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We consider the solidification of a binary alloy in a mushy layer and analyse the 
linear stability of a quiescent state with specific interest in identifying an oscillatory 
convective instability. We employ a near-eutectic approximation and consider the 
limit of large far-field temperature. These asymptotic limits allow us to examine the 
dynamics of the mushy layer in the form of small deviations from the classical case 
of convection in a horizontal porous layer of uniform permeability. We consider also 
the limit of large Stefan number, which incorporates a key balance necessary for the 
existence of the oscillatory instability. The model we consider here contains no double- 
diffusive effects and no region in which a statically stable density gradient exists. The 
mechanism underlying the oscillatory instability we discover is instead associated with 
a complex interaction between heat transfer, convection and solidification. 

1. Introduction 
When a binary mixture solidifies from a cold boundary, the planar solidification 

front often becomes unstable due to constitutional undercooling (see Kurz & Fisher 
1989). The result is a mushy layer, separating the completely liquid phase from the 
completely solid phase. The mushy layer is a reactive porous medium, whose internal 
structure is composed of fine-scale crystals, through which the residual melt can flow. 

Compositional convection can occur in a mushy layer cooled from below when 
unstable density gradients are formed as a result of rejection of the lighter component 
of the mixture upon solidification. The dynamic response of the mushy layer is driven 
by the interaction between convection, heat transfer and solidification. The convective 
transport of heat and solute can alter the solid matrix of the mushy layer, which 
in turn modifies the flow. A dramatic example of this is the formation of chimneys 
in the mushy layer. Chimneys are localized channels devoid of solid through which 
buoyant liquid rises, as observed experimentally by a number of investigators (e.g. 
Copley et al. 1970; Sample & Hellawell 1984; Sarazin & Hellawell 1988; Chen & 
Chen 1991; Tait & Jaupart 1992; Tait, Jahrling & Jaupart 1992). 

The observations of chimneys in mushy layers have led to theoretical investigations 
that have focused on a direct mode of instability. Fowler (1985) proposed a model 
for a mushy layer and analysed a limiting case in which the mushy layer behaves as a 
non-reacting porous layer. Worster (1992b) analysed the linear stability of convection 
in a mushy layer in which he included the effects of the interaction of convection 
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and solidification in the mushy layer. He identified two direct modes of convective 
instability: one driven from a narrow compositional boundary layer above the mush- 
liquid interface and the other driven from the interior of the mushy layer. Emms & 
Fowler (1994) performed a linear stability analysis which involved a time-dependent 
basic state. In contrast to Worster’s (199221) analysis which determined stability 
relative to a motionless basic state, the linear stability of the mushy-layer convection 
was determined relative to a basic state that included the effects of double-diffusive, 
finger-type convection in the liquid. However, the influence of the convection in 
the liquid region upon the mushy layer was found to be negligible in their analysis, 
indicating that the onset of convection in the mushy layer is little affected by vigorous 
convection in the melt. 

Recently, Chen, Lu & Yang (1994) extended Worster’s (199221) stability analysis of 
convection in the mushy layer and found that, when stabilizing thermal buoyancy 
is present in the liquid, the two steady modes of convection can separate by way 
of an oscillatory instability. This was the first theoretical analysis of the mushy 
layer to consider and identify oscillatory modes. They analysed the properties of 
this oscillatory branch of solutions and determined its behaviour as parameters such 
as the compositional ratio, far-field temperature, Darcy number, Lewis number and 
Prandtl number were varied. In all of the cases in which the oscillatory instability 
was present, the buoyancy ratio (thermal to solutal) in the liquid region was nonzero. 
When the buoyancy ratio was taken to be zero, this oscillatory instability ceased to 
exist. Accordingly, they associated this oscillatory instability with the interaction of 
the double-diffusive convection in the liquid region with the mushy-layer convective 
mode. In their results the steady modes always became unstable before the oscillatory 
mode. 

Nonlinear stability analyses of convection in mushy layers have to date been 
applied only to steady modes of instability. Amberg & Homsy (1993) performed a 
weakly nonlinear analysis of convection in a mushy layer using a model in which 
the mushy layer is decoupled from the overlying liquid layer and the underlying solid 
layer. Their analysis revealed the structure of possible nonlinear, steady convecting 
states in the mushy layer. Anderson & Worster (1995) extended the analysis of 
Amberg & Homsy and determined the stability of nonlinear solutions that included 
additional physical effects and interactions in the mushy layer. The pivotal result 
of their analysis was a set of amplitude equations which described the evolution 
of small-amplitude convecting states associated with direct modes of instability. 
They interpreted these equations in terms of stability and pattern-selection criteria. 
Additionally, however, inspection of their amplitude equations indicated the possibility 
of an oscillatory mode of instability despite the lack of any stabilizing thermal 
buoyancy, in contrast with the results of Chen et al. (1994). Their analysis of the 
nonlinear development of the steady mode of convection was therefore restricted to 
parameter regimes in which the oscillatory instability did not interact with the steady 
mode near onset. It is the nature of this oscillatory instability which we shall elucidate 
here. 

In the present paper, we investigate the mushy-layer model of Amberg & Homsy 
(1993) using a linear stability analysis to identify and describe the oscillatory instability 
whose existence was suggested by the analysis of Anderson & Worster (1995). It is 
important to note at the outset that, since no region of static stability is present in this 
model, the oscillatory mode described here is necessarily distinct from that found by 
Chen et al. (1994). We shall find that owing to the nature of the present mushy-layer 
model, which isolates the mushy layer from the rest of the system, the oscillations 

D. M.  Anderson and M.  G. Worster 



A new oscillatory instability in a mushy layer 247 

are a consequence of an internal mechanism associated with a complex interaction 
between heat transfer, convection and solidification in the mushy layer. 

The paper is structured as follows. In $2 we describe the model. In $3 we perform a 
linear stability analysis and derive the associated characteristic equation which relates 
the linear growth rate with the wavenumber of the perturbation. In $4 we analyse 
the characteristic equation and identify and describe the modes of instability present. 
In $5 we address the physical mechanisms associated with the oscillatory instability. 
Finally, in $6 we give the conclusions. 

2. Formulation 
The model we analyse is that given in Amberg & Homsy (1993) and later used by 

Anderson & Worster (1995). For clarity, we describe the key aspects of the model 
here. 

