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We investigate the development of density stratification in a confined fluid due to 
a buoyancy source which gives rise to a vertical convective boundary layer. We find 
that the stratification is significantly different when the boundary layer is laminar 
rather than turbulent. In particular, the magnitude of the density gradient in the 
fluid interior increases rather than decreases in the direction of flow of the boundary 
layer, and this density gradient varies smoothly so that there is no density front 
between the stratified fluid and the unmodified homogeneous fluid. Laboratory 
experiments are described in which homogeneous fluid in a rectangular container was 
heated at a vertical sidewall. Vertical temperature profiles and streak photographs 
were taken which show the dominant features of the stratification mechanism under 
laminar flow conditions. We review similarity theory for a vertical, laminar, 
free-convection boundary layer in a homogeneous environment, and develop new 
similarity solutions for convective boundary layers in stratified environments. We 
use these analytic results to interpret qualitative features of the experimentally 
observed flow fields and to develop an expression for the depth of the stratified layer 
as a function of time. 

1. Introduction 
Fluid motion driven by buoyancy supplied a t  a point source or at  a vertical plane 

wall is often confined principally to a narrow boundary layer. If such free convection 
occurs in a confined fluid region then over time it can significantly modify the fluid 
outside the boundary layer. In  particular, a stable density gradient can be produced 
in a fluid that is initially homogeneous. This phenomenon has become known as the 
filling-box process (Turner 1979). 

The most commonly considered type of filling box is that in which a turbulent 
plume arises from either a point source of a line source of buoyancy. Such a system 
was first analysed by Baines & Turner (1969). Their model has since been applied 
in a wide range of practical situations including the explanation of stratification in 
the oceans (e.g. Killworth 1977), in tanks containing liquid natural gas (Germeles 
1975) and in magma chambers (Sparks, Meyer & Sigurdsson 1980). 

The success of this model and the physical ideas inherent in it have grcatly 
influenced people’s intuitive thinking about filling boxes. However, in this paper we 
show that the fundamentally different dynamics of a laminar convective boundary 
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layer lead to significant qualitative differences in the stratification of the filling box. 
Interest in such laminar filling boxes has grown recently in the context of magma 
chambers. Both cooling and crystallization at the sidewalls of magma chambers lead 
to convection there, and this convection may be responsible for the thermal and 
compositional stratification of the chambers (McBirney 1980 ; Chen & Turner 1980; 
Leitch 1985). Since the Prandtl number, CT = v / K  where Y is the kinematic viscosity 
and K the thermal diffusivity, of magma is typically between lo2 and lo4, we focus 
our attention on laminar convection in fluids of large Prandtl number. 

The work presented in this paper is principally experimental, but useful physical 
insight is gained from an analytic study of laminar free-convection boundary layers. 
In $2, similarity theory for convective boundary layers in homogeneous environments 
is briefly reviewed, and new similarity solutions are found for convective boundary 
layers in a particular family of stratified environments. The results of $2 are used 
in $3 to develop a simple theoretical model of a laminar filling box and in $5  to aid 
our interpretation of the experimental observations. 

Filling boxes with buoyancy supplied at the vertical sidewalls of a rectangular fluid 
region have been investigated by Schwind & Vliet (1964). In  their experiments a 
constant heat flux was supplied (via electrically heated vertical plates) and the 
conditions were such that the boundary layers were turbulent for at least part of 
their ascent. In our experiments (described in $4) buoyancy was supplied via a 
constant-temperature sidewall and the flow was always laminar. Transition 
to turbulence is determined by the magnitude of the Rayleight number 
Ra = ag A T h 3 / ~ v ,  where a is the coefficient of thermal expansion, g is the acceleration 
due to gravity, h is the fluid depth and AT is a characteristic temperature scale. We 
were careful to ensure laminar flow by having a small temperature difference between 
the isothermal wall and the homogeneous fluid, a shallow fluid depth, and by using 
a mixture of glycerine and water which had a viscosity about twice that of pure water. 

Temperature profiles were obtained during the experiments to show the develop- 
ment of stratification in the fluid and to determine the rate of growth of the stratified 
layer. Streak photographs were taken of the flow field to reveal important aspects 
of the filling-box mechanism and the interaction between the environment and the 
boundary layer. In  $6 the experimental observations and measurements are drawn 
together with the similarity solutions to form a complete picture of the filling-box 
process under conditions of laminar flow. 

