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Abstract

We derive analytical expressions for the velocity of an insoluble particle near an advancing solidi"cation front when
the intermolecular interactions are described by a power-law dependence between the "lm thickness and the undercool-
ing. We predict that the maximum particle velocity, which corresponds to the lowest solidi"cation velocity at which
particle trapping occurs, depends inversely on the particle radius. The critical velocity is less sensitive to the temperature
gradient and the precise dependence changes with di!erent interaction types. When the critical velocity is exceeded, the
particle becomes trapped within the solid region after being pushed slightly ahead of its initial position. The predicted
particle displacement is typically only a fraction of the particle radius. Particle buoyancy can enhance or reduce the
tendency for the particle to be captured, though it does not a!ect the parametric dependence of the critical velocity on the
particle radius and the temperature gradient. ( 1999 Elsevier Science B.V. All rights reserved.

PACS: 64.70.Dv; 68.15.#e; 68.45.Gd; 81.30.Fb
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1. Introduction

When a solidi"cation front advances towards
a foreign particle which is suspended in the melt,
two di!erent types of behaviour can result. In some
cases the solid}liquid interface deforms around the
particle, thereby trapping it within the growing
solid region. If the solidi"cation rate is slow and the

*Corresponding author. Tel.: #44-1223-339208; fax: #44-
1223-337918.

E-mail address: a.w.rempel@damtp.cam.ac.uk (A.W. Rempel)

particle is su$ciently small, however, the particle is
pushed ahead of the interface so that it remains
nearly surrounded by the bulk liquid. The eventual
outcome of interactions between particles and sol-
idi"cation fronts have important implications for
the e!ective bulk properties of the newly formed
solid and the "nal distribution of particles. Hence
the prediction of particle}interface behaviour is of
interest to those who study the fabrication of com-
posites reinforced with ceramic particles [1], the
casting of alloys containing insoluble particles, the
cryogenic preservation of biological materials [2],
and the formation of ice lenses in frozen soils [3].
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The dependence of the solidi"cation-front behav-
iour on the particle size and solidi"cation velocity
was "rst reported by Corte [3]. Corte's interest in
the frost-heaving characteristics of soils motivated
him to perform a series of experiments in which he
investigated the interaction of the ice}water inter-
face with particles made of a variety of di!erent
geological materials. Uhlmann and colleagues [4]
subsequently o!ered a theory that attempted to
predict the type of behaviour that prevails at
a given solidi"cation velocity depending on mater-
ial properties and the size of the particle. In their
formulation they assumed that the chemical poten-
tial in the liquid near the particle is altered by the
presence of the particle. The particle is repelled
from the planar ice}liquid interface as long as the
ice}particle separation is greater than a critical
threshold which they took to be equal to a molecu-
lar diameter. When the solidi"cation velocity is too
rapid or the particle is too large, the separation
decreases below this threshold and the particle be-
comes trapped in the growing solid. In a re"nement
of these ideas, Bolling and CisseH [5] noted that the
viscous drag accompanying #uid motion around
the particle is a!ected by the deformation of the
ice}liquid interface as the local melting temperature
is lowered by the presence of the particle.

Gilpin [6] abandoned the assumption that the
particle is only trapped once it advances to within
a molecular diameter of the interface. He had
earlier developed a theory to describe the behav-
iour of the liquid-like layer that forms to separate
ice from a foreign substrate because of the in#uence
of the substrate on the chemical potential, and the
e!ects of interface curvature [7]. Using this theory
he derived an equation for the variation of liquid-
"lm thickness with angular distance from the centre
of the particle. After solving for the interface shape,
he balanced the e!ective particle-rejection pressure
with the opposing e!ects of the particle weight and
viscous drag in the #uid. This enabled him to calcu-
late the maximum solidi"cation velocity that
allows the particle to remain in front of the inter-
face as solid continues to form. Unfortunately, the
calculation of the interface shape using Gilpin's
formulation is complicated and it is di$cult to
compare his predictions with experimental data. In
addition, Gilpin's treatment of the liquid-like layer

relies on contentious assumptions about the rela-
tionship between the chemical potential in the
liquid and the distance from the particle surface.

In the Soviet Union meanwhile, Chernov and his
colleagues [8,9] recognised that intermolecular for-
ces acting between the particle, the solid, and the
liquid must be responsible for particle rejection. In
the simplest case the dominant forces are due to
van der Waals interactions (e.g. Ref. [10]). The
intermolecular forces results in what has previously
been called a disjoining pressure that can act to
repel the particle from the interface, while viscous
forces associated with liquid #ow around the par-
ticle tend to promote particle encapsulation within
the growing solid. The region near the base of the
particle is responsible for the largest contributions
to the forces on the particle. In their "rst model,
Chernov and his colleagues treated the forces as
being locally dominated so that the predicted ge-
ometry of the deformed solid}liquid interface takes
the form of a paraboloid. This enabled them to
derive approximate analytical expressions for the
particle motion as a function of its size and the
temperature gradient. As a re"nement to this initial
model, they also presented a second formulation
that treated the interface geometry as the intersec-
tion of a paraboloid with a plane.