The physical system we are interested in is one in which a binary alloy is cooled 
from below and solidifies releasing a buoyant residual. For mathematical ease we 
consider a system solidifying at a prescribed constant speed V .  This would be the case 
during the directional casting of turbine blades, for example. In this case, a mushy 
layer is sandwiched between a completely solid region below (at temperatures below 
the eutectic) and a completely liquid region above, as shown in figure 1. The liquid 
far above the mushy layer has a composition CO > CE and temperature T, > T,(Co) 
where CE is the eutectic composition and T,(C) is the liquidus temperature of the 
alloy. The model is simplified (Amberg & Homsy 1993) by assuming that the mushy 
layer is physically isolated, and hence dynamically decoupled, from the overlying 
liquid and underlying solid regions. This is accomplished by requiring that the mushy 
layer have rigid and isothermal upper and lower boundaries at which the vertical 
component of the fluid velocity is zero. We fix our coordinates in a frame of reference 
moving with the mushy layer at the solidification speed V .  The mushy layer is 
also assumed to have constant thickness d.  These are simplifying assumptions which 
make the problem analytically tractable but which do not take away the essential 
physics internal to the mushy layer associated with interactions between heat transfer, 
convection and solidification. 

The mushy layer is assumed to be in local thermodynamic equilibrium so that the 
temperature T is related to the composition C via the linear liquidus relation 

T = T , ( C ~ )  + r (c - co), (2.1) 

where r is the slope of the liquidus. As a result of this direct coupling between 
temperature and composition, there are no double-diffusive effects within the mushy 
layer. This immediately rules out double-diffusion as a mechanism for oscillatory 
instability in the mushy layer. The liquid density is linearly related to the temperature 
and composition and from equation (2.1) can be written as 

PI =Po[1+P(c-co)],  (2.2) 

where p = p' - Ta* and a* and p' are the thermal and compositional expansion 
coefficients, respectively. Note that typically p" > Ta', so that p is positive. 

We have used the following scalings to render the governing equations dimension- 
less. The velocity scale is V ,  the length and time scales are given by the thermal 
diffusion length and time, rc/V and K / V ~ ,  where K is the thermal diffusivity of the 
liquid. The pressure scale is ~ p / n ( O )  where p is the dynamic viscosity of the liquid 
and n(0) is a measure of the permeability of the mushy layer as described below 
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FIGURE 1. The mushy-layer system. A binary alloy is cooled from below and releases a buoyant 
residual upon solidification. The mushy layer is sandwiched between a solid layer (of temperature 
below the eutectic temperature T E )  and a liquid layer (of temperature above the liquidus temperature 
TL(C0)). The liquid far above the mushy layer has a composition CO and a temperature T, > TL(C0). 
The mushy layer is assumed to grow upwards into the liquid at a constant speed V and is assumed 
to have constant thickness d.  The mushy layer is taken to have rigid and isothermal upper and lower 
boundaries at which the vertical component of the fluid velocity is zero. Note that composition 
at the mush-liquid interface is Co while that at the mush-solid interface is CE and that, owing to 
the advancement of the mushy layer, there are solute fluxes both into and out of the mushy layer. 
These are simplifying steps which effectively decouple the dynamics of the mushy layer from the 
rest of the system. 

in equation (2.6). The nondimensional temperature (or equivalently composition) is 
given by 

where AT = TL(C0) - TE and AC = CO - CE so AT = TAC. 
The nondimensional equations governing the mushy layer in a reference frame 

moving at speed V are the heat balance, solute balance, Darcy’s equation, and mass 
balance given by 

( 2  at - ”) az ((1 - (b)$ +q +u.VO = 0, 

(2 .4~)  

(2.4b) 

K(q5)u = -Vp - Ra$z^, (2.4~) 
v - u  = 0. (2.4d) 

The basis for these equations rests on the idea that, owing to its fine-scale structure, the 
mushy layer can be treated as a continuum. The derivation and justification of such 
equations as continuum descriptions of the mushy layer have been put forward by a 
number of previous authors (e.g. Hills, Loper & Roberts 1983; Worster 1986; Bennon 
& Incropera 1987; Voller & Brent 1989; Worster 1992~). The present formulation 
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and notation is most similar to Worster (1992b), which was also used by Amberg & 
Homsy (1993) and Anderson & Worster (1995). We have taken the material properties 
of the solid and liquid phases to be equal and have neglected diffusion of solute. 
Note, however, that since the mushy layer is in thermodynamic equilibrium, retaining 
the effect of solute diffusion here would only modify the coefficient of the diffusion 
term in equation (2.4a) but slightly. The dimensionless parameters appearing in these 
equations are the Stefan number S, the concentration ratio V, and the Rayleigh 
number Ra, where 

(2.5a) 

(2.5b) 

where L is the latent heat, 
is the eutectic composition, 

9 (2.5~) 
pAcgn(O)K/‘V Ra = 

V K  

cl is the specific heat, C.; is the solid composition, CE 
g is acceleration due to gravity, and v is the kinematic 

viscosity of the liquid. The Stefan number S represents a measure of the latent 
heat relative to the heat content, or available heat in the system. The compositional 
ratio V relates the difference in characteristic compositions of the liquid and solid 
phases to the compositional variation across the mushy layer. Large values of %?, 
which we shall consider shortly, correspond to initial compositions that are near the 
eutectic composition. The Rayleigh number Ra measures the destabilizing influence 
of compositional buoyancy relative to the stabilizing influences of thermal diffusion 
and viscous drag. 

The function K ( 4 )  measures the variation of the permeability n(4) with local solid 
fraction 4 and is given by 

where the permeability is assumed to be finite for zero solid fraction. Such an 
assumption, as discussed by Worster (1992b), is appropriate when Darcy’s equation, 
rather than a more general Brinkman equation, which includes the effects of inertia 
and deviatoric stresses in the mushy layer, is used to describe the flow. 

Equations (2.4) are subject to the boundary conditions 

6=-1,  w = O  at z = O ,  

O = O ,  w = O ,  4 = 0  at z = 6 ,  
(2.7a, b) 
(2.8a-c) 

where 6 = d / ( l c / V )  is the dimensionless depth of the layer. On the solid-mush 
interface z = 0 the temperature is the eutectic temperature and the vertical component 
of the fluid velocity is zero. On the mush-liquid interface z = 6 the temperature 
is the liquidus temperature, the vertical component of the fluid velocity is zero, 
and the solid fraction is zero. Note that the mush-liquid interface corresponds to 
composition Co and the mush-solid interface corresponds to composition CE. Owing 
to the advancement of the mushy layer, there are solute fluxes both into and out of 
the mushy layer. 

