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We consider the solidification of a binary alloy in a mushy layer and analyse the 
system near the onset of buoyancy-driven convection in the layer. We employ a near- 
eutectic approximation and consider the limit of large far-field temperature. These 
asymptotic limits allow us to examine the rich dynamics of the mushy layer in the 
form of small deviations from the classical case of convection in a horizontal porous 
layer of uniform permeability. Of particular interest are the effects of the asymmetries 
in the basic state and the non-uniform permeability in the mushy layer, which lead 
to transcritically bifurcating convection with hexagonal planform. We obtain a set 
of three coupled amplitude equations describing the evolution of small-amplitude 
convecting states in the mushy layer. These equations are analysed to determine the 
stability of and competition between two-dimensional roll and hexagonal convection 
patterns. We find that either rolls or hexagons can be stable. Furthermore, hexagons 
with either upflow or downflow at the centres can be stable, depending on the relative 
strengths of different physical mechanisms. We determine how to adjust the control 
parameters to minimize the degree of subcriticality of the bifurcation and hence 
render the system globally more stable. Finally, the amplitude equations reveal the 
presence of a new oscillatory instability. 

1. Introduction 
When a binary mixture is solidified from a cold boundary, the solidification front 

often becomes morphologically unstable owing to constitutional undercooling (see 
Kurz & Fisher 1989). The result is a mushy layer, separating the liquid and solid 
phases, which is a porous medium whose internal structure is composed of fine-scale 
crystals, through which the residual melt can flow. Buoyancy-driven convection can 
occur in a mushy layer cooled from below when unstable density gradients are formed 
as a result of rejection of the lighter component of the mixture upon solidification. 
Fundamental to the dynamics of the mushy layer is the interaction between convection 
and solidification. 

Compositional convection in the mushy layer has been identified as a means by 
which non-uniformities in the solid, such as freckles, can be formed. In unidirection- 
ally solidified materials these freckles are vertical channels of different composition 
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(typically nearer eutectic composition) to the surrounding solid and are appropriately 
named by their appearance in horizontally cross-sectioned layers of the solid. Freckles 
have been observed in the casting of metallic alloys and, by comparison with freckles 
formed in aqueous solutions such as ammonium chloride, have been inferred to be 
a result of convection through chimneys in the mushy layer (Copley et al. 1970; 
Sample & Hellawell 1984; Sarazin & Hellawell 1988). Freckles are highly undesirable 
features since they can alter the material and mechanical properties of the solidified 
alloy. Consequently, there is considerable interest in identifying ways in which to 
avoid them in practice. 

Many laboratory experiments investigating convection in a mushy layer have used 
aqueous solutions such as ammonium chloride (e.g. Chen & Chen 1991; Tait & 
Jaupart 1992) because their behaviour during solidification mimics that of their 
metallic counterparts. Moreover, they are easily handled in the laboratory and their 
transparent nature allows for the direct visual observation of the solidification process. 
In such experiments, typically two modes of convection are observed. First, double- 
diffusive fingers rising from the mush-liquid interface are observed and, later, isolated 
plumes arising from chimneys in the mushy layer. 

A number of theoretical investigations have complemented the experimental studies. 
Fowler (1985) proposed a model for a mushy layer and analysed a limiting case in 
which the mushy layer was a non-reacting porous layer and so no coupling between 
convection and solidification was included in the analysis. Worster (1992b) analysed 
the linear stability of convection in a mushy layer in which he included the effects 
of the interaction of convection and solidification in the mushy layer. He identified 
two modes of convective instability corresponding to the two types of convection 
observed in experiments (e.g. Chen & Chen 1991; Tait & Jaupart 1992). One is a 
boundary-layer mode, where the convection is driven from a narrow compositional 
boundary layer above the mush-liquid interface and the mushy layer is relatively 
undisturbed. The other is a mushy-layer mode in which the convection is driven from 
the interior of the mushy layer. This mushy-layer mode causes perturbations to the 
solid fraction, suggesting that this is the mode responsible for the development of 
chimneys in the mushy layer. 

Emms & Fowler (1994) performed a linear stability analysis which involved a time- 
dependent basic state. In contrast to Worster’s (19924 analysis which determined 
stability relative to a motionless basic state, the linear stability of the mushy-layer 
convection was determined relative to a basic state that included the effects of 
double-diffusive, finger-type convection in the liquid. However, the influence of the 
convection in the liquid upon the mushy layer was found to be negligible in their 
analysis, indicating that the onset of convection in the mushy layer is little affected 
by vigorous convection in the melt. 

Tait, Jahrling & Jaupart (1992) performed experiments on an ammonium chloride 
solution in a square tank and, by cooling the base slowly, were able to investigate the 
planform of chimney convection near onset of convection. Their experiments showed 
that finger convection in the liquid was observed first with no observable effect on 
the mushy layer. Later, regions of upflow through the mushy layer and reduced solid 
fraction formed along the edges of a roughly hexagonal pattern. As these patterns 
evolved, the upflow occurred mainly at the nodes of the hexagons while that along the 
edges between the nodes closed off. This hexagonal planform of chimney convection 
with upflow at the edges and downflow at the centres was observed to be a robust 
feature of the experiments. The hexagonal pattern of convection observed in the 
mushy layer is characteristic of near-critical convection and, together with the noted 
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weak effect of finger convection on the mushy layer, is a signal that there is an 
internal mechanism controlling the mushy-layer mode. 

Linear stability analyses identify the conditions under which the basic state becomes 
unstable to infinitesimal perturbations. However, it has been suspected (e.g. Fowler 
1985; Worster 1992b) and recently confirmed (Amberg & Homsy 1993, see below) 
that the bifurcation to convection in the mushy layer is subcritical. Furthermore, 
important interactions such as those between perturbations to the solid fraction, and 
hence the permeability, of the mushy layer and convection are necessarily nonlinear. 
Therefore, to investigate these issues one must analyse the nonlinear system. 

Amberg & Homsy (1993) introduced a model in which the mushy layer was 
effectively decoupled from the overlying liquid layer and the underlying solid layer. 
They considered a limit in which the leading-order representation of the mushy layer 
was that of a non-reacting porous medium of uniform permeability, similar to that 
of Fowler (1985). However, they then re-introduced effects such as permeability 
variations as perturbations and thus retained some of the key physical properties 
of the mushy layer. They performed a weakly nonlinear analysis and identified 
steady convecting states for both two-dimensional roll and hexagonal planforms. 
Their results confirmed the presence of subcritical bifurcation for convection in the 
mushy layer. They found that the bifurcation to rolls could be either supercritical 
or subcritical and that the bifurcation to hexagonal convection was transcritical. 
Furthermore, by focusing on the mushy-layer mode of convection they were able 
to reveal the structure of the mushy-layer convection and its association with flow 
focusing and remelting. 

An issue raised in the results of Amberg & Homsy (1993) was the speculation that 
hexagons with upflow at the centres would be stable, in contrast to the downflow 
observed in the experiments by Tait et al. (1992). It is well known that hexagonal 
convection patterns arise as a result of asymmetries in the system associated with 
various physical effects. Examples of asymmetric (or non-Boussinesq) effects stud- 
ied in the context of convection are temperature-dependent viscosity (Palm 1960), 
temperature-dependent material properties such as thermal conductivity and specific 
heat (Busse 1967), time-dependent boundary conditions such as changing mean tem- 
perature (Krishnamurti 1968; Segel 1969), time-periodic heating (Roppo, Davis & 
Rosenblat 1984), temperature-dependent surface tension (Scanlon & Segel 1967), free- 
surface deflection (Davis & Segel 1968), and the presence of a solidifying boundary 
(Davis, Miiller & Dietsche 1984; Karcher & Muller 1995). The asymmetry in the 
analysis of Amberg & Homsy responsible for hexagonal convection was that due to 
nonlinear perturbations to the permeability of the mushy layer. Here we include other 
asymmetries associated with the physical effects of curvature in the basic-state density 
field, higher-order permeability variations, and interactions between the temperature 
and solid fraction, and by doing so, identify a means by which stable hexagons with 
upflow at the cell boundaries can be found. 

