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Recent advances in understanding the evolution of interfacially melted water films are discussed from several
perspectives. The essential mechanism is the motion of thin films under the influence of thermomolecular
pressure gradients. The mechanism is common to volatile liquid films at the interface between a solid and
its vapor or a solid and an uncorrugated inert substrate, and the dynamics is theoretically similar to the wetting
of an uncorrugated inert substrate by a nonvolatile liquid. New theoretical treatments of this process focus
on the intermolecular origin of the thermomolecular pressure gradient, its time dependence, and the role of
substrate geometry. Strikingly different results obtain by varying these three features. The experimental
realization of these dynamics involves ice single crystals against a polymer interface.

In wetting phenomena microscopic interactions have observ-
able macroscopic implications and thereby capture the interest
of a broad range of researchers. In the most general description
of wetting, classical surface thermodynamics arises from
considerations of intermolecular potentials.1,2 The critical
behavior of solids, liquids, and gases is studied with sufficient
generality that extensions to magnetic systems, for example,
are immediate, and further extensions drive studies of complex
fluids3 and biomembranes.4 Our interest lies in bringing the
phenomenology of wetting to bear on interfacial premelting,
its general extension to driven systems, and specific realizations
of these in ice. In so doing, we have been able to extract a
fundamental mechanism of frost heave in natural and laboratory
systems and provide some new insights into dynamical wetting
phenomena distant from the system studied herein.
Surface meltingis a wetting phenomenon at the interface

between a solid and its vapor phase at temperatures below the
bulk freezing pointTm. If the interface is wet by the supercooled
liquid phase, there must be a reduction in interfacial free energy
to offset the increase in bulk free energy associated with the
formation of the film. If we replace the vapor phase by a wall
of a different material, the process is referred to asinterfacial
melting and the mean field thermodynamic description is
essentially the same. The melting process may becompleteor
incomplete(e.g., refs 5 and 6). In the former case the film
thickness diverges asTm is approached from below, and in the
latter case the film growth is truncated at finite undercooling
commonly under the influence of retarded potential effects. The
basic competition driving the process is that between adhesion
and cohesion.
A primary motivation for understanding interfacial melting

at ice surfaces concerns the important role it can play in a host
of environmental problems ranging from the sintering of
snowpacks to polar stratospheric cloud chemistry.5 Of particular
importance in cold climates is the dramatic deformation of water
saturated soils known generically as “frost heave”. Although
it is clearly not caused by the volume expansion of water during

solidification, we are just beginning to tease out the fundamental
causes originating in premelting phenomena. The link between
stable liquid water at subfeezing interfaces and frost heave was
established many years ago, but the varied causes of this water
have obscured attempts to extract the fundamental mechanisms
driving frost heave. In a porous medium, curvature, confine-
ment, interfacial roughness and disorder, impurities, and inter-
facial premelting all contribute to the finite volume fraction of
water at subfreezing temperatures. Individually, these effects
have distinct temperature dependencies, but their combined
effects have thus far limited understanding of frost heave to
semiempirical treatments. For this reason we have focused on
isolating the role of interfacial melting in the existence and
mobility of unfrozen interfacial water. The intermolecular origin
of the films, the effect of external forcing, and the geometry of
the confining wall are the main features of our studies.
Theoretical developments are tested against recent experiments
on isolated crystalline surfaces.
There are several approaches to the problem, varying from

microscopic to macroscopic (e.g., refs 2 and 5-8), which focus
on understanding thermodynamicequilibrium. Since we are
ultimately interested in dynamical behavior, we begin by writing
down the mean field grand potentialΩ for the system which is
the natural free energy for describing interphase pressure
differences.9 The total free energy for a layered wall (w), film
(l), solid (s) system of areaAi is written as a combination of
bulk and surface terms:

HereP andV denote pressure and volume and the liquid film
has a thicknessd. The interfacial termI(d) ) (∆γf(d) + γ̃SW)Ai
is a phenomenological representation of the potential between
the three layers under the assumption that the volume-volume
interactions are of a power law form. We writef(d) ) 1 -
(σ/d)ν-1, whereσ is on the order of a molecular diameter and
ν depends on the nature of the interactions. Representative
values includeν ) 3 (ν ) 4) for nonretarded (retarded) van
der Waals interactions andν ) 2 (ν ) 3/2) for long-range (short-
range) electrostatic interactions. By electrostatic interfacial
interactions we refer to a simple treatment in which the substrate
possesses a surface charge density and the confinement of
counterions present in the liquid creates a repulsive force across
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the layer.6 By definition,∆γ ) γsl + γlw - γ̃sw, where theγ’s
are the solid-liquid (sl), liquid-wall (lw), and solid-wall (sw)
interfacial free energies, but note that the short-range cutoff
defined by the value ofσ is intimately wed to the effective nature
of the solid-wall coefficientγ̃sw (see Appendix of ref 9). This
form of I(d) captures the essential features of more detailed
treatments of complete interfacial melting under the influence
of dispersion or electrostatic forces6 and allows us to develop
a dynamical theory for arbitrary power law interactions and to
make predictions relevant to experimental systems. The grand
potential finds a minimum at fixed temperature and chemical
potential, yielding two very useful results specific to the nature
of the interactions. To first order in the reduced temperaturetr
) (Tm - T)/Tm, the film thickness is