The hydrodynamic boundary condition for the two-layer problem in which the 
mushy layer and liquid layer are dynamically coupled is one of continuity of pressure 
[PI = 0 at the mush-liquid interface. This condition reduces to that of p =constant 
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on the mush-liquid interface in the limit of zero Darcy number Da = I I ( O ) / ( K / V ) ~ ,  
where the Darcy number measures the ratio of the average spacing between the 
dendrites in the mushy layer to the thermal length (Emms & Fowler 1994). Here we 
are imposing artificially the no-flow condition (2.8b) instead of the pressure condition 
and we are additionally keeping the position of the interface z = 6 fixed. In the 
full system, if the stabilizing buoyancy in the liquid region is large, the streamlines 
from the mushy layer do not penetrate far into the liquid region and the upper 
boundary of the mushy layer behaves like a rigid lid, as we have imposed here. 
It can be anticipated that the no-flow boundary condition will act to inhibit the 
motion of the fluid in the mushy layer by not allowing it to convect freely into 
the upper liquid layer. The results of Chen et al. (1994) have in fact shown that 
when stabilizing buoyancy in the liquid region is large the critical Rayleigh number 
is approximately twice that for the system with a constant-pressure boundary. The 
boundary conditions imposed at the mush-liquid interface, with the exception of the 
no-flow condition and the assumption that the interface is non-deformable, can be 
derived in the asymptotic limit of large Lewis number (ratio of thermal to solutal 
diffusivities) from the boundary conditions used in the full model (see Emms & 
Fowler 1994). Anderson & Worster (1995) discussed further the merits of these 
boundary conditions and argued that while they greatly simplify the analysis, they 
do not compromise the essence of the interactions between heat flow, convection and 
solidification in the mushy layer. 

We follow Anderson & Worster (1995) in reducing the model asymptotically. We 
assume that the mushy layer is thin so 6 d 1. The dimensionless mushy layer thickness 
can be associated with the inverse of the non-dimensional far-field temperature 
8, = T,/AT for 8,%1 (e.g. see Fowler 1985; Worster 1991). We also consider the 
limit where % is large. Physically, this occurs when the initial composition of the 
liquid is close to the eutectic composition as can be seen by the definition of % in 
equation (2%). Specifically, we take 

(2.9) 

where Cs is 0(1) as 6 + 0. The above approximation (6 + 0, 5f? + 00) corresponds 
to the near-eutectic approximation used by Fowler (1985). This limit allows for 
the leading-order description of the mushy layer as a porous layer of constant 
permeability. The idea is then to re-introduce effects such as permeability variations 
as perturbations to this simpler system. In contrast to Amberg & Homsy (1993) who 
kept S = 0(1), we follow Emms & Fowler (1994) and Anderson & Worster (1995) 
and assume that the Stefan number is large by writing 

s s = -  
6 ’  

(2.10) 

where S is 0(1) as 6 + 0. We shall find that this is a key step which allows us to 
identify a new oscillatory instability from our analysis. We rescale space and time 
and also introduce a new effective Rayleigh number R based on the mushy-layer 
thickness 6 :  

( x , z )  = 6(X,2), t = d2?, R2 = 6Ra. (2.1 1 a-c) 

The timescale represented here is associated with the diffusion time across the layer. 
Finally, we introduce the following rescalings as used in the nonlinear analyses of 
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Amberg & Homsy (1993) and Anderson & Worster (1995) : 

p = Rp. (2.12u,b) 

There is a steady basic state, denoted by subscript 'B', which is horizontally uniform, 

R- 
6 '  

u = --u 

corresponds to zero flow and satisfies 

subject to the boundary conditions 

O B  = -1 at =0, 
8B =0,  4 B  = O  at Z = 1. 

(2 .13~)  

(2.13b) 

(2.13~) 

(2.14) 
(2.15u,b) 

We can express the basic-state solutions in terms of asymptotic expansions for 6 Q 1 : 

(2 .16~)  

where f2 = 1 + s /Cs  = 1 + S/%. Note that the assumption % - O(1/6) leads to a 
small basic-state solid fraction of O(6). 

3. Linear stability analysis 
We introduce normal-mode perturbations to the basic-state solution as follows : 

(3 .1~)  
(3.lb) 
(3 .1~)  

where cr is the growth rate and k is the horizontal wavenumber of the perturbation. 
We express the growth rate cr = gR + ioI in terms of real and imaginary parts, insert 
the normal-mode forms into the governing equations (2.4), linearize, and find that the 
perturbation quantities satisfy 

(3 .2~)  

(OR + iaI - 6D) (1 - 6&)8 - 8 ~ 4  + -4  + RGDBB = 0, (3.2b) cs 6 

D2 (K(~$B)$) - k2K(6$B)$ - k2R8 = D [AD ( K ( ~ $ B ) ) ]  , (3 .2~)  
( 

D2 (K(6ijB)ii) - k2K(6$B)ii - ikRD6 = ik [GD (K(~I$~)) ]  , (3.2d) 

subject to the boundary conditions 
A 

8 = 0 ,  9 = 0  at Z = O ,  (3.3a,b) 
A A 

8 = 0 ,  $ = O ,  4 = 0  at 2 = 1 ,  (3.4u-c) 



252 D. M.  Anderson and M.  G. Worster 

where D = d/dz. Note that, for this linear theory, it is sufficient to consider two- 
dimensional perturbations. 

We are interested in the solution to these equations for 6 4 1  so we expand the 
variables in powers of 6. We take 

OR = bRO + 6aR1 + . , ( 3 . 5 ~ )  
CTI = 010 + 6011 + . . . , (3.5b) 

o = eo + 6e1 + . . . , (3 .54 

R = & + 6 R 1  +..., (3.5c) 
A 

A 

4 = 4 0 + 6 4 , + . . . ,  
+ = w  0+6wl+ ..., 

(3.5e) 

(3-5J) 
K ( 6 6 ~ )  = 1 + 6 4 ~ 0 K 1  + . . . . (3%) 

Note that since the basic-state solid fraction is small, the permeability function K ( 4 )  
is expanded in a Taylor series. From equation (2.16b) ~ B O  = ( 1  - Z)/Cs. The constant 
coefficient K1 characterizes the linear variation of the permeability with the local 
solid fraction and must be positive so that the permeability decreases with increasing 
solid fraction. Further, it is clear from (3.5g) that the leading-order permeability is 
constant. In the limit 6 -+ 0 we find that the system corresponds to convection in 
a passive porous medium with a linear temperature gradient as considered by Palm, 
Weber & Kvernvold (1972). Effects which are fundamental to the mushy layer are 
re-introduced as small perturbations, of order 6, to this simpler system. 

We proceed by expanding equations (3.2) in powers of 6. We use the solute 
balance (3.2b) to substitute for the terms involving the solid fraction perturbation 3 
in the heat balance ( 3 . 2 ~ ) .  Subsequently, we find that there is an 0(1/6) problem only 
from the solute balance 

(3.6) 
This equation is solved by taking ( ~ ~ 0  = 010 = 0. Note that this result suggests an 
oscillatory timescale different than the 0 ( S 2 )  timescale indicated by the scaling in 
equation (2.11b). 

(OR0 + i01O)cS40 = 0. 