In the current work, we revisit this problem to
predict the behaviour of a particle near a
solid}liquid interface. We focus on the essence of
the problem and avoid the complications that
could be introduced by secondary e!ects such as
di!ering thermal conductivities between the system
components. Much of the formulation follows the
spirit of that proposed by Chernov and colleagues
[8,9] and recently reviewed by Worster and Wett-
laufer [11]. We deviate from the previous analysis
in that we avoid the need for ad hoc approxima-
tions to the interface geometry. We begin by exam-
ining the force balance on a single particle for the
case where the intermolecular forces are dominated
by nonretarded van der Waals interactions and the
particle is large enough that the e!ects of interface
curvature can be neglected. This leads to expres-
sions for the particle velocity as a function of the
"lm thickness or particle position. Simpli"ed ex-
pressions for the particle velocity that are valid at
large and small "lm thickness are also presented.
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Fig. 1. Schematic diagram of a freezing front impinging upon
a foreign particle in a temperature gradient G. Initially the
separation H is large enough that the solid}liquid interface is
una!ected by the presence of the particle. As the front nears the
particle, the interface deforms to allow a premelted "lm of
thickness d(h) to form and separate the particle from the phase
boundary. The interface temperature ¹

*
(h) is depressed below

the bulk melting temperature ¹
.

and the particle is pushed
ahead of the interface at velocity ;. If the solidi"cation velocity
< exceeds some critical value <

#
the particle is eventually

trapped within the ice.

We determine the critical solidi"cation velocity
that must be exceeded in order for a particle of
a given size to be captured. When this solidi"cation
velocity is surpassed, the question becomes one of
how far the particle will travel before it is "nally
trapped within the solid. Next, we investigate how
the predictions are changed if the intermolecular
forces are dominated by di!erent types of power
law interactions. Finally, we discuss brie#y how the
e!ects of particle buoyancy can modify the velocity
of larger particles. The goal throughout is to illu-
minate the basic physical processes that control the
behaviour of the system in the simplest possible
circumstances.

2. The forces on a particle

Consider an ice front advancing at a constant
solidi"cation velocity < towards a spherical par-
ticle of radius R subjected to a uniform temperature
gradient G as depicted in Fig. 1. Initially, the par-
ticle is at rest with its centre a distance H above the
melting temperature isotherm ¹

.
. As H decreases

and H!R becomes comparable to the distance
where intermolecular forces are important, interac-

tions with the particle cause the ice}liquid interface
to deform and the particle begins to move. The rate
of particle motion ; is determined by a balance
between the thermomolecular pressure that separ-
ates the particle from the ice surface, and the lubri-
cation force associated with #uid #ow in the
intervening liquid "lm. Both of these forces increase
in strength as the "lm thickness is reduced and the
ice}liquid interface becomes increasingly deformed.
The particle accelerates until its velocity either
matches the solidi"cation velocity or it reaches the
critical velocity <

#
which corresponds to the min-

imum solidi"cation velocity required for particle
trapping. If the solidi"cation velocity < is less than
<

#
the particle reaches an equilibrium separation

from the interface where its velocity remains con-
stant at;"<. In the case where < is greater than
<

#
, however, H continues to decrease and the "lm

thickness is further reduced; this causes the supply
of liquid to be increasingly impeded by viscous
e!ects so that the particle velocity decreases and
eventually the particle is completely surrounded
by ice.

The deformation of the ice}liquid interface and
the presence of the liquid "lm which separates the
particle from the ice surface are both manifestations
of the phenomenon known as interfacial premelting
(e.g. Ref. [12,13]). When the particle is large enough
that the e!ects of interface curvature can be ne-
glected, the thickness of the "lm is related to the
temperature of the interface ¹

*
according to

d"jA
¹

.
¹

.
!¹

*
B

1@l
, (1)

where ¹
.

is the bulk melting temperature
(273.15 K for ice) and j is a lengthscale propor-
tional to the interaction strength. The exponent 1/l
depends on the origin of the dominant interfacial
interactions. Initially we assume that nonretarded
van der Waals forces control d, in which case l"3.
Later we generalise the analysis to consider other
types of interactions which can be modelled using
di!erent values for l. When d is very small, entropic
e!ects can produce "lm thickness variations with
a di!erent functional form to that given by Eqs.
(1)[9]. The presence of dissolved impurities can also
alter the relationship between the "lm thickness
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and the interface temperature [9,14]. For the pres-
ent analysis we shall avoid these complications and
con"ne our attention to systems where the "lm
thickness is described by a power law of the form
given by Eq. (1).