whereFs is the density of the solid andqm is the latent heat of
fusion. The coefficientλν depends on the interactionν; for
example, whenν ) 3, σ2∆γ ) A/12π, whereA is the Hamaker
constant. The pressure in each phase is uniform, but the
interfacial interactions create a pressure difference between the
film and the bulk solid

the solid repels the wall through the liquid, in analogy with the
disjoining pressureof wetting. When taken together these
results yield a thermodynamic statement that isindependentof
the nature of the interactions and helps to describe the main
ingredient of premelting dynamics:

We imagine that the pressure in the solid is fixed by contact
with a reservoir. Therefore, the pressure in the liquid film
increases with temperature, and, by imposing a temperature
gradient parallel to the interface, the resultingthermomolecular
pressure gradientwill drive premelted liquid from high to low
temperature. The maximum pressure in the case of water is
approximately 11 atm deg-1, so thermomolecular pressure
driven flow as a frost heave mechanism captures our attention.
These dynamics make mathematical contact with other wetting
phenomena, such as when there is a gradient in the disjoining
pressure along an inert wetting substrate or the competition
between interfacial repulsion and gravity that Helium films
exhibit when climbing over container walls.12 An essential
distinction is that, in premelting, the film thickness is determined
by the temperature, thinning as the temperature decreases, so
that in a driven system continuity requires that liquid will convert
to solid during its transit toward lower temperatures.
The detailed dynamics depends on the nature of the interac-

tions responsible for the film, the thermomolecular pressure
gradient, the liquid/solid conversion rate, and the geometry and
mechanics of the confining wall. We call the pressure exerted
by the confining wall the “overburden pressure” by analogy
with the frost heave terminology, and if it takes a value greater
than the maximum pressure (found by settingPl to the reservoir
pressure in eq 4) in the film, then flow will cease, but if it is
less than the maximum, flow will persist. The thermomolecular
pressure gradient is written as

where we treatPs as the external pressure exerted on the solid
by the confining wall/membrane.9-11,13 For our studies the
radius of curvature of the deformed membrane is always large
compared withd, so the membrane exerts a pressure deep within
the solid. We assume that any solid deformation is slow relative
to the film dynamics. We have studied the configurations shown
in Figures 1 and 3. The common features are that the film
thickness depends solely on the temperature, relaxing to the
value determined by eq 2 on a time scale negligible relative to
that for heat conduction. The confining wall evolves in time
according to the spatial variation in the thin film volume flux
Q ∝ -d3∇Pl, with the proportionality constant depending on
the geometry.9,11 Finally, if the imposed temperature gradient
is transient, a heat conservation equation must be included.9

In Figure 1 we display frost heave in a flexible capillary tube,
a geometry chosen because of its broad applicability to both
physical and biological systems. For this example we focus
on nonretarded van der Waals interactions (ν ) 3). We imagine
initiating an experiment by cooling the cold ring to a valueTf
< Tm so that the vertical solid-liquid interface atxm(t) grows
axially along the capillary. The temperatureT(x,t) in the region
0 < x < xm drives an axisymmetric thermomolecular pressure
gradient. The film thicknessd(x,t) ) r2(x,t) - r1(x,t) depends
on position through the temperature. The volume flux through
the annular premelted region is then

whereη is the dynamic viscosity of the bulk supercooled liquid.
Hence, continuity demands that any change in the radius of the
tube is in response to variations in the volume flux

andt denotes time. The pressure at each pointx in the solid is
opposed by a restoring hoop stress exerted by the capillary
membrane, and we assume linear elasticity,Ps ) k(r2 - r0),
wherek is a constant andr0 is the undeformed radius of the
capillary tube. Combining the last two expressions gives an
evolution equation for the capillary radiusr2 and the temperature
T as

The temperature gradient along the solid drives solidification
of ice down the tube, and latent heat is released as liquid in the
thin film solidifies. Hence, heat conservation gives us the other
required equation

wherecp andκ are the specific heat at constant pressure and
the thermal diffusivity of the solid, which will carry almost all
of the heat.9 This completes the set of evolution equations
which admit a similarity solution and are then solved analyti-
cally, subject to four boundary conditions and an auxiliary
condition, using the method of matched asymptotic expansions.9