In the present paper, we extend the model of Amberg & Homsy (1993) to study 
the nonlinear development of the mushy-layer convection further. In particular, we 
address the question of stability of the finite-amplitude convecting states, including 
the relative stability between the two-dimensional roll and hexagonal convection. We 
wish to identify how the subcritical bifurcation, and therefore the global stability 
limit, varies with the system parameters. We adopt a slightly modified scaling from 
that of Amberg & Homsy which brings to light a number of new and unexpected 
features of the system associated with the interactions of heat transfer, convection 
and solidification in the mushy layer. 
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Perhaps most surprising of all, we identify the presence of an oscillatory bifurcation 
which appears to be distinct from the oscillatory mode observed in Chen, Lu & Yang 
(1994). Those authors extended Worster's (1992b) stability analysis and found that 
when stabilizing thermal buoyancy was present in the liquid the two steady modes of 
convection could separate by way of an oscillatory connection. They associated this 
oscillatory mode with the interaction between the double-diffusive convection in the 
liquid region and the mushy-layer mode of convection. Here, in contrast, there is no 
region with a statically stable density gradient. We shall discuss the new oscillatory 
mode identified here only briefly but we analyse it in greater detail in a companion 
paper (Anderson & Worster 1995). 

In $2 we describe the mushy-layer system and formulate the simplified mushy-layer 
model. In $3 we perform a weakly nonlinear stability analysis and obtain amplitude 
equations which describe small-amplitude convecting states. In $4 we analyse the 
amplitude equations and describe the predictions in terms of convection patterns and 
global (nonlinear) stability boundaries. Finally, in $5, we give the conclusions. 

2. Formulation 
The physical system we are interested in here is one in which a binary alloy is cooled 

from below and solidifies releasing a buoyant residual. For mathematical ease we 
consider a system solidifying at a prescribed constant speed V .  This would be the case 
during the directional casting of turbine blades, for example. In this case, a mushy 
layer is sandwiched between a completely solid region below (at temperatures below 
the eutectic) and a completely liquid region above as shown in figure 1. The liquid 
far above the mushy layer has a composition CO > CE and temperature T, > TL(C0) 
where CE is the eutectic composition and TL(C)  is the liquidus temperature of the 
alloy. The model is simplified (Amberg & Homsy 1993) by assuming that the mushy 
layer is physically isolated, and hence dynamically decoupled, from the overlying 
liquid and underlying solid regions. This is accomplished by imposing impermeable, 
rigid, isothermal boundaries at the top and bottom of the mushy layer in a frame 
of reference moving with the mushy layer at the solidification speed V .  These are 
simplifying assumptions which make the problem analytically tractable but which do 
not take away the essential physics in the mushy layer associated with interactions 
between heat transfer, convection and solidification. 

The mushy layer is assumed to be in thermodynamic equilibrium so that the 
temperature T is related to the composition C via the linear liquidus relation 

(2.1) 

where r is the slope of the liquidus. As a result of this direct coupling between 
temperature and composition, there are no double-diffusive effects within the mushy 
layer. The liquid density is linearly related to the temperature and composition and 
from equation (2.1) can be written as 

(2.2) 
where p = p' - Tct' and a* and p' are the thermal and compositional expansion 
coefficients, respectively. 

It is worth noting that we expect to observe compositional convection as a result 
of an overall unstable density gradient in the mushy layer. The following physical 
argument has been put forward as a mechanism by which compositional convection 
can form chimneys in the mushy layer (e.g. Fowler 1985; Worster 1991; Tait & Jaupart 

T = TL(CO) + T ( C  - Co), 

PI = Po [ 1 + P(C - CO)] , 
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FIGURE 1. The mushy layer system. A binary alloy is cooled from below and releases a buoyant 
residual upon solidification. The mushy layer is sandwiched between a solid layer (of temperature 
below the eutectic temperature T E )  and a liquid layer (of temperature above the liquidus temperature 
T~(c0) ) .  The liquid far above the mushy layer has a composition Co and a temperature T, > TL(CO). 
The mushy layer is assumed to grow upwards into the liquid at a constant speed I.‘ and is assumed 
to have constant thickness d .  Conditions corresponding to impermeable, rigid and isothermal 
boundaries are imposed on the top and bottom of the mushy layer as a simplifying step which 
effectively decouples the dynamics of the mushy layer from the rest of the system. 

1992). When a fluid parcel is displaced upwards in the mushy layer, it finds itself 
relatively depleted of solute and colder than its surroundings. The fluid parcel, which 
is assumed to encompass a large number of crystals, reaches thermal equilibrium 
much more quickly than it can adjust to its new chemical environment owing to 
the relatively large thermal diffusivity compared with the solute diffusivity. As a 
result, to maintain thermodynamic equilibrium (as required by the phase diagram) 
the parcel must dissolve some of the surrounding crystals. This in turn leads to 
less flow resistance and hence a positive feedback mechanism for the formation 
of chimneys. This mechanism points towards important interactions between heat 
transfer, convection and solidification in the mushy layer which we shall address in 
this paper. 

We have used the following scalings to render the governing equations dimension- 
less. The velocity scale is V ,  the length and time scales are given by the thermal 
diffusion length and time, K / V  and lc/V2, where K is the thermal diffusivity. The 
pressure scale is ~ p / n ( O )  where p is the viscosity and n(0) is a measure of the perme- 
ability of the mushy layer as described below in equation (2.6). The nondimensional 
temperature (or equivalently composition) is given by 

T - TL(CO) C - Co 
=--- 

AT AC ’ 
8 =  

where AT = TL(CO) - TE and AC = CO - CE so A T  = TAC. 
The nondimensional equations governing the mushy layer in a reference frame 

moving at speed V are the heat balance, solute balance, Darcy’s equation, and mass 
balance given by 

(2 .4~)  

(i - g) ((1 - 418 + %4> + u-ve  = 0, (2.4b) 

(2 .4~)  
v * u  = 0. (2.4d) 

K($)u = -Vp - Ra62, 
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The basis for these equations rests on the idea that, owing to its fine-scale structure, 
the mushy layer can be treated as a continuum. The derivation and justification of 
equations such as these as continuum descriptions of the mushy layer have been put 
forward by a number of previous authors (e.g. Hills, Loper & Roberts 1983; Worster 
1986; Bennon & Incropera 1987; Voller & Brent 1989; Worster 1992~) .  The present 
formulation and notation is most similar to that of Worster (19926), which was also 
used by Amberg & Homsy (1993). We have taken the material properties of the solid 
and liquid phases to be equal and have neglected diffusion of solute. Note, however, 
that since the mushy layer is in thermodynamic equilibrium, retaining the effect of 
solute diffusion here would effectively only modify the coefficient of the diffusion 
term in equation (2 .4~)  but slightly. The dimensionless parameters appearing in these 
equations are the Stefan number S ,  the concentration ratio V, and the Rayleigh 
number Ra, where 

( 2 . 5 ~ )  

(2.5b) 

(2 .5~)  

where L is the latent heat, C I  is the specific heat, CS is the solid composition, CE 
is the eutectic composition, g is gravity, and v is the kinematic viscosity of the 
liquid. The Stefan number S gives a measure of the latent heat relative to the 
heat content, or available heat in the system. The compositional ratio '% relates 
the difference in characteristic compositions of the liquid and solid phases with the 
compositional variation of the liquid within the mushy layer. Large values of %?, 
which we shall consider shortly, correspond to initial compositions which are near the 
eutectic composition. The Rayleigh number Ra measures the destabilizing influence 
of compositional buoyancy relative to the stabilizing influence of thermal diffusion. 