When the thermal conductivity of the particle is
di!erent from that of the melt, the temperature "eld
can become distorted near the particle. This causes
the bulk melting temperature isotherm to curve
outwards towards the particle if the particle is more
insulating than the melt, while a particle made of
a good thermal conductor causes the ¹

.
isotherm

to deform in the opposite sense. Experimental evid-
ence suggests that such thermal e!ects can
in#uence the critical velocity <

#
by promoting the

capture of high-conductivity particles and reducing
the tendency of insulating particles to be trapped
within the melt [15]. We defer analysis of this
complicated thermal problem to future research,
and treat the thermal conductivities of the particle,
the melt, and the solid as equal while the temper-
ature gradient is assumed constant. This allows us
to write the temperature at the solid}liquid inter-
face as

¹
*
(h, t)"¹

0
!G(R#d)cos h!GP

t

0

(<!;(q)) dq

(2)

where ¹
0

is the initial temperature at the centre of
the particle. Combining Eqs. (1) and (2) with l"3
leads to

l4

d3
"(R#d)cos h!A

¹
0
!¹

m
G

!P
t

0

(<!;(q)) dqB
"(R#d)cos h!H, (3)

where H(t) is the height of the particle centre above
the ¹

.
isotherm, and l,(j3¹

.
/G)1@4 is a len-

gthscale that is characteristic of the "lm thickness.
When the centre of the particle is one radius distant
from the ¹

.
isotherm (i.e. H"R) the "lm thickness

immediately beneath the particle at h"0 is d
0
"l.

Above the deformed region of the ice}liquid in-
terface the "lm thickness is very much less than the
particle radius and the thermomolecular pressure

can be written as

P
T
"

A

6pd3
"

o
4
q
.
j3

d3
, (4)

where A is the e!ective Hamaker constant for inter-
actions between the particle and the ice with an
intervening liquid "lm, and o

4
and q

.
are the

ice density and latent heat of ice, respectively. The
Hamaker constant can either be calculated from
spectral data for the dielectric functions of water,
ice and the particle material of interest [16,17], or it
can be deduced from experimental measurements
[13]. Eq. (4) indicates that the thermomolecular
pressure attains its maximum immediately beneath
the particle where the premelted "lm is thinnest and
the particle surface is nearly parallel to the inter-
face. Integrating P

T
over the interfacial surface

gives the vertical component of the thermomolecu-
lar force as

F
T
"2pR2P

h#

0

sin h cos h P
T

dh

"(2pR2)oq
.
j3P

h#

0

sin h cos h
d3

dh. (5)

The largest contributions to the thermomolecular
force come from the region near the base of the
particle where h is small. The integral in Eq. (5) is
relatively insensitive to the precise choice of the
upper limit of integration h

#
provided that the "lm

thickness at h
#
is much greater than the "lm thick-

ness immediately beneath the particle d
0
.

Since the particle is in motion, mass conservation
dictates that liquid must #ow in the thin "lm that
separates the particle from the ice front. Near the
base of the particle the "lm thickness is much less
than the particle radius; thus a lubrication approxi-
mation can be used to "nd the volume #ux as

q"!

pd3 sin h
6k

dP
-

dh
, (6)

where k is the dynamic viscosity and P
-

is the
pressure in the liquid "lm. If we neglect the density
di!erence between liquid water and ice, mass con-
servation implies that the volume of liquid trans-
ported past the angular position h in a time dt is
equal to the volume swept out beneath the particle
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as it travels the corresponding distance dz

q dt"!p(R sin h)2 dz. (7)

Together with Eq. (6) this allows the liquid pressure
to be written as

P
-
(h)"P

h

h#

6kR2 sin /;

d3
d/, (8)

where ;,dz/dt is the particle velocity and the
integration limits are chosen so that P

-
(h

#
) is set to

zero. The vertical component of the lubrication
force is found by integrating the liquid pressure
over the deformed surface of the ice}liquid interface
to give

Fk"(2pR2)6kR2;P
h#

0

sin h cos hAP
h

h#

sin /

d3
d/B dh.

(9)

3. Particle velocity

To simplify the analysis, the density of the par-
ticle is set equal to that of the melt so that the
buoyancy force is zero. We will demonstrate later
that this is a trivial constraint which can be re-
moved with negligible e!ect for many problems of
interest. In the absence of any additional forces the
sum of F

T
and Fk must be zero. From Eqs. (5) and

(9) then, the steady-state particle velocity must sat-
isfy

;"!

oq
.
j3

6kR2

:h#
0

sin h cos h d~3dh

:h#
0

sin h cos hA:hh# sin / d~3 d/B dh
,

(10)

where the "lm thickness can be determined from
Eq. (3). It is convenient to nondimensionalise the
particle height by its radius so that H"hR, while
the "lm thickness is scaled with l so that d"dl.
This enables Eq. (3) to be written as

e
d3

"(1#e d)cos h!h, (11)

where e is a small parameter equal to the ratio of
the "lm thickness length scale to the particle radius
(i.e. e,l/R). To choose a velocity scale we recall the
de"nition for l and let

=,

oq
.
l3G

6k¹
.
R
"

oq
.
j9@4G1@4

6k¹1@4
.

