certain basaltic 
melts from which it solidifies, even though its constituents individually contract upon 
solidification. As r decreases below unity, the degree of expansion increases, which 
strengthens the flow of interstitial liquid parallel to the thermal gradient and renders 
the system less stable. All this is shown in figure 5(a). It can also be seen that the 
critical wavenumber becomes large as r -+ 1- and the critical value of the sensitivity 
8,. + 00. The numerical results indicate that ctc - &‘2 in this limit. This can be 
expressed dimensionally as 1 K (l,ln)’’’, where 1 is the wavelength of the critical 
disturbance, I ,  = K / V  is the thermal-diffusion lengthscale and I, is a lengthscale for 
permeability variations defined by 
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FIGURE 5. The critical conditions PC(a,) for linear stability as functions of the following dimensionless 
parameters: (a) the density ratio r ,  with 0, = W = Y = 1; (b) the Stefan number 9' with Om = V = 1 
and r = 0.9; (c)  the compositional ratio W, with 6, = 9 = 1 and r = 0.9. 

We see from figure 5(b) that the stability of the system is not very sensitive to the 
value of the Stefan number, though the system becomes slightly more stable as Y 
increases. This is a combined result of the facts that the depth of the mushy layer 
decreases as 9' increases and that it becomes less reactive. 

It was found in the last section that it is necessary that B = O(V) for instability to 
occur when %+I. This is seen explicitly in figure 5(c), and is because perturbations 
to the solid fraction, like the solid fraction itself, are small when V is large. 

The overwhelming conclusion of the stability analysis is that, over a wide range 
of parameter values, the system is only unstable if the sensitivity of the mushy layer 
B is rather large. Typical values of B given for power-law relationships of the form 
(2.14) are around 2 or 3 depending on the microstructure of the porous medium. 
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This would suggest that solidifying systems are almost always stable to the focusing 
mechanisms described by the present analysis. This conclusion might be challenged 
by the consideration that the permeability can vary much more strongly with porosity 
when the solid fraction is small. For example, the Kozeny formula gives 

which implies that the sensitivity 

is large for x near unity. Note that, although the sensitivity is also large for x near 
zero, the flow in that case is small and the system is relatively stable. An additional 
consideration is that a mushy layer with a highly dendritic microstructure may 
experience large changes of permeability by the dissolution of a few side branches, 
which would reduce the solid fraction only a little. The permeability would thus be 
very sensitive to changes in solid fraction and much more prone to the instability 
mechanism decribed in this paper. 

If such a case were to be studied further, it should be noted that when the liquid 
fraction is near unity it may no longer be appropriate to use Darcy’s law and the 
mobility ratio A? may no longer be small. 

7. Conclusions 
We have analysed the stability of the flow of interstitial liquid in a mushy layer 

driven by expansion or contraction upon solidification. An instability akin to the acid- 
etching instability in porous rocks was found to occur only in the case of expansion, 
since only then is the base flow in the same direction as the temperature gradient, 
which is a necessary condition for flow-induced dissolution within a mushy layer. 

The instability is driven by the following positive feedback. If the porosity is locally 
increased then the permeability there is increased, which allows a greater flow of 
interstitial fluid. When that flow is in a direction away from the cooled boundary, 
cool solute-depleted fluid is carried by the flow. There is rapid thermal equilibration 
within the mushy layer (by thermal diffusion) which allows the fluid then to dissolve 
the solid crystals around which it flows. The local porosity is thereby increased further 
and instability may ensue. 

Although the potential for instability has been demonstrated mathematically, it 
was found that the necessary conditions for instability are unlikely to be encountered 
given typical casting conditions because instability requires that the permeability be 
a rather strong function of porosity. 

We are very grateful for many helpful discussions with John Hinch and John 
Lister. This work was supported by grants from the National Aeronautics and Space 
Administration through the Microgravity Science and Applications Division and from 
the Natural Environment Research Council. 
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