The function K ( 4 )  measures the variation of the permeability n(4) with local solid 
fraction 4 and is given by 

where the permeability is assumed to be finite for zero solid fraction. Such an 
assumption, as discussed by Worster (1992b), is appropriate when Darcy's equation, 
rather than a more general Brinkman equation, which includes the effects of inertia 
and deviatoric stresses in the mushy layer, is used to describe the flow. 

Equations (2.4) are subject to the imposed boundary conditions 

8 = - 1 ,  w = O  at z = O ,  (2.7a,h) 
8 = 0 ,  w = O ,  4 = 0  at z = 6 ,  ( 2.8~-C) 

where 6 = d/ ( rc /T / )  is the dimensionless depth of the layer. The solid-mush interface 
z = 0 is at the eutectic temperature and is impermeable. The mush-liquid interface 
z = 6 is at the liquidus temperature, is impermeable, and corresponds to zero solid 
fraction. 

The hydrodynamic boundary condition for the fully dynamic two-layer problem 
where the mushy layer and liquid layer are coupled is one of continuity of pressure 
[PI = 0 at the mush-liquid interface. This condition reduces to that of p =constant 
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on the mush-liquid interface in the limit of zero Darcy number Da = I Z ( O ) / ( K / V ) ~ ,  
where the Darcy number measures the ratio of the average spacing between the 
crystals in the mushy layer to the thermal length (Emms & Fowler 1994). Here we 
are imposing artificially the no-flow condition (2.8b) instead of the pressure condition 
and we are additionally keeping the position of the interface z = 6 fixed. These 
approximations, which were introduced by Amberg & Homsy, render the nonlinear 
analysis analytically tractable. With the exception of (2.8b) these boundary conditions 
are those for the full system in the limit of infinite Lewis number (the ratio of 
thermal to solutal diffusivities in the liquid) though in that case 6 is a variable 
determined by continuity of heat flux at the mush-liquid interface. These simplifying 
assumptions should not jeopardize our ability to capture essential interactions between 
heat transfer, convection and solidification in the mushy layer. 

We can associate the dimensionless mushy-layer thickness 6 with the inverse of the 
nondimensional far-field temperature 0, = (T ,  - TL(Co))/AT by noting that when a 
liquid layer is present above the mushy layer, equating the temperature gradient in the 
mushy layer A T / d  with the temperature gradient in the liquid (Tm - T~(co)) / ( rc /V)  
gives 6 - l / O m .  Furthermore, Worster (1991) showed, by analysing the exact solution 
for a non-convecting mushy layer, that as 0, + 00 the mushy-layer thickness is given 
by 

(see also Fowler 1985). 
We follow Amberg & Homsy (1993) in rescaling the model which corresponds to a 

thin mushy layer in the limit 6 << 1. We consider the limit where $? is large. Physically, 
this corresponds to the case where the initial composition of the liquid is close to 
the eutectic composition as can be seen by the definition of 59 in equation (2%). 
Specifically, we take 

q=- CS 
6 ’  

(2.10) 

where Cs is O(  1) as 6 --+ 0. The above approximation (6 + 0, $? + 00) corresponds 
to the near-eutectic approximation used by Fowler (1985). 

We shall see that the main effect of large 59 is to give small solid fraction, and 
hence nearly uniform permeability, and the main effect of small 6 is to give a nearly 
linear basic-state density profile. Therefore, this limit allows for the leading-order 
description of the mushy layer as a porous layer of constant permeability subject to 
a linear density gradient. The idea is then to re-introduce effects such as permeability 
variations and nonlinear density gradients as perturbations to this simpler system. 
Note that experiments with ammonium chloride have had large values of $? (typically 
%? = 20) so that the mushy layers in the experiments have had small solid fraction 
and nearly uniform permeability. The value of 6 has not been particularly small 
in experiments conducted to date. However, we explore the effects of nonlinear 
density gradients by allowing perturbations in 6 to the near-eutectic approximation. 
In contrast to Amberg & Homsy (1993) who kept S = 0(1), we follow Emms & 
Fowler (1994) and assume that the Stefan number is large by writing 

s s = -  
6 ’  

(2.11) 

where S is O(1) as 6 + 0. We shall find that this leads to a number of interesting 
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results. Also, the results derived with S scaled in this way can readily be reduced to 
the case studied by Amberg & Homsy (1993), and we shall recover results for that 
case. Following Amberg & Homsy we rescale space and time and also introduce a 
new effective Rayleigh number R based on the mushy-layer thickness 6 

D. M .  Anderson and M. G. Worster 

(2.12a) 
(2.12b) 
(2.12c) 

We seek solutions to the system (2.4) by perturbing about a motionless basic state, 
in the moving frame, where the temperature OB and solid fraction CbB vary only in the 
vertical direction. The small perturbations are measured by a perturbation amplitude 
E and can vary horizontally, vertically and temporally. Specifically, we take 

(2.13a) 

(2.13b) 

(2.13~) 

(2.13d) 

where we assume that E << 6 << 1 (further discussion of this is given in $3). 
The steady basic state, denoted by subscript ‘B’, is horizontally uniform and satisfies 

(2.14~) 

(2.14b) 

subject to the boundary conditions 

ROB = 0, (2.14~) 

OB =-1 at 2 =0,  
6B = 0, 4 B  = 0 at Z = 1. 

(2.15) 
(2.16a,b) 

We can express the basic-state solutions in terms of asymptotic expansions for 
6 << 1, 

D 
2 

6 B  = (2 - 1) -C?-(z2 -2 )  + ..., (2.17a) 

where D = 1 + S / C s .  Note that the assumption that V - 0(1/6) leads to small basic- 
state solid fraction of O(6). In the limit 6 -+ 0 we find that the system corresponds 
to convection in a passive porous medium with a linear temperature gradient as 
considered by Palm, Weber & Kvernvold (1972). Effects which are fundamental to 
the mushy layer are re-introduced as small perturbations (in 6) to this simpler system. 
Note also that, with the rescaling of the Stefan number, the basic state is slightly 
modified from that of Amberg & Homsy. 
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The perturbation equations are 

(2.18~) 

(2.18d) 

(2.18e) 

v.2 = 0, (2.18f) 

subject to the boundary conditions 
A 

O = O ,  G = O  at Z = O ,  

O = O , G = 0 , 4 = 0  at Z = 1 .  
A A 

(2.19a,b) 

(2.20~-c) 

Since the basic-state solid fraction is small and the perturbations to the solid fraction 
will also be small, we follow Amberg & Homsy and expand the function K ( 4 )  in a 
Taylor series for 4 << 1 

~ ( 4 )  = 1 + ~ ~ 4  + ~ ~ 4 ~  + ~ ~ 4 ~  + .... (2.21) 

The specific form of the permeability as a function of the local solid fraction is then 
characterized by the coefficients K1, K 2 ,  K 3 , .  . .. We shall not specify a particular form 
for the permeability now but we shall require that K1 > 0 so that the permeability 
decreases with increasing solid fraction. Later, we shall focus on a particular limiting 
case where K 1  is 'small', formally of the same order as the dimensionless mushy-layer 
thickness 6. 