2. Laminar convective boundary layers 
The filling boxes that we wish to consider are typified by having a laminar 

convective boundary layer at a vertical sidewall of a finite fluid container. A proper 
understanding of the dynamics of the boundary layer will aid interpretation of the 
observed evolution of such filling boxes. Thus, before the experiments are described, 
we shall examine the behaviour of laminar, free-convection boundary layers in 
unbounded homogeneous and stratified environments. 

The boundary -layer equations for steady two-dimensional convection adjacent to 
a vertical plane wall are 

uw,+ww, = vw,,+ag(T-TJ, (1)  

(2) uT, + wT, = K T ~ ,  

t Some authors prefer to use the Grashof number 6% = u-l Ra. However, use of the Rayleigh 
number gives a more natural scaling of the boundary-layer equations when u % 1 ,  as will be seen 
in 52. 
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(Turner 1979), where u and w are the velocity components corresponding to  the 
horizontal direction x and the vertical direction z respectively, T is the local 
temperature and q ( z )  is the horizontally uniform temperature of the ambient fluid. 
The Boussinesq approximation has been used in the derivation of (1) and (2) so that 
the physical parameters v, K and a (defined in the Introduction) are treated as 
constants, and variations in density are ignored except insofar as they provide a 
buoyancy forcing in the momentum equation. Mass conservation is satisfied by the 
introduction of a stream function + such that 

u = -+,, w = +,. (3) 

It is now well known that similarity solutions to (1)-(3) exist for the special cases 
of a uniform environment with either an isothermal sidewall (Ostrach 1964; Turner 
1979) or a sidewall with constant applied heat flux (Sparrow t Greg 1956). Here, these 
results are extended to  cover a particular family of stratified environments. Similarity 
solutions can still be obtained if the temperature difference between the environment 
and an isothermal sidewall is proportional to any power of the height z above the 
leading edge. The temperature of the ambient fluid can then be written as 

= TW-ATRaim, (4) 

where T, is the temperature of the vertical wall, A T  is a characteristic scale for 
temperature variations, and Ra, is a local Rayleigh number defined by 

ag AT z3 
Ra- = 

6 KV 

The temperature difference between wall and environment is thus proportional to 
z - ~ ~ ,  and the environment is stably stratified if m > 0. The stream function and the 
temperature perturbation can now be written in terms of the similarity variable 

as + = K F([), (7) 

and T -  T,(z) = AT RaLm G ( [ ) .  (8) 

The non-dimensional functions F and G satisfy the ordinary differential equations 

F'" +a [:( 1 -m)  li%" -# 1 - 3m) F2] + G = 0, (9) 

G " + f ( l - m ) F ~ - 3 m ( l - G ) F '  = 0, (10) 

F = F ' = O ,  G =  1 ( [ = O ) ,  (11) 

F+O, G+O ([+OO). (12) 

1 

subject to the boundary conditions 

Equations pertaining to a homogeneous environment, which were investigated by 
Ostrach (1964)) are obtained by setting m = 0 in (9)-(12). Ostrach integrated the 
equations numerically for various values of the Prandtl number. Two solutions are 
illustrated in figure 1 ; one for r~ = 1, the other for r~ = 16, which is the Prandtl number 
of our experimental fluid. The main feature of interest to us here is that the lateral 
scales of the thermal and viscous boundary layers become widely separated as cr 
increases. In  the next section a simple model of a laminar filling box will be developed 
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FIGURE 1. Similarity solutions for a laminar wall layer in a homogeneous environment: the 
temperature profile G and the vertical velocity profile F’. (a) Prandtl number u = 1 and ( b )  u = 16. 

based on the assumption that the growth rate of the stratified region is determined 
solely by the mass flux of the inner, thermal boundary layer. 