The main result, for the dimensionless radiusR(ê) ) (r2 -
r0)â-1, is shown in Figure 2a. The length scale characterizing
the deformation of the wallâ ) Fsqm∆T/πkTm is the product of
the thermomolecular pressure coefficientFsqm/Tm and the ratio
of the thermal drive∆T ) Tm - Tf to the strength of the

d) (-
(ν - 1)σν-1∆γ

Fsqm )1/νtr-1/ν ≡ λνtr
-1/ν (2)

Pl - Ps ) ∆γ(ν - 1)σν-1d-ν (3)

Pl ) Ps - Fsqmtr (4)

∇Pl ) -Flqm∇tr +
Fl
Fs
∇Ps (5)

Q)
r2d

3

6η (Fl
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capillaryk. The deformation of the tube takes place on a time
scale that is rapid compared to the variation in the temperature
gradient.9 Hence, the thermomolecular pressure gradient is
essentially uniform over the same time scale. Yet, since the
premelted film is thickest near the high-temperature region of
the nose and decays rapidly toward the cold ring, the maximum
gradientin the flow occurs near the nose, thereby causing most
of the heave in that region. At the lower temperatures, the film
flow is weak and there is little further heave, resulting in an
approximately uniform displacement of the capillary wall away
from the nose. Since the volume flux driving the deformation

decreases at a rate that scales with the rate of motion of the
bulk interface (∝t-1/2), the deformed region of the capillary
maintains the same shape while the solid finger grows down
the tube. The much larger displacement near the cold finger is
a remnant from the initial moments when the temperature
gradient and the thermomolecular pressure gradient were large
throughout thethensmall domain 0< x < xm.
In Figure 2b we show the case where the temperature gradient

is held at a constant valueG ) (Tm - T)/x, which removes one
equation and reduces the analysis to the appropriate modification
of eq 8 which possesses a different similarity solution. Here

Figure 1. Schematic of the capillary tube gedanken experiment. (a) We take the cold ring atx ) 0 to be the plane of symmetry of a flexible
capillary tube (which extends from-∝ to +∝) filled with the material of interest (ice/water in this case). With the exception of the small region
adjacent to the ring, the walls of the tube are insulated so that only axial heat currents are allowed. Initially we envisage the system to consist of
solid and liquid in coexistence atT ) Tm so that we must haveTf ) Tm. The liquid region is allowed to communicate with a reservoir which has
independent temperature and pressure control. We begin an experiment by cooling the cold ring toTf < Tm. This establishes a temperature gradient
across the solid which drives it into the isothermal melt. The radius of the solid finger isr1 and that of the tube isr2. At a given temperature the
interfacially melted film has thicknessr2 - r1 ) d ) λν)3tr-1/3 if the dominant interactions are nonretarded van der Waals. The position of the
moving “bulk” interfacexm(t) is unknown in the transient problem. (b) The imposed temperature gradient establishes a thermomolecular pressure
gradient (see text) which drives a lubrication flow in the region between the solid and the membrane with a volume flux Q∝ d3. Material in excess
of the thickness given by eq 2 solidifies, and the membrane is distorted in a manner to be determined.
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the bulk solid-liquid interface is located at the fixed position
x ) 0, andx increases toward the cold ring. Note the striking
contrast with the transient case. A constantG drives a constant
volume flux gradient, and thermomolecular pressure continually
draws more fluid into the film where it freezes and deforms
the capillary tube. The position of maximum deformationxmax
moves toward the colder end of the tube as

and the maximum displacement (r2 - r0)max increases with time
according to

In principal, large deformations can be achieved by increasing
G and decreasingk. However, the migration of the peak toward
lower temperatures will be most dramatic whenG is small and
k is large. Finally, we note that the width of the peak also scales
as (k/G)1/3t1/3, so will spread for large values ofk/G, and will
narrow and shift toward the bulk solid-liquid interface ask/G
decreases. Detailed experimental tests of this geometry have
yet to be conducted; however, the qualitative features of the
constant temperature gradient case are consistent with the
experimental findings of Wilen and Dash.10 Since the elasticity
of the membrane in their experiment induces a curvature, there
were nonlocal effects that had to be considered for quantitative
comparisons. We describe these next.
Wilen and Dash10 observed premelting dynamics at ice single

crystal interfaces formed against a flexible polymer membrane
in an imposed constant temperature gradientG. Their cell has
a radial configuration, but because the membrane height
deformations are much less than the disk radius, it is treated in
a one-dimensional slab geometry (Figure 3a). The height of

the membrane,h ) h(x,t), measured relative to an initial
reference heighth(x,t0) is observed to change in response to
the flow of premelted water in a narrow temperature range near
Tm, with a relatiVe lack of membrane deformation at lower
temperatures. Initially, this was interpreted as an abrupt
decrease tod ) 0, consistent with an interfacial free energy
that decreases monotonically with film thickness at long range,
but which possesses a local minimum at shorter range.
Subsequently, using the analysis that follows, we found an
alternative explanation.
In this geometry we find a family of mass conservation

equations, each one corresponding to a different power law
intermolecular interaction as