3. Weakly nonlinear analysis 
We follow a standard weakly nonlinear approach (e.g. Busse 1967) in describing 

the onset of convection in the mushy layer. Here we have two small parameters, 
the mushy-layer thickness 6 and the perturbation amplitude E. We consider the 
formal asymptotic expansions in the double limit lim~,o[lim,,o f(6,  F ) ]  of functions 
f ( 6 , ~ ) .  In other words, we consider 6 = 0(1) as F + 0. The procedure is first to 
make a formal asymptotic expansion in F << 1 and then at each order in F make 
a formal asymptotic expansion in 6 << 1. Note that this is quite different from the 
limit lim,,o[lims,of(6,c)]. Indeed, as we shall see, the system is singular in the limit 
6 4 0 with = O(1). Our approach is also different from that used by Amberg & 
Homsy (1993) who took the distinguished limit 6 = O ( F )  as E 4 0. Their results are 
recoverable from ours by setting 6 = E, as we shall show later. 

The different scaling of the Stefan number S in our analysis as compared with 
Amberg & Homsy (1993) changes the basic state as well as the perturbation equations. 
However, we find that by introducing the following additional scalings on 8, ii and R 
involving the O( 1) parameter i2 = 1 + S/%, the leading-order perturbation equations 
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are identical to theirs. The expansions for the perturbation quantities are 
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8 = ( ~ 0 0  + 6801 + . . .) + 4 8 1 0  + 6811 + . . .) + E2(820 + 6821 + . . .) + . . . , (3 .1~)  
A 

Q4 = (400 + 6401 + . . .) + 4 4 1 0  + 6411 + . . .) 
1 

+ E2($42(-1) + $20 + 6621 + . . .) + . . . , (3.lb) 

Q1’2ii = (Goo + Giiol + . . .) + e(310 + 6iill + . . .) + ~ ~ ( C i 2 0  + 6321 + . . .) + . . . , (3.1~) 
Q1’2R = (& + 6&1 + . ..) + ~ ( R l o  + 6Rll + . . .) + f2(R20 + 8R21 + . . .) + . . . . (3.ld) 

Note that the expansion of 6 is singular at 0(e2 )  as 6 + 0. Therefore, if a distinguished 
limit of the equations is sought, rather than the double limit considered here, then 
it is essential to insist that f 2  << 6. The distinguished limit 6 = O(e) considered by 
Amberg & Homsy (1993) satisfies this constraint and is therefore consistent with our 
approach. We find that the correct treatment of this term leads to an important 
interaction between convection and solidification in the mushy layer that results in 
an oscillatory instability. We discuss this term further below. 

The leading-or der solutions ( O ( f 0 S o ) )  to the perturbation equations (2.18) are 

000 = - sin(n2) V(X, j ) ,  

400 = --(cos(nZ) + 1) q(Si-,j), 

WOO = n sin(n5) y(X, j ) ,  

2n 

CS 

(3 .2~)  

(3.2b) 

(3 .2~)  

(3.2d) 

(3.2e) 

& = 2n, ( 3 x 1  

where the two-dimensional planform which describes rolls and hexagons is 

with 

and z is a slow time scale defined below. When A1 = A2 = A3 # 0 the pattern corre- 
sponds to hexagons and when Ai # 0 and A, = 0 for j # i the pattern corresponds 
to two-dimensional rolls. The wavenumber corresponding to the minimum value of 
the linear, critical Rayleigh number is k = n and we fix this value throughout our 
analysis. The critical Rayleigh number and corresponding wavenumber as well as 
the two-dimensional version of the thermal and flow fields are identical to those of 
Palm et al. (1972) who considered steady convection in a passive porous medium. 
When Al  = i and A2 = A3 = 0 the planform corresponds to the two-dimensional 
roll solution of Amberg & Homsy (1993) and when Al = A2 = A3 = i the planform 
corresponds to their hexagonal solution. In their analysis, the solvability conditions 
required for the existence of higher-order solutions determined Rlo, Rll, etc. and by 
solving the expansion of R for 6 they were able to identify steady finite-amplitude 
solutions. In the present analysis we are interested in the stability of such solutions, 
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and so the amplitudes A,(z),  which are functions of a slow time scale z = e2t, are 
determined via solvability conditions. This scaling for the slow time scale z is sug- 
gested by linear theory and indicates that the nonlinear development of the solution 
occurs slowly and is consistent with the Rayleigh number being near its critical value 
corresponding to onset of instability. 

At O(eoS) we obtain the first correction terms in 6. These involve undetermined 
amplitudes Bj(z) through an analogous planform 

So, for example, 

801 = - sin(x2) q ( ' ) ( ~ ,  j) + fo(~)q(n, 71, 

800 + heo, = [- sin(n2) + h fe (2 ) l  [ q ( x , j )  + 6 q B ( x , y ) ]  + o ( s ~ ) ,  

(3.6) 

where fo(5) corresponds to the 5-dependence of the particular solution forced at this 
order. Then 

(3.7) 

where the planform here gives rise to the amplitudes of interest dj 3 A,  + 6 B j .  We 
refrain from showing further solutions at this order except to note that 

The higher-order correction terms in the expansions (3.1) which we calculated 
symbolically using Mathematica become increasingly tedious and are not presented 
here. However, there are important steps and assumptions along the way to obtaining 
amplitude equations which we shall point out. 

To understand our approach at this stage of the analysis, it is helpful to consider 
the results of Amberg & Homsy (1993). They found steady solutions to the weakly 
nonlinear system in the form of two-dimensional rolls and hexagons. For two- 
dimensional rolls they found (in their notation) that 

R = (271. + 6R15 + ii2R25 + . . .) + F ~ R ~ ~  + . . . . (3.9) 

The sign of Rze determines whether rolls are supercritical or subcritical. They identified 
a critical value (K1 /Cs = 0.226) of the parameter combination K 1  /Cs below which the 
bifurcation to rolls was supercritical and above which the bifurcation was subcritical. 
For hexagons they found that 

R = (271 + 6Rlb + . . .) + fRle + . . ., (3.10) 

so that the bifurcation to hexagons was transcritical. They found that RI ,  was 
proportional to the same parameter combination K1/Cs. (Note: the value of RI, 
was incorrectly given in their paper as -(? + ix2)K1/Cs. It should be -;z2K1/Cs 
(private communication, Amberg 1994).) 

In their discussion of these results Amberg & Homsy speculated on the possible 
interaction between two-dimensional roll and hexagonal convection patterns based 
on fundamental ideas of bifurcation theory. This led them to the conclusion that their 
results would predict stable hexagons with upflow in the centres and unstable hexagons 
with downflow at the centres. They pointed out that this prediction conflicted with 
experimental results of Tait et al. (1992) who observed hexagons with downflow at 
the centres. 
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It is well known that hexagonal convection patterns arise as a result of various 
asymmetries in the system. The particular physical effect which gave rise to hexagons 
in the Amberg & Homsy analysis was that associated with the term K I / C s ,  namely 
nonlinear permeability variations associated with perturbations to the basic-state solid 
fraction. Since both K I  and Cs are always positive, the nature of the transcritical 
bifurcation based on this result could not vary. However, there are a number of other 
physical effects in this system which also cause asymmetries but which correspond to 
higher-order terms that were neglected in the analysis of Amberg & Homsy. That is, 
for example, they did not calculate O(6) corrections for the term R1,. 