Laminar flow is most likely to  occur when the fluid viscosity and, hence, the Prandtl 
number are large. Numerical integration of the governing equations becomes in- 
creasingly difficult as u increases so i t  is useful to  perform an asymptotic analysis 
which is formally valid in the limit u+ 00. This has the added bonus that the depend- 
ence of the solutions on CT is made explicit so that  the analytic results, supported by 
our experiments a t  u = 16, may be easily extrapolated for situations where u is large 
and different from 16. Kuiken (1968) showed that the asymptotic theory is reasonable 
for u 2 2 and is in good agreement with the finite-Prandtl-number results for u >, 10. 

Kuiken obtained the equations governing the leading-order behaviour of the inner 
layer by letting C T + ~ O  in (9) and (10) (with m = 0) to give 

F”’+G=O, (13) 

and G + $ F G  = 0, (14) 

subject to the boundary conditions (11) and matching conditions with an outer 
solution which require 

We have integrated these equations numerically and present a graph of F as a 

F+O, G+O ( ~ + c o ) .  (15) 
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FIGURE 2. Similarity solutions for laminar wall layers in various stratified environments at infinite 
Prandtl number. The density gradient in the environment increases as m increases (see (4)). 

function of G in figure 9. The dashed curve in figure 9 represents F(G) evaluated for 
cr = 16 and is included for comparison with the result at infinite Prandtl number. The 
function F(G) in the inner layer is needed in the next section to determine the rate 
of stratification in a filling box. 

Finally in this section, we examine the effect of stratification upon the boundary 
layer. Gill (1966) considered the asymptotic behaviour at the outer edge of a boundary 
layer in a stably stratified fluid and thereby showed first that the lateral scales of 
the thermal and viscous layers have the same order of magnitude in the limit cr+ a, 
and secondly that the boundary layer may either entrain or detrain. These features, 
fundamental to our understanding of the laminar filling box, are illustrated by the 
family of solutions specified by (6)-( 12). 

From (7) we see that the boundary layer represented by the similarity solution is 
entraining (9 increases with z) for 0 < m < 1 and is detraining (9 decreases with z) 
for m > 1. Since the thermal and viscous layers have the same order of magnitude 
in a stratified environment we can apply the boundary conditions (12) together with 
(1 1) to the equations governing the large-Prandtl-number behaviour (10) and (13). 
These solutions are displayed in figure 2. The curves for m = & and m = f correspond 
to entraining boundary layers while the curve for m = 2 corresponds to a detraining 
layer. 

Note first that there is a small negative temperature perturbation in the outer part 
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FIGURE 3. The stratification in the environment and the fluid motions in a filling box with a laminar 
wall layer. The boundary layer has a two-layer structure where the environment is homogeneous. 
The outer boundary layer detrains just below z = zo, and a narrower boundary layer remains, with 
only a one-layer structure, where the environment is stratified. 

of the layers. This is due to fluid from the stratified environment being dragged 
upwards, by viscous contact with the inner boundary layer, above its equilibrium 
density level. If the stratification of the environment is sufficiently steep then this 
negative temperature perturbation can force a downflow in the outer part of the 
boundary layer. This is demonstrated by the solutions for rn = + and m = 2. We can 
now understand physically why the lateral scale of the viscous boundary layer is 
restricted to the same order of magnitude as the thermal layer when the environment 
is stably stratified. When the environment is homogeneous, viscous stresses at the 
edge of the buoyant layer need only do work against viscous dissipation in order to  
lift the outer fluid. The velocity boundary layer thus has a width characteristic of 
the viscous-diffusion lengthscale. When the environment is stably stratified the 
viscous stresses have to  supply potential energy in order to raise outer fluid through 
the stratification. Since much more work is required per unit volume of raised fluid, 
less of the environment can be dragged upwards. 

3. A simple filling-box model 
The qualitative ideas and some of the numerical results of the previous section can 

be used to develop a simple model of a filling box having a laminar sidewall boundary 
layer. Suppose that the base of the stratified region is well defined and at a height 
zo above the tank bottom (figure 3). The boundary layer below z = zo may be 
represented by the similarity solution (6)-(12) with m = 0. It will have the double 
structure and large mass flux characteristic of a convective boundary layer in a 
homogeneous environment. For z > zo the boundary layer will have the single-layer 
structure and reduced mass flux associated with convective layers in stably stratified 
environments. We therefore assume that all the fluid from the outer viscous layer 
flows out into the environment below the stratified region. Now it is readily shown, 
by appropriate scaling of the full Navier-Stokes and thermal-energy equation, that 
the temperature and vertical velocity in the environment are horizontally uniform 
(Gill 1966). Therefore, by mass conservation, the rate of growth of the stratified layer 
is given by 