Figure 2. (a) Transient solution for the dimensionless wall displace-
mentRas a function of position att ) 1, 10, and 100 min. The material
parameters are for pure H2O ice, andk ) 3 × 109 Pa m-1. (b)
Dimensional deformation as a function of position att ) 1, 10, and
100 h. We have chosenG ) 1 K m-1. Note the marked contrast with
the solution of the transient problem.

xmax≈ 1.14(πkλν
3Tm

12FsnG )1/3t1/3 (10)

(r2 - r0)max≈ 0.541( λν
3

12n)
1/3( FsG

πkTm)2/3t1/3 (11)

Figure 3. (a) Local configuration of a radial frost heave cell treated
in a one-dimensional slab geometry.11 This differs from the capillary
tube in that the membrane exerts a restoring force proportional to its
curVature. The temperature gradientG is constant sotr ) Gx/Tm, and
the film thicknessd depends only onx. The thermomolecular pressure
gradient drives the evolution of the membrane heighth(x,t) relative to
an initial reference heighth(x,t0). (b) Fits of the maximum height of
the membranehmax(t) as given by eq 14. The three power lawst1/2,
t6/11, andt3/5 arise from the short- and long-range electrostatic (ν ) 3/2
and ν ) 2) and nonretarded van der Waals (ν ) 3) interactions,
respectively. For each interaction we fit ((ν - 1)σν-1∆γ)-(9/(4ν+3)), related
to λν as defined in eq 2.a, b, andc are material constants, andλν)3/2
) 0.0337 Å,λν)2 ) 0.2101 Å, andλν)3 ) 1.3759 Å. (c) Comparison
of the theoretical predictions and the experimental values described in
ref 10 for the membrane heighth(x,t) at 160 h.R - R0 is the
experimentalx-coordinate. At thebulk ice/water interface,R) R0 and
G ) 0.92 K cm-1. The predictions for the short- and long-range
electrostatic (ν ) 3/2 andν ) 2) and the nonretarded van der Waals (ν
) 3) interactions are shown by the solid, dashed, and dotted lines,
respectively. For orientation “Ice” (R- Ro < 0) and “Water” (R- R0
> 0) refer to regions where thebulk phases are stable. ForR- R0 <
0 an interfacial water film coexists between the membrane andbulk
ice.
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where the term in the square brackets is the volume flux per
unit breadth through the film of thickness given by eq 2. Since
tr ) Gx/Tm andd3 ∝ x-3/ν, the first term in the square brackets
displays the dynamical role of the interactions. The membrane
possesses a tension,σ̃, so when it is distorted, it exerts a pressure
on the solid proportional to the curvature.14 The gradient in
this pressure is theRhxxx term in the square brackets and displays
the nonlocal effect of the membrane deformation. The coef-
ficients are

Equation 12 possesses a similarity solution leading to a
parameter free family of fourth-order, dimensionless ordinary
differential equations that we solved numerically.11

We then performed an experimental test of the scaling
prediction11 for the time evolution of the maximum heighthmax
of the membrane:

The coefficient depends only on material constants multiplied
by ((ν - 1)σν-1∆γ)-(9/(4ν+3)), which we fit to determine the slope
of the interfacial potentialI(d). As discussed above, whenν
) 3, we are estimating the Hamaker constant. The fits span
several decades in time (Figure 3b). The coefficient for a given
interaction then allows us to predicth(x,t) by solving the relevant
evolution equation. The agreement between theory and experi-
ment (Figure 3c) is best in the case of electrostatic interactions
which always dominate van der Waals at long range and,
depending on the surface charge density, may also dominate at
short range.6 However, the observations cannot be accounted
for by a single electrostatic interaction. Since the latter
dominates at long range, we are confident in the calculation in
the region of maximal heave. Superimposed other interactions
might also play a role, and crossovers from one type to another
can be treated with a strictly numerical approach. Our most
important result lies in the new interpretation of the experiments
consistent with a monotonically decreasing interfacial free
energy over the entire range of film thicknesses. Although the

low-temperature dynamics are slow, nonlocal effects ensure that
they still play a role.
These treatments focus on the role of interfacial premelting

in the transport of unfrozen water, but important effects such
as curvature, confinement, interfacial roughness, disorder, and
impurities have yet to be understood in this context. For
example, confinement alone stabilizes liquid well below its bulk
freezing point.15 With regard to the mathematical structure of
these systems, similarity solutions appear often in lubrication
flows16 but rarely receive experimental scrutiny over the
requisite time scales. Therefore, we hope that our theories
stimulate further work in premelting dynamics and related fields
of wetting phenomena and thin film dynamics.
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