We extend their analysis in two ways. First, we consider the case where the 
hexagonal bifurcation is nearly vertical so that both two-dimensional roll and hexagon 
patterns can be captured local to the bifurcation point in the same stability analysis. 
This can be accomplished by taking K I / C s  to be formally of O(6) as described below. 
Secondly, we include additional physical effects that can also lead to hexagonal 
convection in this system. Since the physical effect identified by Amberg & Homsy 
appeared as a term proportional to K l/Cs, the O(6) correction terms corresponding 
to the other physical effects become important when KI/Cs is also O(6). Therefore, 
the limit where K1/Cs is small is of dual interest. 

To accomplish these goals in our analysis we wish to choose the value of Kl/Cs  so 
that the transcritical bifurcation to hexagons, the nature of which is determined by the 
combined effect of a variety qfphysical effects, is near the vertical bifurcation. Said 
another way, we expand K1 about a critical value, determined by the other physical 
effects, in such a way that the combination of these effects leads to near vertical 
bifurcation of the hexagonal branch. In terms of our weakly nonlinear stability 
analysis we solve the O(6) problem (correct to O(6)) and find that the existence of 
solutions requires that 

44 3n2 K2 26 S 
R11 = -!Q2 - (7 + 7) + -- +g(K1).  

3 7 c; 

(3.1 la) 

(3.11b) 

Note that g(K1) was not calculated explicitly in the present analysis (in anticipation 
of considering the limit of small K1) but has the property that g(0) = 0. The value 
of Rlo corresponds to XI, in the analysis of hexagons in Amberg & Homsy (1993). 
New here is the expression for R1 I ,  which represents higher-order physical effects as 
discussed above. Now, in order to capture both two-dimensional rolls and hexagons 
in the same stability analysis Rlo + 6 R l l  must be equal to zero (that is, to this order, 
the bifurcation to hexagons is vertical). We accomplish this by making the following 
assumption about K1. We take 

K1 = 6 K c  + 6 ~ K 1 ,  (3.12) 

where 

(3.13) 

and K1 measures the variation to either side of this critical value. 
Equation (3.13) embodies various physical effects which lead to hexagonal convec- 

tion. The term K,./Cs represents nonlinear permeability variations associated with 
perturbations to the solid fraction. Note that by our choice of K 1  to be 0(6), varia- 
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tions in permeability due to variations in the basic-state solid fraction are O(S2) and 
therefore have not been included in this analysis. Such terms would appear in g(K1) 
and become negligible at this order when K1 is O(6). The first term in the square 
brackets in equation (3.13) is associated with curvature in the temperature profile. 
This is an effect due to the uniform vertical translation of the mushy layer in time (as 
viewed in the laboratory frame). The second term in the brackets is associated with 
higher-order nonuniformity of the permeability due to the basic-state solid fraction 
and its perturbations. The final term in the brackets represents linear and nonlinear 
interactions of temperature and solid fraction. We shall discuss these further in 94. 

Next, we discuss the appearance of the O(1/6) term in the expansion for solid 
fraction perturbation 6 as indicated in equation (3.lb). We find that the O(e2)  
problem is forced by a term of O(1/6) in the solute balance (2.18b). This is the reason 
for the O( 1/6) term in the expansion for solid-fraction perturbation 6. Specifically 
we find that at O ( ~ ~ 6 - l )  

(3.14) 

so that 42(-1) is directly proportional to a time derivative. In terms of the small 
amplitude parameter C, the time scale T measures slow variations in time of O(e2)  
associated with the disturbance growth rate. In terms of the small dimensionless 
mushy-layer thickness 6, the time scale T = O(S2) is characteristic of the diffusion 
time across the layer. The balance in equation (3.14) suggests that a different time 
scale, of O(6), is appropriate, i.e. the time associated with the mushy-layer thickness 
and the vertical translation speed of the mushy layer. In what follows, we shall see 
that this term has a key effect on the dynamics of the mushy layer. 

We next define the amplitude dj  = A j  + 6Bj ,  where the amplitudes B j  are the 
analogues of A j  appearing at O(6) as described above. The amplitudes dj correspond 
to the O(f) terms, correct to O(6), in the perturbations to the basic-state solutions. 
We combine the results of the solvability conditions found at O(e360) and O(e36)  to 
obtain the set of coupled evolution equations 

uA'~ = 2nR2d1 + b d 2 d S  - cdI1d1l2  - d d 1 ( l d 2 I 2  + (_C43l2), 

U& = 2nR2d2 + b d i d 3  - c d 2 l d 2 I 2  - dd2(1d1I2 + 1 d 3 I 2 ) ,  

ad3  = 2nR2d3 + bdY.012 - c d 3 l d 3 I 2  - dd3(ld1I2 + / & I 2 ) ,  

(3 .15~)  
(3.15b) 
(3 .15~)  

where 

a =  ( Q - 2 3  +6a1, 

K1 b = 6n36---, 
Q CS 

(3 .16~)  

(3.16 b)  

(3 .16~)  

(3.16d) 

R2 = R20 + 6R21. (3.16e) 

Expressions for al, c1 and dl are given in the Appendix. Such equations are familiar 
in convection (e.g. Segel 1965) as well as a variety of other physical systems, such as 
solidification (Brattkus & Davis 1988) and combustion (Kuske & Matkowsky 1994) 
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and their solutions are well known. The form of such equations can be predicted 
on the basis of symmetries and group theoretical arguments (e.g. Golubitsky, Swift 
& Knobloch 1984). The important result here, and that which largely reflects the 
computational effort in the analysis, is the calculation of the particular coefficients 
that appear in these equations. 

D. M .  Anderson and M.  G.  Worster 

4. Analysis of amplitude equations 
The amplitude equations (3.15) reveal a variety of results regarding convection 

in the mushy layer. We first note that the coefficient a of the time derivative can 
vanish. That is, there exist physically allowable parameter values for which a (see 
equation (3.16~)) can be positive, negative or zero. This suggests the possibility of a 
Hopf bifurcation. So our analysis of the steady convective instability in the mushy 
layer has revealed the presence of hitherto unsuspected oscillatory instability. We 
have subsequently reconsidered the linear stability problem and have indeed found 
an oscillatory instability. We find that the point at which this coefficient vanishes 
corresponds to the appearance of the oscillatory mode at the minimum of the neutral 
stability curve for the real mode. We have found that it is the contribution from the 
singular term in equation (3.lb) which gives rise to this oscillatory instability. 
We present these calculations in a companion paper (Anderson & Worster 1995). 
In the analysis which follows we shall treat those cases away from this point (so 
that a > 0) and consider solutions to the evolution equations (3.15) in the form of 
two-dimensional rolls and hexagons. The parameter regime where these results are 
appropriate are discussed in more detail below. 

4.1. Convection patterns 
Another new feature of the system is that the coefficient of the quadratic term in (3.15) 
can be positive or negative. This implies, as we shall see, that hexagons with either 
upflow in the centre (up hexagons) or downflow in the centre (down hexagons) can be 
stable. By analysing the hexagonal solution to the amplitude equations (3.15), using 
equations (3.12), (3.13) and (3.16b) and converting back to original variables we find 
that the sense of the flow is determined by the sign of 

with (stable) up hexagons corresponding to eb > 0 and (stable) down hexagons 
corresponding to eb < 0. Note that by our assumptions (2.10), (2.11) and (3.12), each 
of the terms on the right-hand side of this expression is O(6). These terms represent 
all the physical effects included in this analysis that lead to hexagonal convection. 