(16) 
dzo - - L  dt - 9 o ( z o ) ,  
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where L is the length of the tank and $o is the net vertical mass flux in the inner 
thermal layer at z = zo. The similarity solution (6)-(8), (13)-(15) is now used to 
express (16) as 

where H i s  the height of the tank and Ra, is the Rayleigh number based on H .  The 
mass flux of the inner layer is determined only in terms of some non-dimensional 
temperature G, chosen to define the edge of the layer and also the base of the 
stratified region. Equation (17) is readily integrated to yield 

LH H 1 -i Rah F(G,) 

or, in non-dimensional variables, as 

6 = (1  -F(G,)d4, (19) 

where 5, = zo/H and 7 = + Rah ( K I L H )  t. This expression, giving the depth of the 
stratified layer as a function of time, is one of the central results of the present paper. 
It can be compared with the rather different forms of the stratification depth in a 
filling box driving by an axisymmetric turbulent plume, 

5, = (1 -k )(y)iT1) -!, 
or by turbulent line plume 

c0 = e-lz, 

where T~ and T~ are suitably non-dimensionalized times (Baines & Turner 1969; 
Worster & Huppert 1983). In all cases the stratification rate decreases with time; but 
for the turbulent plumes the tank is never stratified to the base, whereas it is clear 
from (19) that the laminar layer stratifies the whole tank in a time 

(22 ) 
LH 

to = 4 R a z  [F(G,)]-' -, 

which is faster than the characteristic diffusion time by a factor of order RaL. It is 
interesting to note that Patterson & Imberger (1980), using scaling arguments, 
obtained a similar stratification timescale for a system differentially heated and 
cooled from opposite, isothermal sidewalls. They found to a Ra-! L H I K .  The values 
of the multiplying constant 4[F(Gm)]- l ,  as determined both from the similarity 
solutions and from our experimental observations, are displayed in figure 9. 

The model presented in this section is an oversimplified account of the filling-box 
process. Its limitations will be discussed when its conclusions are compared with the 
experimental results in $5.  

K 

4. Experimental apparatus and procedure 
The experiments were performed in a glass tank 20 cm wide filled to a depth of 

20 cm with a mixture of glycerine (30 w t  Yo) and water (see figure 4 ) .  The length of 
the tank was varied so that results were obtained for aspect ratios (1ength:height) 
of 1 , 2  and 3. Glycerine was used to increase the viscosity of the fluid to ensure laminar 
flow and so that the experiments would be appropriate to the large-Prandtl-number 
theory. A more concentrated solution could not be used without introducing an 
undesirably large temperature dependence to the viscosity. The mixture had a 
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FIGURE 4. The apparatus used for the heated-sidewall experiments. 

kinematic viscosity of (2.0f0.3) x lop2 cm2 s-l over the temperature range (22- 
30°C) used in the experiments. The viscosity was measured from small samples 
taken just after the end of each experiment while values of other parameters, such 
as the thermal diffusivity (K N 1.2 x cm2 sP1) and expansion coefficient 
(a 1: 3.8 x O C - l ) ,  were taken from a list of tables (Segur 1953). These parameter 
values give a Rayleigh number of about 6 x lo*. The critical Rayleigh number for 
significant departure from laminar flow has been found experimentally using water 
(cr N 7) to  be approximately 1O'O (Elder 1965) and it increases in proportion to g2 

(Hieber & Gebhart 1971). Thus the experiments were performed well within the 
laminar-flow regime. The fluid was deaerated under vacuum to prevent bubbles from 
forming which could have disrupted the boundary layer on the heated wall. 