At O(So) we find that 
D2& - k2& - Q&WO = 0, 

D2wo - k 2 W o  - &k2& = 0, 

(3.7a) 
(3.7b) 
(3.7c) 
(3 .74 

with boundary conditions eO(0) = &(l)  = 0, wo(0) = wo(1) = 0 and 40(l)  = 0, where 

cS(OR1 -k i0Il - D)40 -k &wO = 0, 

D2uo - k2Uo - ik&DOo = 0, 

Q = l + S / C s .  
The solutions at this order are given by 
O0 = - sin n2, ( 3 . 8 ~ )  

( 3 . 8 ~ )  

(3.8d) 

(k2 + n2)2 
Qk2 ' 

g =  (3.8e) 
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Note that +o involves the, as yet, undetermined oR1 and orl. In order to determine 
oR1 and orl we must continue our expansion in 6 to the next order. Note that the 
thermal and flow fields as well as the Rayleigh number (with S = 0 so that 52 = 1) 
correspond to those for convection in a passive porous medium as studied by Palm 
et al. (1972). 

At O(6) we find that the values of oR1, orl and R1 are determined via a solvability 
condition through the modified heat balance and vertical component of Darcy’s 
equation 

+ Q R o w o D ~ ~ i  + ORiWo, ( 3 . 9 ~ )  

+ k2Rle0 + K1D [wO~+BOl, (3.9b) 
D2W1 - k2W1 - &k281 = -K1D2 [ ~ B O ~ O ]  + k2K1+BoWo 

with boundary conditions Ol(0) = &(l )  = 0, wl(0) = wl(1) = 0 and +1(1) = 0. 

must be satisfied: 
The existence of solutions O1 and w1 requires that the following solvability condition 

The real and imaginary parts of the characteristic equation (3.10) represent two 
conditions relating R1, oR1 and orl. In the following section we seek solutions to 
equation (3.10) in order to determine the linear stability properties of the mushy-layer 
system. 

4. Stability results 
We shall analyse equation (3.10) with the following goals in mind. First, we wish to 

identify when and if an oscillatory mode (a11 # 0) can be present. Second, we wish to 
identify stability boundaries in terms of the Rayleigh number R = & + 6R1 for both 
the real and oscillatory modes of instability. Here we distinguish between neutral 
stability boundaries and boundaries marking the transition between the existence of 
real modes and the existence of oscillatory modes. Third, we wish to identify the 
critical value of the Rayleigh number and determine how it varies with the control 
parameters of the system. Finally, we analyse the structure of oscillatory mode. 

4.1. Steady and oscillatory modes 

To address the question of the existence of an oscillatory instability we focus first 
on the neutrally stable case oR1 = 0. We separate (3.10) into real and imaginary 
parts and find that the real part determines the Rayleigh number correction R1 as a 
function of the frequency oI1, 
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and the imaginary part determines 011 as a function of k ,  

Recall that & is given by equation (3.8e). 
= 0 is always a solution to equation (4.2). This corresponds to 

the steady (or real) mode in which case the Rayleigh number (for neutral stability) is 
given by 

We see that 

R = &  1+6-  +0(6*) ( 3 
(4-3) - - Q2-112- 

k 

If we focus on the critical wavenumber (the wavenumber which minimizes the value 
of R),  which is given by k = n, we can compare this result with the results of Amberg 
& Homsy (1993). In order to make this comparison we note that our Stefan number S 
is assumed to be 0(1/6) (see (2.10)) while the Stefan number S t  in Amberg & Homsy 
(1993) was taken to be O( 1) so S = 6St .  Recalling that SZ = 1 + s/Cs = 1 + GSt/Cs 
we find that 

(4.4) 
XKlSt (" 4)  S t ]  

+62 [; (g)2 4 c; + - + - - + 0 ( d 2 ) .  
2 n c; 

This expression is correct to O(6) and agrees with the results of Amberg & Homsy 
(see their equations (3.6) and (3.10)). Here we also show those 0(S2) terms that 
appear when we take = 6 S t  in our approximation because they can be compared 
with the 0(S2) terms involving the Stefan number calculated by Amberg & Homsy 
(see their equation (3%)). 

It is also the case that equation (4.2) can have solutions with 011 # 0. This fact 
confirms the presence of an oscillatory instability in this system, as was suggested by 
the weakly nonlinear analysis of the steady mode by Anderson & Worster (1995). 
A nonzero value of oIl indicates that the appropriate timescale for the oscillatory 
instability is 0(6), i.e. the timescale associated with the mushy-layer thickness and 
the vertical translation speed of the mushy layer. The significance of this timescale 
will become more apparent when we analyse the structure of the flow pattern, 
thermal field and solid fraction. It is also important to note that the possibility 
of a nonzero frequency 011, and hence an oscillatory instability, depends on the 
single parameter combination S/(C;SZ2) (see equation (4.2)). In terms of original, 
unscaled variables, this is S/6(%? + S ) 2 .  Unlike the oscillatory instability described by 
Chen et al. (1994), this oscillatory instability is not related to double-diffusive effects 
or the presence of a statically stable density gradient. The oscillatory instability 
here is, by the nature of the model, driven solely from the interior of the mushy 
layer. 

Figure 2 shows nonzero solutions (rll of equation (4.2) as functions of the wavenum- 
ber k for different values of the parameter combination S/(C;SZ2). For S/(C;02) < 1 
the oscillatory mode exists only for wavenumbers greater than some nonzero value. 
For S/(C;SZ2) 2 1 the oscillatory instability exists for all wavenumbers, including 
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FIGURE 2. Im(0) us. wavenumber. The frequency 011 is shown as a function of the perturbation 
wavenumber k for different values of the parameter combination S/(C$12). Nonzero values of 011 

indicate the presence of an oscillatory instability. For s / ( C ; O 2 )  < 1, nonzero 011 exist only beyond 
a nonzero wavenumber whose value depends on s / (C$*) .  For s/(C$22) > 1 nonzero 011 exist for 
all wavenumbers, including zero wavenumber. The first appearance of an oscillatory instability at 
wavenumber K occurs for S/(C$Q2) = 0.5. 

zero wavenumber. In the weakly nonlinear analysis of Anderson & Worster (1995), 
the wavenumber corresponding to the steady mode was fixed at its critical value 
k = rc. They obtained coupled amplitude equations which described small-amplitude 
convection in the mushy layer and found that, to leading order, the coefficient on 
the time derivative vanished when S/(C$2) = 0.5 (see their equation (3 .16~)) .  This 
signalled the presence of an oscillatory instability. If we focus on the wavenum- 
ber k = rc in figure 2 we see that when s / ( C i Q 2 )  < 0.5 the value of aIl is zero 
there (i.e. no oscillatory mode is present at the critical wavenumber). However, 
for S/(C;Q2) > 0.5, the value of 011 can be nonzero at k = n, confirming the 
presence of an oscillatory mode at the critical wavenumber of the steady mode. 