Figure 2 shows bifurcation diagrams for solutions of equations (3.15) corresponding 
to steady finite-amplitude convection in the form of two-dimensional rolls (d1 = 
real, dz = d3 = 0), hexagons (d1 = d 2  = d3 = real), and a mixed mode 
( d ~  = real, d 2  = d 3  = real). The solid portions of the curves indicate where the 
solutions are linearly stable while the dashed portions indicate where the solutions are 
linearly unstable. We see that the two-dimensional roll solution is supercritical and 
initially unstable to a subcritically bifurcating hexagonal solution. The mixed-mode 
solution, which is always unstable, connects the two-dimensional roll solution and the 
hexagonal solution at the points along those branches where their stability changes. 
Where the mixed mode attaches to the roll branch, ~ $ 2  = d 3  = 0 and dl = A(',h). The 
amplitudes d 2  = d3 vary along the mixed-mode branch and d l  = d2 = d3 = A(r*h) 
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at the point where the mixed mode connects with the hexagonal branch. Note that 
in the analysis of Amberg & Homsy the two-dimensional roll solution was found to 
be supercritical when K1/Cs < 0.226 and subcritical for K1/Cs > 0.226 (for the case 
K2 = 0). Here K l / C s  is O(6) and so the bifurcation to rolls is always supercritical. 
Figure 2(a) shows the bifurcation diagram for the case where t.b > 0 while figure 2(b) 
shows the case where eb < 0 (see equation (4.1)). The case where ~b > 0 was 
anticipated by Amberg & Homsy and shows that although either two-dimensional 
roll or hexagonal convection patterns can be stable, only hexagonal convection with 
upflow at the centres (up hexagons) can be stable (see figure 2a). However, the present 
analysis reveals that, with the inclusion of further physical effects in the problem, 
it is now possible for ~b < 0 so that hexagons with downflow at the centre (down 
hexagons) are stable (see figure 2b), as observed in the experiments by Tait et al. 
(1992). It should be noted that it is the existence of stable down hexagons which is 
made possible when f b  < 0. When > 0 there exist down hexagons for negative 
amplitudes (see figure 2a) but they are in fact unstable. 

In the present analysis, five system parameters (or combinations thereof) control 
the convection pattern. These parameters are the Stefan number S, the compositional 
ratio V, the mushy-layer thickness 6, and the permeability coefficients K1 and K2. 
Three parameters, S, V and 6, control the presence of the oscillatory instability. A 
simple representation of the regions in parameter space where stable up or down 
hexagons are possible and where the oscillatory mode is present is shown in figure 3. 
The shaded region shows where the weakly nonlinear analysis of the steady mode 
breaks down owing to the interaction of the oscillatory mode (i.e. a < 0 in equa- 
tion (3.16~)). For simplicity we show the leading-order result which corresponds to a 
curve defined by 

= 1  
2s 

6(V + s)2 
(as can be deduced from equation (3.16~)). Outside the shaded region are indicated 
the regions where stable up or down hexagons are predicted. Here K1/6 is fixed and 
for simplicity we have taken K 2  = 0. The solid curve (with K1/6 = 0.1) separates 
these two domains and corresponds to the parameter values at which the bifurcation 
to hexagons is vertical (eb = 0, see equation (4.1)). This boundary is given by 

(4.3) 

The separating curve moves to the left (right) when K1/6 increases (decreases). The 
dashed curve indicates the outermost position that this separating curve can attain 
(corresponding to K1/6 = 0). Consequently, outside the dashed curve the only stable 
hexagons are up hexagons. The region between the dashed curve and the boundary 
of the shaded region is given to leading order by 

39 s 
- <  1 + -  <-- 
;:2 ( :) 146V2 (4.4) 

It is interesting to note that the existence of an oscillatory instability and the 
possibility of stable down hexagons are associated with similar regions in parameter 
space. In fact, they are both due to the parameter combination S/6W2. Neither of 
these effects would have been identified had we chosen S = O(1) rather than the 
distinguished limit S/V = O(1). We also must note that the region in which down 
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FIGURE 2. Bifurcation diagram. A representation for the amplitude of the nonlinear perturbations 
€(dl + d2 + d1) is plotted us. Rayleigh number for two cases. Solid lines correspond to linearly 
stable branches while dashed lines represent linearly unstable branches. (a )  The bifurcation diagram 
showing the case when ~b > 0 (see equation (4.1)). The two-dimensional roll branch bifurcates 
supercritically and is initially unstable to a subcritically bifurcating hexagonal branch. The stable 
portion of the hexagonal branch corresponds to hexagons with upflow at the centres (up hexagons). 
The portion of the branch with e ( d 1  +d2 +d3) < 0 corresponds to hexagons with downflow at the 
centres and is unstable. A mixed mode connects the hexagonal branch to the roll branch at the points 
where their respective stability changes. This mixed mode is always unstable. ( b )  The bifurcation 
diagram showing the case when eh < 0 {see equation (4.1)). As in (a), the two-dimensional roll 
branch bifurcates supercritically and is initially unstable to hexagons. The roll and hexagonal 
branches are again connected via an unstable mixed mode. However, now the stable portion of the 
hexagonal branch corresponds to hexagons with downflow at the centres (down hexagons). In both 
( a )  and (b)  the limit point of the subcritical hexagon branch corresponds to a Rayleigh number R(g) 
and amplitude €dl = e d 2  = e d 3  = eA(g). These values represent the global stability limit of the 
system. We also identify the Rayleigh number at which the two-dimensional roll solution stabilizes 
and the Rayleigh number at which the hexagonal branch destabilizes as R(') and R(*), respectively, 
and note that each is related to the amplitude EA('.~).  
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FIGURE 3. Parameter regimes. We identify regions in parameter space 6s us. a%', for fixed K l / S  = 0.1 
and K 2  = 0, where various features of convection in the mushy layer can be identified. The shaded 
portion corresponds to those parameter values where our weakly nonlinear analysis breaks down 
owing to the interaction of an oscillatory instability with the steady convective mode. Outside 
this boundary, we can identify the parameter values for which stable down hexagons or stable up 
hexagons are predicted. The solid curve (corresponding here to K1/6 = 0.1) separates the regions 
where down and up hexagons are predicted. This solid curve moves to the left (right) when K l / S  
increases (decreases). The dashed curve indicates the outermost position that this separating curve 
can attain (corresponding to K1/6 = 0). As a result, only up hexagons are possible for parameter 
values outside the dashed boundary. 

hexagons are possible is a somewhat restricted domain. The results in figure 3 show 
the case where K2 = 0. We find that stable down hexagons cannot be obtained 
when K2 > 0.131. For values of K2 larger than this value the right-hand side of 
equation (4.1) is always positive. 

Typical experiments with ammonium chloride, such as those of Tait et al. (1992) 
have S w 5,  %' x 20 and 6 x 1. The results shown in figure 3 would therefore suggest 
that up hexagons should be observed in such experiments. However, it must be 
remembered that the experiments are conducted with a fixed cooled base rather than 
at constant growth rate and that the mushy layer is not isolated from the overlying 
liquid region. Also, the sign of eb is quite sensitive to the particular values of the 
numerical constants multiplying each term. This suggests that while the inclusion 
of various physical effects in the mushy-layer model is important in explaining the 
experimentally observed down hexagons, the quantitative predictions in terms of the 
direction of the flow for hexagonal convection based on these effects could change if 
a more detailed mushy-layer model were used. In addition, a more detailed model 
of the mushy layer may introduce further physical effects such as the inclusion 
of an inflow/outflow upper boundary and these may contribute significantly to the 
convection pattern predicted. The quantitative results of the present work are therefore 
not directly applicable to the experimental situation. However, the parametric trends 
revealed here should be robust and can be used to guide further numerical and 
experimental investigations. 