A constant-temperature sidewall was produced by inserting a reservoir, made of 
& in. copper sheet and filled with warm water, into one end of the glass tank. All sides 
of the reservoir other than that exposed to the experimental fluid were insulated. The 
water in the reservoir was heated and recirculated with the water in a 10 1 bath (at 
a rate of 0.2 l/s) by a Braun 1480 Thermomix. The temperature of the heated wall 
was measured by a thermistor and logged on a P D P l l  computer which controlled 
the heating element of the Thermomix. In this way the temperature in the reservoir 
could be maintained to within k0.03 O C  of the desired wall temperature, except in 
the first few minutes of the experiment when the initial very rapid heat transfer to 
the experimental fluid could not be matched by the turnover of hot water in the 
reservoir. The tank was insulated on the sides and bottom with 10 cm thick expanded 
polystyrene, and a sheet of 2 cm thick expanded polystyrene floated on top of the 
fluid. The solution was never more than a few degrees different from room temperature 
so there were no significant heat losses to the environment. 

Temperature profiles were recorded by two thermistors ; one placed near the centre 
of the tank, the other closer to the heated wall. These were tracked vertically through 
the solution by a stepper motor. Typically the thermistors were trackcd a t  a speed 
of 1 mm/s, and readings were taken every two seconds. The thermistors were Fenwell 
fast-response glass probes (GB38P12), having a bead diameter of 0.07 in. and a 
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response time in air of 5 s. They were mounted at right angles to thin vertical 
supporting shafts so that measurements were not influenced by the wake of the shafts. 
The temperatures and the positions of the thermistors were logged on the computer. 
The accuracy of the measurements was limited by the resolution of the analog-digital 
converter to kO.01 "C for the temperatures, and to kO.1 mm for the positions. 

Because the fluid temperature in the neighbourhood of the thermistors changed 
quite rapidly as they were moved through the temperature gradient, the measured 
temperature lagged behind the actual temperature. This was taken into account by 
calculating the actual temperature as 

where T, is the measured temperature and t, is a characteristic response time in 
glycerine which is a function of the tracking speed. The value oft, was chosen to make 
the temperature measurements taken while tracking upwards agree with those taken 
while tracking downwards. It was found that a value oft, N 4 s was appropriate. This 
method of correcting the profile is a standard technique in oceanographical fieldwork 
(Horne & Toole 1980). 

The flow was visualized by adding aluminium powder to the fluid and illuminating 
the suspension with light from a projector through a 1 cm slit opposite the heated 
wall. Photographs with time exposures of 8-16 s were taken periodically at right 
angles to the light beam. There was always some settling of the aluminium powder 
before an experiment began, and thus some details of the flow near the top of the 
tank during the very initial stages were lost. However, the settling velocities of the 
flakes were much slower than the convective motions, and too slow to produce streaks 
on the photographs. 

A typical experiment would proceed as follows. The solution was deaerated, 
siphoned carefully into the tank and left for several hours to come into thermal 
equilibrium with the laboratory. Aluminium powder was added and the suspension 
stirred to disperse the flakes and to remove any lingering temperature variations. We 
waited several minutes to allow the stirring motions to die away; then a preliminary 
temperature profile was recorded. The copper reservoir was quickly filled with water, 
which was approximately 5 "C warmer than the solution, and the thermomix pump 
was turned on. For the first hour the thermistors were tracked up and down 
continuously, and photographs were taken periodically. Thereafter profiles were 
recorded and photographs taken every half an hour. The experiments ran for between 
four and six hours. 

5. Experimental results 
In this section we describe the results of the laboratory experiments and compare 

them with the analytical model developed in $3.  In the following discussion, 
temperature profiles (figure 5 )  and streak photographs (figure 6) taken at various 
stages of the experiment are used to illustrate its evolution. Figure 7(a-c)  are 
schematic diagrams showing the streamline patterns in figure 6 (a-c). It is important 
to realize that, in a non-steady situation, the streamlines are not particle paths but 
are lines which are everywhere parallel to the instantaneous velocity field. The 
stippled areas on the diagrams represent estimates of which parts of the fluid are warm 
relative to the initial fluid temperature. Streamline patterns are shown only for one 
experiment in which the aspect ratio of the tank was 2. However, the major flow 
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FIQTJRE 5. Vertical temperature profiles in the laminar filling box meaaured at vmious times t during 
an experiment in which the tank had an aspect ratio of 2. The dashed profiles are from the thermistor 
nearest the heated wall. 

features that are to be described were similar in the other experiments where the 
aspect ratios were 1 and 3. 