4.2. Stability boundaries 

The relation between the steady convective mode and the oscillatory mode can 
be understood more clearly in plots of the neutral stability curves for the two 
modes. However, when both real and oscillatory modes are present, it is also nec- 
essary to identify the boundary at which the character of the instability changes 
from real to oscillatory. In fact, we shall demonstrate that often in such cases 
the boundary associated with neutral stability plays only a secondary role. That 
is, there may exist growing real modes outside the boundaries defined by neutral 
stability of the real mode (note that these are still linear modes and should be 
distinguished from subcritical nonlinear instabilities). To characterize this, we focus 
on the transition between the existence of real modes and the existence of oscil- 
latory modes. Since this transition boundary will not, in general, occur at neutral 
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R 

FIGURE 3. The neutral stability curves for the real mode (solid curve), the oscillatory mode 
(long-dashed curve) and the transition boundary marking the transition between real and imaginary 
growth rates (short-dashed curve), for representative values (a) S/(C$2*) < 0.5, ( b )  s/(C$2) = 0.5, 
(c) s/(C$2) = 1 and ( d )  s/(C$22) > 1. The domains marked in (a )  indicate the regions where (I) 
no growing modes exist, (11) a single growing real mode exist_s, (111) two growing real modes exist, 
and (IV) two growing oscillatory modes exist. As the value of S/ (C$2)  increases, the point at which 
the oscillatory branch attaches to the real branch moves in the direction of smaller wavenumbers. 
In (c) the real and oscillatory branches intersect at k = 0 and in ( d )  they do not intersect. 

stability, the full form of equation (3.10), with oR1 # 0, must be analysed. This 
transition point can be identified mathematically by locating the point in growth 
rate gR1 us. k space (for a given R)  along the real branch where dcRl/dk = co 
(i.e. a limit point). We have identified this transition, as well as the neutral sta- 
bility curves for the real and oscillatory modes, numerically and discuss the results 
below. 

Each of the four sketches in figure 3 shows the neutral stability curve for the real 
mode (solid curve), the neutral stability curve for the oscillatory mode (long-dashed 
curve) and the transition boundary between the real mode and the oscillatory mode 
(short-dashed curve) for representative values of S/(C$22). Figure 3(a) shows the 
results for a case when S/(C;Q2) < 0.5 and can be described in terms of the number 
and type of growing modes for values of Rayleigh number R and wavenumber k 
within each numbered region. In region I there exist no growing modes. In region I1 
there exists one growing real mode. In region I11 there exist two growing real modes. 
In region IV there exist two growing oscillatory modes (one with frequency 011 and 
the other with frequency -011). Note that along the transition boundary between 
regions I11 and IV the growth rate ~1 is nonzero. Also note that the oscillatory mode 
attaches to the real mode and thus has an endpoint minimum at which the frequency 
o1l is zero. 

The other three sketches in figure 3 depict the neutral stability and transition 
boundaries for (b)  S/(C;Q2) = 0.5, ( c )  S/(C;Q2) = 1 and ( d )  S/(C;Q2) > 1. In (b )  the 
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FIGURE 4. Critical Rayleigh number us. S/(C;Q2) for 6 = 0.2 and K1 = s = CS. The figure indicates 
the loci of the minimum value of the Rayleigh number corresponding to the real mode (solid curve), 
the oscillatory mode (long-dashed curve) and the transition boundary (short-dashed curve) which 
can be associated with the sketches in figure 3. These curves correspond to the left-hand-side axis. 
Also indicated, and corresponding to the right-hand-side axis, is the frequency a1l (dashed-dotted 
curve) along the oscillatory branch. There is a transition point near S/ (C;Q2)  = 0.5 below which 
the minimum of the transition boundary and the minimum of the neutral stability curve for the 
oscillatory mode coincide and above which the three curves separate. 

oscillatory mode attaches to the real mode at the bottom of the neutral curve for the 
real mode. Note that the minimum of the transition boundary and the minimum of 
the real mode coincide at k = n, while the minimum of the oscillatory mode occurs 
at a wavenumber slightly greater than n. In (c) ,  the oscillatory mode attaches to the 
real mode at zero wavenumber (infinite Rayleigh number) and therefore exists for all 
wavenumbers k .  In (d ) ,  the oscillatory mode again exists for all wavenumbers but 
now does not intersect the real mode; the oscillatory mode is everywhere less stable 
than the steady mode. 

Figure 4 shows the behaviour of the critical Rayleigh number for the real mode 
(solid curve), the oscillatory mode (long-dashed curve) and the transition boundary 
(short-dashed curve) as associated with the results shown in figure 3. Also indicated 
is the frequency c11 (dashed-dotted curve) along the oscillatory branch (only the 
positive root is shown). We have noted that the presence of the oscillatory mode 
depends on the single parameter combination S/(C,2SZ2). However, the Rayleigh 
number corresponding to neutral stability depends on the parameter combination 
S/(C$) (see equation (4.1)). Therefore, to illustrate the results, in figure 4 we 
have chosen to show the case where S = Cs so that SZ = 2 and S/(C,2SZ2) = 
1/(4C~). Further, we have fixed 6 = 0.2 and have taken KI/Cs = 1. The real 
mode is the most unstable mode for small values of S/(C,2SZ2) while the oscillatory 
mode is the most unstable for larger values. The exchange occurs at a value of 
,!?/(Cia2) which is slightly less than 0.5. For values of S/(C,2SZ2) to the left of 
this interchange, the minimum of the transition boundary and the minimum of the 
oscillatory neutral mode coincide (as can be seen in inset figure 3(a)). For values 
of S/(C$2) to the right, the minimum of the transition boundary lies between 
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that of the oscillatory neutral mode and that of the real neutral mode. For these 
values, it is important to note that the minimum of the neutral stability curve for 
the real mode no longer marks the minimum value of R (based on linear theory) 
for which growing real modes would first be expected to appear. That is, the 
neutral stability curve for the real mode may no longer provide a good estimate for 
the onset of a steady mode of instability. The transition boundary now plays this 
role. 

Figures 3 and 4 show that either the real or the oscillatory mode can be the most 
unstable depending on the value of S/(C$*).  In the interest of identifying ways 
in which instabilities in the mushy layer can be avoided in practice, we investigate 
the dependence of the critical Rayleigh number on each of the experimental control 
parameters S, $? and 6. 

4.3. Parametric dependences 

Figure 5(a) shows the critical Rayleigh number for the real and oscillatory neutral 
curves (solid and long-dashed curves, respectively) as well as that for the transition 
boundary (short-dashed curve, which is in this case nearly coincident with the solid 
curve) as the Stefan number S varies while the dimensionless mushy-layer thickness 
6, compositional ratio % and linear measure of permeability variations K1 are fixed 
(6 = 0.1, $? = 3, K1 = 3). Also indicated is the frequency 011 (dashed-dotted curve) 
along the oscillatory mode (only the positive root is shown). Note that the ranges for 
which uIl = 0 correspond to endpoint minima. The system becomes more unstable to 
both real and oscillatory instabilities as the Stefan number increases. The real mode 
is the most dangerous mode for large and small values of S, while the oscillatory 
mode is the most dangerous mode for intermediate values. Where the oscillatory 
mode is the most unstable, the transition boundary marks the smallest value of R 
at which real modes become unstable (although here it nearly overlaps with that 
for the neutral real mode itself). Where the real mode is the most unstable, the 
minimum of the transition boundary coincides with the minimum of the oscillatory 
mode. 