The bifurcation diagrams in figure 2 show that the points at which two-dimensional 
rolls and hexagons change their stability are connected in phase space via an unstable 
mixed mode. The value of the three amplitudes e d ,  = c d 2  = cd3 = associated 
with the point at which hexagons lose stability is the same amplitude e ,d ,  = A(r,h) 
at which the two-dimensional rolls stabilize. This has recently been pointed out by 
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Karcher & Miiller (1995) who considered convection in a porous layer where one 
of the boundaries was a solidification front. As in their work, we can identify the 
amplitude as an alternative pattern selection criterion that can be interpreted 
as a critical value of the heat transfer induced by convection. That is, for example, if 
one defines a measure of the heat transfer induced by roll or hexagonal convection as 
H = l ( (d6/dz) , ,0)~(  where 1 1  represents an appropriate integration over a horizontal 
area, then H - (FA)'. Corresponding to the amplitude fA('lh), one can then identify 
a critical value of H at which the transition from hexagons to two-dimensional 
rolls occurs. The Rayleigh numbers and amplitude corresponding to these points in 
figure 2, which are obtained by analysing the structure and stability of the hexagonal 
and roll solutions of (3.15) and using equations (3.1d), (3.2f), (3.8) and (3.16e), are 
given by 

(452) 

eb - 
d - c  

(4.5c) 

It is worth pointing out here that the quantity d - c is always positive. 

4.2. Global stability 

We have noted that the bifurcation to hexagonal convection is subcritical with a 
turning point, or global stability limit, at a value of R = R(g) (see figure 2) that is less 
than the linear critical point Rlinear. As is the case whenever a subcritical instability is 
present, it is of interest to identify how this new global stability limit compares with 
the linear stability predictions and how it varies with the system control parameters. 
By the nature of our weakly nonlinear analysis in which amplitudes are assumed to 
be small, we cannot expect radical variations in the new global stability limit from 
the linear predictions. Nonetheless, the identification of new stability limits will be 
of particular interest experimentally and may provide more complete information on 
ways to avoid convective instabilities altogether in mushy-layer solidification. 

An analytical expression for the minimum of the Rayleigh number at which 
subcritical convective states first appear can be obtained directly from the hexagonal 
solution to the amplitude equations (3.15) and from equations (3.ld), (3.2f), (3.8) and 
(3.16e). We express this global stability limit point in terms of original, unscaled, 
variables and find that 

9n5 (K1 /a% - K c / q  -__ 
252' [2158n4/259 + l107c4K2/62Q2W2 + 6(cl + 2dl)] 

where K ,  is as defined in equation (3.13) with Cs = SW and S = SS and Q = 1 +S/%'. 
Figure 4 shows how this global stability limit R(R) varies as the system parameters 

S, W, 6 and KI  vary and also compares it with the linear stability predictions Rlinear 
of this model. Here we have taken K2 = 0. In figure 4(a) the Stefan number is varied 
while the compositional ratio W, the mushy layer thickness 6 and the linear measure 
of permeability variations KI  are fixed. Here we see that the trend in the global 
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FIGURE 4. Global stability. The global stability limit is compared with the linear critical point as 
the parameters are varied. In each case K z  = 0 and one parameter is varied while the others are 
fixed. The parameter ranges shown correspond to the up hexagon branch. (a) Kl = 0.4,6 = 0.5 and 
V = 5 while the Stefan number S is varied. ( b )  K1 = 0.4, 6 = 0.5 and S = 5 while the compositional 
ratio V is varied. ( c )  K1 = 0.4, %? = 5 and S = 5 while the mushy-layer thickness 6 is varied. ( d )  
6 = 0.5, V = 5 and S = 5 while K1 is varied. 

stability limit R(g) as S varies is dominated by the linear trend so that the system 
destabilizes when S increases. The explanation for this, as described by Worster 
(1992b), is that as S increases, fluid parcels perturbed upwards can dissolve less and 
less of the crystals for the same perturbation and therefore cannot take on as much 
heavy solute. 

Figure 4(b) shows the variation of R(g) with the compositional ratio %? and also 
indicates that the trend is dominated by the linear result. However, we see that 
increasing %? represents a stabilizing effect. In the present analysis %? appears in 
combination with a number of other parameters. In terms of its effect on the 
Rayleigh number it appears most strongly in the combination S/v (hidden in 52-'/2 
in equation (4.6)). So increasing %? has a similar effect to decreasing S. In Worster's 
(19924 linear stability analysis increasing %? led more strongly to a decrease in porosity 
and therefore was destabilizing. These two effects can be identified side-by-side if we 
reconsider the results of Amberg & Homsy (1993) where the leading-order and first 
correction term to the linear critical Rayleigh number was 

n(K1 - 2St) 
2 v  ' 

R=271+ (4.7) 

according to their equation (3.6) or (3.10) where St is their original Stefan number 
taken to be O(1). By this result, we can clearly see that the effect of variations in %? 
depends on the relative strength of K 1  and S. In our analysis we have identified the 
effect due to the association of %' with S since we have taken S to be large (O(l/S)) 
and K 1  to be small (O(6)). 
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Figure 4(c) shows the effect of varying the thickness of the mushy layer 6. We 
first note that the effect of 6 on the linear critical point does not appear until 0 ( S 2 )  
(Amberg & Homsy) so the linear critical Rayleigh number is constant to O(6) as 6 
varies. Also note that the Rayleigh number is based on mushy-layer thickness. We 
now see that the nonlinear trend due to 6 can differ from the linear trend. Here the 
effect of 6 is to amplify the various physical effects associated with the subcritically 
bifurcating hexagons. The decrease in R on the left side of the plot is associated with 
increased permeability variations while that on the right is associated with increased 
curvature of the basic-state temperature profile. 

Figure 4(d) shows the variation of R(R) with K1. We see that increasing K1 destabi- 
lizes the system, corresponding to the hexagonal branch becoming more subcritical. 

The above results for global stability all correspond to parameter values where 
only the up hexagon branch is stable (i.e. figure 2a). In figure 3 this corresponds to 
parameter values outside the dashed curve. We can also consider the variation of R(g) 
across parameter ranges in which the transition from the down hexagon region to the 
up hexagon region occurs. Since the difference between the linear critical point and 
the subcritical turning point R(g) is small in these cases, we plot R(g) - R,,,,,,. Typical 
results are shown in figure 5. In each plot we can identify the point where vertical 
bifurcation of the hexagonal branch occurs. This is the point where Rig) - Rlinear = 0. 
In each case, to the left of this point down hexagons are stable and to the right of 
this point up hexagons are stable. 

Recall that Amberg & Homsy showed that the two-dimensional roll branch can 
be subcritical for parameter values not considered in the present analysis. We have 
avoided this possibility by considering only K1 /d%? < 0.226 but note that such a 
subcritical instability (present when Kl/6%? > 0.226) may also affect global stability. 