Figures 5 (a), 6 (a) and 7 (a) show the initial development of the flow. The hot fluid 
from the inner thermal boundary layer flows out horizontally along the top of the 
tank in the form of a laminar gravity current, while fluid from the cold outer viscous 
boundary layer flows out underneath the warmed fluid and, unconstrained by 
buoyancy effects, actually recirculates back into the boundary layer in a fairly tight 
eddy. The profile, ignoring the inversion at the very top, which is due to the viscous 
drag of undisplaced cold fluid along the roof, shows the temperature gradient 
decreasing with distance from the top surface. The dashed profile is from the 
thermistor closest to the heated wall. 

Other features in the flow fleld include a separation bubble at the top of the 
boundary layer, and a weak circulation at the, far aide of the tank. The separation 
bubble is believed to be an inertial effect due to the boundary-layer fluid rebounding 
from the roof of the tank. The weak circulation is thermal convection driven by heat 
from the projector lamp. This flow is soon overwhelmed by the much stronger 
circulation driven by the constant-temperature wall. 

Figures 6 ( b ) ,  6 ( b )  and 7 ( b )  were taken at slightly later times in the experiment. 
Here there is a clear separation of the detraining boundary fluid into the warmer part, 
which flows horizontally along the top of the tank, and the cooler part which is forced 
sharply downwards by the presence of the stratified region. The stratified layer now 
extends right across the tank, and there is a return flow at the base of the layer where 
the warm outflow has reached the far end of the tank and turned around. This return 
flow is almost horizontal since the fluid is lighter than that below it. The outflow and 
return at the top is a feature which persists throughout the subsequent evolution of 
the system. 

It is noticeable from the photographs that fluid from the cold outer viscous layer 
rises above its level of equal density in the stratified environment carried on by its 
momentum. Finding itself denser than its environment, it then flows downwards 
before flowing out beneath the stratified layer. The resulting negative temperature 
perturbation and subsequent downflow are similar to those predicted by the 
similarity solutions and depicted in figure 2. The downflow in the experiments is, 
however, much stronger than that predicted by the similarity theory. This is because 
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(b) t = 5 mill 
FIQURE 6 (a-b). For caption see opposite page. 

the cold outer fluid gains more momentum while rising through the unstratified region 
than i t  could if the environment were stratified all the way, as it is in the similarity 
theory. 

Strong downflow in the outer parts of the boundary layer is also apparent in 
figure S(c), which was taken, as shown by the profile 5 (c) and the schematic 7 ( c ) ,  when 
the stratification extends just over half way down the tank. 

An important difference in the behaviour of a filling box fed by a laminar sidewall 
boundary layer rather than by a turbulent plume, is that the environment becomes 
stratified to the base in a finite time, as shown in $3. Once the stratification reaches 
the bottom of the fluid container, the nature of the laminar boundary layer changes 
significantly. This is demonstrated by the similarity solutions analysed in $2. There 
is no longer a thick outer viscous layer and therefore the downflow at the outer edge 
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(d )  t = 51.5 min 

FIGURE 6. Streak photographs of the flow field at several different times t during an experiment 
in which the tank had aspect ratio 2. Suspended aluminium powder is illuminated through a slit 
of width 1 cm in the left-hand side of the tank. (a) and (b)  had 8 s exposure; (c) and (d) had 16 s 
exposure. 

of the boundary layer is much weaker. Both these features can be seen in figure 6 ( d ) ,  
which should be compared with figure 6 (c). Entrainment increases towards the base 
of the boundary layer and this causes the density gradient at the bottom of the tank 
to lose its initial curvature and eventually to reverse it as fluid is removed from 
between density surfaces (see figure 5 4 .  The final density profile, which changes 
quantitatively but not qualitatively as time increases further, is one in which the 
density gradient decreases with height near the bottom of the fluid container but 
increases with height near the top of the container. This S-shaped profile flattens with 
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FIGURE 7.  Streamline patterns traced out from the streak photographs 6 (a-c). The stippling 
indicates where the fluid is warm relative to the initial fluid temperature. Dashed vertical lines in 
(a) indicate the paths of the thermistors. 
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0 0.05 0.10 0.15 

FIQURE 8. The experimentally determined position y of various isotherms (of temperature G,) as 
a function of time T .  The variables [, G ,  and T are non-dimensional. Aspect ratio = 1. 