Figure 5(b) shows the minimum Rayleigh numbers for the real and oscillatory 
modes (solid and long-dashed curves, respectively) and the transition boundary (short- 
dashed curve) as $? varies while 6, S and K1 are fixed (6 = 0.1, S = 5, K1 = 3). The 
frequency 011 (dashed-dotted curve) along the oscillatory mode is also shown. Here 
the trend in the minimum Rayleigh number for the real and oscillatory modes is 
qualitatively similar. As discussed by Anderson & Worster (1995), the compositional 
ratio $? appears in association with a number of parameters. For larger values of $? 
it appears most strongly in association with the term S/$? and therefore increasing 
$? has a similar effect to decreasing S. For smaller values of $?, the correction terms 
associated with the terms K1/$? and S/(e2Q) reverse this trend. This trend is limited, 
however, in that the asymptotic results require $? N O( 1/6). 

Figure 5(c) shows the minimum Rayleigh numbers for the real and oscillatory modes 
(solid and long-dashed curves, respectively) and the transition boundary (short-dashed 
curve) as 6 varies while S, V and K1 are fixed (S = 5, $? = 3, K1 = 3). Again, the 
frequency oI1 (dashed-dotted curve) along the oscillatory mode is also shown. The 
minimum of the real mode is, to the order shown, independent of the mushy layer 
thickness 6 (see (4.3) and note Cs = 6$? and S = 6s). Smaller values of 6 destabilize 
the oscillatory mode relative to the real mode. 
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FIGURE 5. The critical Rayleigh numbers as they vary with the dimensionless parameters S ,  V and 
6, with KI  = 3. The solid curves indicate the critical Rayleigh numbers for the neutrally stable 
real mode, the long-dashed curves indicate the critical Rayleigh numbers for the neutrally stable 
oscillatory mode, and the short-dashed curve represents the transition boundary between real and 
oscillatory modes. The basic-state solution is stable (unstable) below (above) the curves. Also 
indicated is the frequency ozl (dashed-dotted curve) along the oscillatory branch. Note that the 
ranges in which the frequency is zero correspond to those cases where the oscillatory mode has an 
endpoint minimum and that within these ranges the transition boundary coincides with the critical 
curve for the oscillatory mode. (a) The variations with S with 6 = 0.1 and 9? = 3. Note that the 
transition boundary is not resolved on the scale of this figure but lies just below the critical curve 
for the real mode for 0.6 < S < 15 approximately and coincides exactly with the critical curve for 
the oscillatory mode outside this range. ( b )  The variations with V with 6 = 0.1 and S = 5. ( c )  The 
variations with 6 with S = 5 and V = 3. Note that, to the order we have shown, the real mode is 
independent of the mushy-layer thickness 6. 
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4.4. Structure of the oscillatory mode 
To describe the oscillatory instability further we examine the neutrally stable eigen- 
functions representing perturbations to the thermal field, flow field and solid fraction. 
We combine the basic-state solution and the leading-order perturbations and find 

( 4 . 5 ~ )  8 = 8 B  + 6[-2 Sin 712 cos(kZ + 60117)], 

1 

- (sin crIl(2 - 1)  + - sin rc? sin(kX + 6o11t) 
rc 1 (4.5b) 

(4.5c) 

( 4 . 5 4  

where E is understood to be a small parameter as required by linear theory. 
The structure of the solutions (4.5) varies dramatically with the values of the 

frequency 011 and wavenumber k (recall that these values are related to physical 
parameters as indicated in figure 2). First, when 011 = 0 these solutions correspond 
to the well known case of steady convection in the mushy layer. Such solutions 
are illustrated in figure 6(a) using a laboratory frame of reference where the mushy 
layer advances upwards at speed V .  The perturbations to the solid fraction lead to 
vertically oriented channels of reduced solid fraction where the flow is upwards. Note 
that the rising fluid is relatively cold and relatively depleted of solute. Compositional 
‘stripes’, which are a record of the mushy-layer history left behind in the solid, result 
from the variation in solid fraction at the lower boundary of the mushy layer and, in 
the case of steady convection, are vertically oriented. 

When 011 is nonzero, the solutions (4.5) represent oscillatory states. These may 
correspond to left or right travelling waves, or any combination thereof, including 
standing waves. A more detailed analysis taking into account nonlinear effects is 
required to determine which of these the system selects. For the present purposes, we 

FIGURE 6.  Neutrally stable eigenfunctions. The mushy layer advances with speed V and the structure 
of the solutions for three different values of the frequency 011 are illustrated in a laboratory frame 
of reference. (a )  011 = 0, which correspond to the real mode of convection. Here the solid-fraction 
channels in the mushy layer and the compositional stripes in the solid are vertically oriented. ( b )  
Typical results for the oscillatory mode of convection when 0 < 011 < 3n.  At any instant in time, 
the convection rolls and thermal fields are, to leading order, vertically oriented. However, as a result 
of the interaction between the solid-fraction and the thermal and flow fields, the entire pattern 
translates horizontally as the mushy layer advances. In this case the solid fraction channels have 
a slope which increases monotonically from -k/c11 at the mush-solid interface to - 3 k / q l  at the 
mush-liquid interface. The slope of the compositional stripes in the solid, -k/all,  is determined 
by the vertical growth velocity of the mushy layer and the horizontal translation speed of the 
pattern. (c) Typical results for the oscillatory mode of convection when 5a < 011 < 7a. The notable 
difference between this case and that in ( b )  is that the slope of the solid-fraction channels in the 
mushy layer now is nonmonotonic. The values of the slope at the bottom and top of the mushy 
layer are still - k / q 1  and -3k/al l ,  respectively. The slope of the compositional stripes in the solid 
is again -k/aIl. 



V 

V 

V 

A new oscillatory instability in a mushy layer 26 1 
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shall focus on describing left travelling waves only. The leading-order flow pattern 
corresponds to vertically oriented convection rolls that translate horizontally as the 
mushy layer advances. The perturbation to the thermal field translates with the flow 
and has cold anomalies (solute depleted) associated with the rising fluid and warm 
anomalies (solute rich) associated with sinking fluid. This horizontal translation can 
be seen mathematically in equations (4.5a,c,d) by noting that the effect of nonzero oll 
is equivalent to a shift in time of the horizontal coordinate. Therefore, at any instant 
in time, the thermal and flow fields look like the steady solutions. The leading-order 
solid-fraction distribution, however, differs both spatially and temporally in relation 
to its steady-mode counterpart. In addition to translating horizontally at the same 
rate as the thermal and flow fields, the solid-fraction channels are no longer aligned 
with the vertical. At the lower boundary of the mushy layer, the slope of the solid- 
fraction channels is -k/oll while that at the upper boundary of the mushy layer 
is -3klo11. Depending on the value of 011 the slope may vary monotonically from 
bottom to top or it may oscillate. Further, the distance Ax between the horizontal 
coordinate of the channel at z = 6 and that at z = 0 also varies. We can quantify 
these effects as follows: 
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( 4 . 6 ~ )  

one maximum, when 371 < 011 < 571, (4.6b) 