On physical grounds, the perturbation cannot be such that the solid fraction 
becomes negative. For a given value of 6 we expect that there will be some amplitude 
for which the solid-fraction perturbation is too large. By comparing the basic-state 
solid-fraction with the solid-fraction perturbation, as was done by Amberg & Homsy 
(1993), we can identify the perturbation amplitude beyond which negative solid 
fraction is predicted. These are 

( 4 . 8 ~ )  

(4.8b) 

We compare the maximum amplitude for hexagons given in equation ( 4 . 8 ~ )  with the 
amplitude e , d ,  = cd‘2 = ed’3 = eA(g) corresponding to the turning point along the 
hexagon branch, 

6 
(EA),,, ,  = ~ + O(d2) 

12.n 
6 

(EA),,, = - + O(S2) 4.n 

for hexagons, 

for 2D rolls. 

as indicated in figure 2, and find that either can be greater. That is, the amplitude 
at which the model predicts zero solid fraction can occur above the turning point, so 
steady convection can exist in the mushy layer without the formation of chimneys, 
or below the turning point, so no steady small-amplitude convection exists before 
the model breaks down. Similar results hold true if we compare the maximum 
amplitude for two-dimensional rolls in equation (4.8b) with the amplitude given 
by equation ( 4 5 )  at which the two-dimensional roll branch becomes stable. 
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FIGURE 5. Global stability. The difference between the global stability limit and the linear critical 
point R(g) - Rlinear is shown. In each case K 2  = 0 and K1 = 0.01 and one parameter is varied while 
the others are fixed. (a) V = 3 and 6 = 0.1 while the Stefan number S is varied. As S increases, the 
hexagon branch shifts from that with stable down hexagons to that with stable up hexagons. ( b )  
S = 20 and 6 = 0.1 while the compositional ratio V is varied. As V increases, the hexagon branch 
shifts from that with stable down hexagons to that with stable up hexagons. (c) V = 3 and S = 20 
while the mushy-layer thickness 6 is varied. As 6 increases, the hexagon branch shifts from that 
with stable down hexagons to that with stable up hexagons. Notice that as S ,  V and 6 get small in 
(a), ( b )  and (c ) ,  respectively, the region where the oscillatory instability interacts is approached. 

5. Conclusion 
We have considered the stability of nonlinear convecting states in a mushy layer 

during the solidification of binary alloys. Our analysis is based on a simple model 
of the mushy layer given by Amberg & Homsy (1993) in which the dynamics of 
the mushy layer are decoupled from the dynamics of the overlying fluid layer. We 
performed a weakly nonlinear stability analysis that extends that of Amberg & Homsy 
(1993) by identifying the stability of steady two-dimensional roll and hexagonal 
convection patterns, including the relative stability between the two patterns. Of 
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particular interest and importance in our analysis are the interactions between heat 
transfer, convection and solidification in the mushy layer. We have found that 
the inclusion of such interactions leads to the identification of a number of new 
results. 

The pivotal result of our weakly nonlinear analysis is a set of coupled amplitude 
equations which describe the evolution and stability of small-but-finite-amplitude 
convecting states in a mushy layer. Analysis of these equations reveals a variety of 
results regarding convection in the mushy layer. 

We have found that the coefficient of the time derivative in the amplitude equa- 
tions (3.15) can vanish, suggesting the presence of a Hopf bifurcation. We have 
subsequently analysed the linear stability results in more detail, and have indeed iden- 
tified an oscillatory instability. The results of our findings are presented in another 
paper (Anderson & Worster 1995). For the purposes of the present paper, we have 
simply identified regions where the oscillatory instability does not interact with the 
steady mode of convection at onset and have focused our attention there. 

Our analysis of the steady bifurcating branch shows that either two-dimensional 
roll or hexagonal convection patterns can be stable. Furthermore, either hexagons 
with upflow at the centres (up hexagons) or hexagons with downflow at the centres 
(down hexagons) can be stable. We find that the prediction of the type of hexagons 
hinges upon the net effect of a variety of physical effects in the mushy layer. Amberg 
& Homsy identified a single physical effect associated with hexagonal convection, 
namely that due to nonlinear permeability variations associated with perturbations to 
the basic-state solid fraction. Based on this effect alone, the theory predicts stable up 
hexagons but unstable down hexagons. This is in contrast to the experimental results 
of Tait et al. (1992) which showed that down hexagons are observed. The additional 
physical effects included here correspond to curvature in the temperature profile 
associated with a uniformly translating mushy layer, higher-order nonuniformities in 
the permeability due to the basic-state solid fraction and its perturbations, and finally 
a term representing the nonlinear interactions of temperature and solid fraction. It 
is the nonlinear interaction between temperature and solid fraction which allows for 
the possibility of stable down hexagons. 

We have also identified new global stability limits associated with the subcritically 
bifurcating hexagonal solution. We have compared this nonlinear stability limit with 
the linear stability predictions as the various system control parameters were varied 
(see figures 4 and 5). The nature of this subcritical stability limit can be such that 
it represents an approximately uniform shift downwards (destabilizing) in the critical 
Rayleigh number compared with the linear stability predictions. However, it is also 
possible that the trends based on the nonlinear results can differ from the linear 
trends. Such results should aid experimentalists and those in industry in avoiding 
convective instabilities and the formation of chimneys and freckles altogether. 

We have discovered that, for certain parameter values, steady, finite-amplitude 
convection can occur within a mushy layer without the formation of chimneys, while 
for other parameter values there is no steadily convecting state with positive values 
of solid fraction throughout the mushy layer. In other words, in the latter case the 
growth of infinitesimal disturbances leads inexorably to the formation of chimneys. 

It is important to note that the treatment of more detailed models of the mushy 
layer may alter the quantitative conclusions of this paper. For example, it may be 
important to include in the analysis the variation of the basic-state permeability and 
to allow inflow and outflow through the mush-liquid interface. Also, a more detailed 
model will alter the precise way in which each of these physical effects combines. 



Convection in mushy layers during solidijication 329 

That is, the boundary between up hexagons and down hexagons in a more detailed 
model may shift relative to the present model and as a result may be enough to 
change the predicted flow direction of hexagons for a particular set of experimentally 
fixed control parameters. In addition, typical experiments are conducted with a fixed 
cooled base rather than at constant growth rate and the mushy layer is not physically 
isolated from the overlying liquid region. Consequently, quantitative comparisons 
with experiments should not be made. However, the qualitative results we have 
discovered (e.g. parametric trends in terms of pattern selection and global stability) 
should be robust and can be used to guide further numerical and experimental 
investigations. 

We point out here that we have considered a parameter regime, namely that which 
has K 1  /d% = O(6) so that the two-dimensional roll solution bifurcates supercritically. 
Amberg & Homsy have shown that when Kl/d% > 0.226 the two-dimensional roll 
branch bifurcates subcritically. For these parameter values, this together with a sub- 
critically bifurcating hexagonal branch may have important dynamical consequences 
in terms of global stability. 

Finally, we point out that there are important issues regarding nonlinear structure 
and dynamics of convection in mushy layers still to be addressed, some of which have 
been pointed out above. The high complexity of the mushy layer and the inherent 
strongly nonlinear features such as fully developed chimneys suggest that a numerical 
approach may be needed to make further progress. 
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Appendix. Coefficients in the evolution equation 

tions (3.15). 
The following are the expressions for the terms appearing in the evolution equa- 

s s 
= (t - 2)  c,z + (6- $) $$ 

19041~~ 19z4 + 2 ~ ~ 4 )  (--- K2 + --) 3 K3 
a2c; 2 0 2 c ;  
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