I 

time, as all the fluid in the tank approaches the temperature of the heated wall, and 
the point of inflexion moves upwards. The flow field during the later stages is typified 
by strong entrainment at the base of the tank, a bidirectional boundary layer, strong 
detrainment near the top of the tank, and a slow recirculation through the rest of 
the fluid. These general features, including the S-shaped density profile, are predicted 
by Worster (1983) for the large-time asymptotic state in a laminar filling box heated 
by a constant flux through a sidewall. 

We now compare the quantitative results of the experiments with the theory given 
in $3. Equation (19), giving the height co of the base of the stratification as a function 
of time T ,  was tested for several values of G,, the normalized temperature defining 
the outer edge of the thermal boundary layer. Time was measured up to the point 
when the box was stratified to the base, when the density profile was approximately 
linear. It was found that the functional form of (19) was maintained reasonably well 
up to quite large values of (loo -that is, plots of height to the one-quarter power 
against time gave approximately straight lines (see figure 8). This was particularly 
true for the lowest-aspect-ratio experiments. There is, however, a tendency for the 
slopes of these lines to steepen as time increases. This is due to two effects. First, 
the theory assumes that the fluid below c0 is unstratified: since most of the fluid in 
the boundary layer is entrained from near the bottom of the tank, it is as the 
stratification approaches the bottom that the inaccuracy of this assumption becomes 
noticeable. We would indeed expect the curves in figure 8 to steepen as warmer fluid 
is entrained into the boundary layer from below c,,. Secondly, at lower depths the 
overshooting of boundary-layer fluid past its level of equal density in the environment 
is more important (figure 6 c ,  d )  - the mass flux of warmed fluid is then increased 
because the fluid remains in the boundary layer longer, absorbing more heat from 
the wall. 

The slopes of the lines in figure 8 give values for the function F(G,).  In figure 9 
values of $'(Goo) obtained from each of the experiments for five values of G, are 

11 F L M  156 
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FIGURE 9. The non-dimensional volume flux F in the inner boundary as a function of the nori- 
dimensional temperature G ,  defining the edge of the layer. The lines are theoretical predictions 
of F versus G. The solid line is the infinite-Prandtl-number solution, and the dashed line is for u = 16, 
the Prandtl number of the experiment. Superimposed are points representing the slopes of the curves 
of y', vs T obtained from the experimental results such as those presented in figure 8. 

plotted, together with theoretical curves of F versus G predicted from the similarity 
solutions given in $3. Note that, except for very small values of G,, there is little 
difference between the curve for infinite Prandtl number and that for o- = 16. The 
experimental values all lie above the theoretical curves; the agreement with theory 
becoming worse as the aspect ratio increases, and as G, decreases below about 0.2. 

The worsening agreement with increasing aspect ratio can be explained by the 
effects of diffusion in the environment, which the theory ignores. The value of F is 
obtained from the rate at which an isotherm descends in the tank, and the descent 
rate of an isotherm due to diffusion is given by 

This turns out to be about 5 yo of the descent rate due to the filling-box process when 
the aspect ratio is 2 and G = 0.3, and increases as G increases or decreases. We see 
that, at constant Rayleigh number, the importance of diffusion is proportional to the 
aspect ratio. Diffusion, then, can account for the disagreement with theory between 
G, values of 0.1 and 0.4, but is insufficient to explain the large discrepancy at  
G, = 0.02. 

Since the non-dimensional temperature G ,  marks the outer edge of the inner, 
thermal layer we might expect to get the best agreement with the theory by choosing 
a very small value for it. However, we see from figure 9 that the measured volume 
flux F is higher than that given by the theory especially for small values of G. This 
is because of the inertial overshooting of the boundary layer which allows the fluid 
to remain in contact with the hot wall for longer. Thus a larger volume flux of hot 
fluid is produced than is predicted by the theory. This effect is more marked the 
smaller the value chosen for G,. 
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FIGURE 10. Comparison of the measured temperature profiles with the similarity theory at an early 
time (7 = 0.05) in tanks of aspect ratio 2 and 3. The profile in the tank of unit aspect ratio (not 
shown) is very close to that for aspect ratio 2. 