Gl 1 

2k ’ 
011 71 A X = - - -  
2k k’ 

AX = - monotonic slope, when 0 d 011 < 371, 

when 571 < 011 < 771, (4 .6~)  
Cll 271 A x  = - - - 
2k k ’ 

two maxima, 

when 771 < oll < 971, .... (4.6d) 
011 371 A x  = - - - 
2k k ’ 

three maxima, 

A case with 0 < oll < 371 is illustrated in figure 6(b). Here the slopes of the solid 
fraction channels vary monotonically from a value of -k/oll at the bottom of the 
mushy layer to -3k/011 at the top. A case with 571 < oll < 771 is illustrated in 
figure 6(c). Note that, in contrast to the pattern for the steady mode, as shown in 
figure 6(a), the solid-fraction channel away from the upper and lower boundaries of 
the mushy layer is predominantly within a convective roll, rather than between two 
convective rolls. There are boundary layers at the top and bottom of the mushy layer 
where the slopes of the solid-fraction channels attain the values -3k/o11 and -k/oll, 
respectively. For each of these cases, the compositional stripes left behind in the solid 
have slope -k/oIl, as determined simply by the vertical growth velocity of the mushy 
layer and the horizontal translation speed of the convection pattern. Therefore, the 
slope of the solid-fraction channels and the slope of the compositional stripes vary 
smoothly across the lower boundary of the mushy layer. Note that figure 2 shows 
that for larger values of S/(C;Q2) the value of 011 gets larger and larger. It is 
at these larger values of S/(C;Q2) that the oscillatory mode is the most dangerous 
(see figure 4). In principle, then, although figures 4 and 5 show mainly cases where 
oll < 371, oscillatory states with non-monotonically varying slopes can appear. 

The fact that the spatial structure of the thermal and flow fields does not differ from 
the steady case at leading order is a consequence of the near-eutectic approximation 
upon which the solutions are based. That is, the leading-order spatial structure 
of the thermal and flow fields is decoupled from the solid-fraction perturbation 
so that at any instant in time the convection pattern appears as steady rolls in a 
passive porous medium of uniform permeability. The leading-order effect of the 
non-vertically oriented solid-fraction channels on the thermal and flow fields is the 
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horizontal translation of these fields. Spatial adjustments of thermal and flow fields to 
the non-vertical solid-fraction channels occur at O ( 6 )  but are of secondary importance 
in terms of the driving force behind the oscillatory instability. The fundamental nature 
of the oscillatory mode is captured by these leading-order results and it is the physical 
mechanisms involved that we shall elucidate in the next section. 

5. Physical mechanisms - a hierarchy of conceptual models 
In order to understand the physical mechanisms underlying the oscillatory insta- 

bility it is useful to identify first those effects which do not play a role. It is clear 
that the existence of the oscillatory instability does not depend on the presence of 
nonuniform permeability in the mushy layer since equation (4.2) does not involve K 1 .  
Therefore the oscillatory instability is not a consequence of reduced flow resistance 
in the solid-fraction channels. Also, recall that a double-diffusive mechanism can be 
ruled out since the mushy layer is decoupled from the overlying fluid layer (where 
stable density gradients may exist) and since the thermal and solutal fields within 
the mushy layer are directly coupled through the condition of local thermodynamic 
equilibrium. 

Often, oscillatory instabilities can be understood in terms of temporal phase dif- 
ferences between two or more physical quantities present in the system. In the 
mushy-layer model here, the solid-fraction perturbation is out of phase with the ther- 
mal and flow fields when oIl # 0 (as can be seen mathematically from equations (4.5)) 
and, as demonstrated in the previous section, the result is oscillatory motion. 

With these ideas in mind, we formulate a series of simple conceptual models that 
illustrate how the ideas of convection in mushy layers have developed in recent years 
and help to reveal the physical mechanisms responsible for the oscillatory instability. 

w = ( R  - 1)W, f$ = --w-W, (5.la,b) 

where W represents a (vertical) velocity, 4 represents the perturbation to the solid 
fraction and the dot indicates a derivative with respect to time. Equation ( 5 . 1 ~ )  
represents conceptually convection in a passive porous layer which is triggered when 
a Rayleigh number R exceeds a critical value, here set equal to unity. The convection 
causes transport of solute, which alters the solid fraction through equation (5.lb). 
The solid fraction decreases when W is positive (upwards). This is the fundamental 
mechanism responsible for the formation of chimneys (cf. Fowler 1985). Within the 
constraints of this conceptual model, in which the flow is decoupled from the solid 
fraction, no oscillations are possible. 

An important mechanism within mushy layers is the release of latent heat as solid 
grows. This effect is incorporated in the system of equations 

W = ( R - - l ) W - S f $ ,  f $ = - T I W .  (5.2a,b) 

Recall that higher temperatures in the mushy layer correspond to more solute-laden 
interstitial fluid and hence to negative buoyancy. The release of latent heat, measured 
by the Stefan number S ,  thus serves to retard the growth of the vertical velocity, as 
illustrated by equation ( 5 . 2 ~ ) .  The equations are now seemingly coupled but they can 
be combined to give 

Consider first the system of ordinary differential equations 

w = ( R  - 1 + S/%)W. (5.3) 

Thus the convective problem is again decoupled (cf. Emms & Fowler 1994). It can 
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be seen that the effect of increasing the Stefan number is to render the system more 
unstable to convection (cf. Worster 1992b). The system (5.2) encapsulates the essential 
physical mechanisms that have been recognized to date, and no mechanism there is 
capable of producing oscillations. 

Equation (5.2b) attempts to mimic the solute-conservation equation, which states 
that the rate of change of the bulk composition is proportional to the rate of transport 
of solute. The term on the left-hand side of equation (5.2b) comes from the rate of 
change of solute within the solid fraction of the mushy layer. An additional term is 
required to represent the overall solidification as the whole system is cooled, which 
alters the solute within the liquid fraction of the mushy layer. A better model of the 
perturbed solute-conservation equation is given by 

(5.4) 

The additional term associated with the solidification rate V causes a decay of the 
solid fraction to its equilibrium value in the absence of flow (W = 0). It is this 
decay that finally allows the model to predict oscillations by introducing a phase lag 
between the dissolution caused by the flow and the solidification caused by overall 
cooling. Equations ( 5 . 2 ~ )  and (5.4) can be combined to give 

(5.5a,b) 

These equations now encapsulate the essential balances in the perturbation equa- 
tions (3.2). The fact that the off-diagonal terms on the right-hand side of equa- 
tions (5.5) are of opposite sign indicates that oscillations are possible. It is straight- 
forward to show that the coupled system (5.5) has eigensolutions proportional to eut 
with 

4 + V+ = --v-lw. 

w = ( R -  1 +S/%)W + S V + ,  4 = -v-’w - V+. 