Finally, in figure 10, we have plotted graphs of 

1-@ - versu8 G, 
7 

for two sets of experimental results at some fixed small time 7. From (18) and the 
definition of G, these plots should lie on the theoretical curve of F versus G as 
determined by the similarity theory. We see that the agreement is reasonable and 
improves with decreasing aspect ratio when the effects of diffusion are less important. 
This means that the similarity solution F versus G provides a good initial condition 
in the environment for possible numerical models which could follow the evolution 
of the system, taking into account the stratification of the environment and diffusion. 

6. Discussion and conclusion 
Experiments have been described which follow the complete time evolution of a 

filling box driven by a laminar sidewall boundary layer. The stratification which 
develops was found to be qualitatively different to that which arises in the classical 
case of a filling box with a turbulent plume. 

The fundamental differences in the form of the stratification occur for two reasons : 
the horizontal outflow from the rising boundary layer is mixed in the turbulent case 
but unmixed in the laminar case; and the laminar boundary layer may detrain into 
the stratified interior, while the active engulfing of ambient fluid by large-scale eddies 
means that a turbulent plume always entrains until it reaches the roof. The way in 
which these physical differences affect the resulting stratification can now be 
explained by considering the small-time and large-time behaviour of the two types 
of filling box. 

When a turbulent plume first reaches the top of the fluid container it spreads 
11-2 
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horizontally as a well-mixed gravity current. The outflowing fluid was diluted by 
entrainment of ambient fluid during its rise from the source but it is still substantially 
lighter than the fluid below it. There is thus a large density contrast between the 
unmodified homogeneous fluid and the layer of buoyant fluid forming above it which 
Baines & Turner (1969) termed the 'first front '. Subsequent arrivals of plume fluid 
a t  the top of the container will have been diluted to almost the same extent as the 
first outflow but will be slightly lighter due to entrainment from the upper buoyant 
layer. Thus a stably stratified region grows from the top of the container with the 
density gradient decreasing in magnitude with height. 

By contrast, when the flow is laminar the initial outflow is not mixed; individual 
stream surfaces retain their identity. Thus the horizontal density profile in the rising 
boundary layer, which increases smoothly away from the sidewall, is carried around 
the top corner to form a vertical density profile in the environment. The profile is 
stretched due to the different mass flux between different pairs of constant-density 
surfaces; but the main qualitative feature remains - that the magnitude of the 
density gradient decreases smoothly and monotonically away from the top surface 
(i.e. it increases with height and there is no first front). 

The intermediate-time behaviour of neither system is easily accessible to analysis, 
though approximate expressions for the time-dependent profiles in a filling box with 
a turbulent plume were obtained by Worster & Huppert (1983). However, some 
insight can be obtained by considering the steady state which exists after a long time 
in the cases of a turbulent plume (Baines & Turner 1969) and of a laminar filling box 
with a constant flux applied to the sidewalls (Worster 1983). Both these studies show 
that if vertical diffusion is ignored in the steady state then 

I 

$,(z) T'(z) = constant 

in the environment. Differentiating this expression with respect to z ,  we obtain 

Since @o is always positive (26) shows that the magnitude of the density gradient 
decreases with height if the boundary layer is entraining ($; > 0) and increases with 
height if the boundary layer is detraining ($; < 0). Although this result is calculated 
for a steady state it is likely to be approximately true in the time-dependent regime 
which may be treated as quasi-steady (e.g. Worster & Huppert 1983). 

As we hinted in the introduction, this work was initially motivated by the authors' 
interest in the evolution of magma chambers. Through experiments and subsidiary 
analysis we have gained a thorough physical understanding of the fluid dynamics of 
filling boxes, and of the differences that arise when the convection is in the form of 
a laminar boundary layer rather than a turbulent plume. In addition we have 
developed a theoretical model which accurately predicts the stratification rate in a 
laminar filling box. The principles detailed in this paper should be applied when 
formulating geological models of magma evolution but we would advise caution 
before applying the present quantitative results directly. The geological problem is 
complicated by the strong dependence on temperature and composition of the fluid 
viscosity, and by the fact that thermal and compositional variations can have 
opposing effects on the density field and lead to a bi-directional boundary layer. These 
additional effects are the subject of current research. 
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