2a = ( R  - 1 + s/v - V )  f [(R - 1 + s/v + V)* - 4VS/%I”? (5.6) 

The location of these growth rates in the complex plane is shown in figure 7. It shows 
the neutral curves for real and oscillatory modes as well as the transition boundary 
between real and oscillatory modes. This figure has the same topology as the growth 
rates for the full linear system analysed in $3. Specifically, we note that the following 
comparison between figure 7 and figure 3(a) applies. In figure 7, above the real 
neutral curve there is one growing real mode (analogous to region I1 in figure 3a). 
Between the real neutral curve and the transition boundary there are two growing 
real modes (analogous to region I11 in figure 3a). Between the transition boundary 
and the oscillatory neutral curve there are two growing oscillatory modes (analogous 
to region IV in figure 3a). Between the oscillatory neutral curve and the real neutral 
curve there are no growing modes of either type (analogous to region I in figure 3a). 
The conceptual model thus seems to capture the essential mechanisms underlying the 
oscillatory instability newly discovered in this paper. 

6. Conclusion 
We have performed a linear stability analysis of convection in a mushy layer during 

the solidification of binary alloys. Our analysis is based on a simple model of the 
mushy layer given by Amberg & Homsy (1993) in which the dynamics of the mushy 
layer are decoupled from the dynamics of the overlying fluid layer. 

We have identified an oscillatory instability, which, to our knowledge, has not been 
reported previously. In particular, the oscillatory instability found here is distinct 
from that in Chen et al. (1994), which arose due to double-diffusive convection 
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FIGURE 7. The character of the growth rates predicted by the conceptual model. The insets show 
the locations of the two normal-mode growth rates in the complex plane. The system is unstable 
when at least one of the roots has a positive real part. The diagram shows the neutral curves for 
real and oscillatory modes and the transition boundary where two real modes combine to form a 
complex-conjugate pair. 

associated with the presence of an overlying liquid layer in which stabilizing thermal 
buoyancy was present. In the model we analyse here, there is no overlying liquid 
layer and double-diffusive effects are not present in the mushy layer owing to the 
strong coupling between the thermal and solute fields as imposed by the condition 
of thermodynamic equilibrium. The oscillatory mode here is driven by a mechanism 
internal to the mushy layer. Through the use of a series of illustrative models, we have 
shown that this mechanism involves an intricate coupling between convection, heat 
transfer and solidification. More specifically, we find that the oscillatory instability 
can be identified with a phase difference between the thermal and flow fields and the 
solid fraction which results from the interaction between cooling driving the solid 
fraction perturbation towards an equilibrium value and the tendency of fluid motion 
to amplify the solid-fraction perturbation. 

We have analysed the behaviour of the oscillatory instability as well as the real 
mode of instability in terms of the critical Rayleigh number at which each first 
appears. The results show that either mode can be the most unstable mode. We have 
shown that in addition to identifying the neutral stability boundaries for each mode, 
it is also necessary to identify the boundary marking the transition from oscillatory 
to real instability. This transition boundary plays a particularly important role when 
the oscillatory mode is the most unstable mode, since, in those cases, the transition 
boundary corresponds to smaller values of the Rayleigh number than the neutral 
stability curve for the real mode. In such cases, the neutral stability curve for the real 
mode may no longer be a good estimate for the onset of the real mode of instability. 

The results of figures 4 and 5 suggest that small values of 6 and %? promote 
oscillatory instability more than larger values. More generally, an 0(1) value for 
the parameter group S/6(S + %')2 is required for oscillations. In an experiment, it 
is possible to vary the base-plate temperature (and hence the Stefan number S), the 
initial composition (and hence %') and the far-field, or furnace, temperature (and 
hence 6). Note that increasing the pulling speed V will not affect 6 = d V / x  since 
the mushy-layer depth d in an experiment will vary in direct proportion to 1/V. In 
an industrial setting, the temperature at the base of the mushy layer is typically the 
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eutectic temperature, since castings are solidified completely, so that once the material 
for a turbine blade, for example, is chosen, both S and 9? are fixed. Therefore, for a 
given material the only control parameter is 6 - l/& (i.e. the furnace temperature). 
Our results indicate that small values of 6, or large furnace temperatures, favour 
the oscillatory mode. Materials that allow smaller values of 9? would be more likely 
to exhibit the oscillatory instability than those which have large values of 9?. Note 
that aqueous solutions of ammonium chloride that can conveniently be made in the 
laboratory (i.e. at room temperature) typically have large values of 9? (m 20) and 
hence may not be a good candidate. 

We have made preliminary calculations using a model of a mushy layer that 
replaces the condition of zero velocity at the upper boundary of the mushy layer 
with a condition of zero pressure (which allows inflow and outflow through the 
upper surface) to test the robustness of the present oscillatory instability. Specifically, 
we calculated the leading-order coefficient that would appear on the time derivative 
of amplitude equations describing small-amplitude convection. Where Anderson & 
Worster (1995) found this value to be SZ - 2s/(C;SZ) (zero-velocity condition) we 
obtain SZ - 2.46$/(C$) (zero-pressure condition). While we stress that we have not 
carried out a full investigation of the effect of a zero-pressure condition for this model, 
this result indicates that an oscillatory instability is still present though at modified 
values of the parameters. 

Also, preliminary calculations for the two-layer mushy-layer model of Worster 
(1992b) with the buoyancy ratio (ratio of stabilizing thermal buoyancy to destabilizing 
solutal buoyancy) in the liquid layer set to zero indicate topology in the real value 
of the linear growth rate consistent with the presence of an oscillatory instability. 
Further quantification of this remains to be done. 

The results of this paper seem to indicate that, although an oscillatory mode may 
be the most critical in some circumstances, it will give way to a steady mode of 
convection at larger values of the Rayleigh number. It also seems likely that channel 
formation due to nonlinear variations in the local permeability of mushy layers will 
tend to lock the flow into steady patterns. Therefore, in practice, oscillatory modes 
of convection may be confined to situations close to marginal conditions. Such 
may nevertheless be the case industrially if controls are put on a casting process 
that weaken convection but fail to eliminate it completely or in geological situations 
in which the large viscosity of magmas may keep convection weak within cumulate 
layers, for example. In these cases the most telling observation is likely to be striations 
of texture and bulk composition of the solidified material (figure 6) tilted with respect 
to the direction of solidification, so that a vertical sample through the solid, say, would 
contain layers alternating between relatively high and relatively low compositions. 

Perhaps the most important consequence of the present study is not the iden- 
tification of oscillatory modes of convection per se but that this phenomenon has 
highlighted an important and hitherto unsuspected interaction between convection 
and solidification that can occur within mushy layers. 
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