R
, (12)

which is inversely proportional to the particle
radius, but only weakly dependent on the temper-
ature gradient. We shall see that, to leading order,
the critical velocity is simply a multiple of this
velocity scale. Hence the critical velocity is inverse-
ly proportional to the particle radius and depen-
dent on the one fourth power of the temperature
gradient. From Eq. (10) the dimensionless particle
velocity becomes

u,
;

=
"!

e:h#
0
sin h cos h d~3 dh

:h#
0
sin h cos h(:hh# sin / d~3 d/) dh

.

(13)

Eqs. (11) and (13) can be solved together to
determine the particle velocity either as a function
of the dimensionless "lm thickness immediately
beneath the particle d

0
, or as a function of the

dimensionless particle height h. The integrals in Eq.
(13) are easily evaluated once they are transformed
so that the integration takes place over the dimen-
sionless "lm thickness rather than the angular posi-
tion. Finding dd/dh from an implicit di!erentiation
of Eq. (11) and substituting for cos h enables us to
integrate Eq. (13) and "nd that

u+A
1

2d6
0

#

1

2d2
0
B A

1

6d9
0

#

2

5d5
0

#

1

2d
0
B

~1
, (14)

where d
0

represents the dimensionless "lm thick-
ness at h"0. Eq. (14) is accurate to leading order in
e, which is consistent with the other approxima-
tions inherent in the present formulation.

In Fig. 2 the solid line shows the dimensionless
particle velocity u from Eq. (14) as a function of d

0
.

At large "lm thickness the interaction between the
particle and the interface is weak and the particle
motion is slow. The particle velocity increases as
the "lm thickness decreases until a maximum of
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Fig. 2. Dimensionless particle velocity u as a function of the
dimensionless "lm thickness d

0
,d

0
/l. The solid line (a) shows

the leading order behaviour that is predicted from Eq. (14). The
dashed line (b) on the right denotes the approximate velocity
that is calculated by assuming that the phase boundary remains
planar. The dot}dashed line (c) on the left gives the approximate
velocity when the temperature on the particle surface is sub-
stituted for that along the phase boundary. The lower dotted
line (d) shows the predictions of Chernov and colleagues [8] for
the particle velocity when the phase boundary is modelled as
a paraboloid. The upper dotted line (e) displays the predictions
of Chernov and colleagues [8] for the case where the interface
has the form of a paraboloid intersecting with a plane.

v
#
+1 is reached in the vicinity of d

0
"1 where the

base of the particle is level with the bulk melting-
temperature isotherm (i.e. H"R). Recalling the
de"nition of the velocity scale= in Eq. (12), we see
that when nonretarded van der Waals interactions
dominate and l"3, the critical solidi"cation velo-
city is proportional to j9@4G1@4R~1. Larger par-
ticles are captured at lower solidi"cation velocities
while higher temperature gradients tend to pro-
mote particle repulsion. Higher values of the
interaction-strength length scale j, which is propor-
tional to the Hamaker constant, correspond to
larger "lm thicknesses at a given temperature; #uid
#ow is less restricted and hence the critical solidi"-
cation velocity is higher. To the left-hand side of
this maximum for u, as the "lm thickness is further
reduced the particle becomes increasingly sur-
rounded by ice and viscous e!ects cause the particle
velocity to decrease rapidly. To provide further

insight into the behaviour of the system it is instruc-
tive to examine brie#y two other simple approxi-
mations for u that are valid for large and small
values of d

0
, respectively.

The presence of the particle "rst begins to a!ect
the interface when d

0
is still much greater than

unity, but much less than e~1. The interface defor-
mation is minimal in this limit and the "lm thick-
ness can be approximated using the distance from
the particle to the undeformed plane of the ¹

.
iso-

therm so that Eq. (11) reduces to

d+
h!cos h
e cos h

. (15)

This expression for d can be substituted into Eq.
(13) and the approximate dimensionless particle
velocity calculated with h

#
"p/2. In this limit the

dimensionless particle height is roughly h+
1#ed

0
so that the leading order behaviour is given

by u+1/d
0
. The dashed line on the right-hand side

of Fig. 2 shows that this approximate solution for
u compares well with that given by Eq. (14) when
d
0

is greater than about two. However, by calculat-
ing the particle velocity without accounting for the
deformation of the interface it is not possible to
establish the critical solidi"cation velocity at which
the particle is captured. Previous authors (e.g. Refs.
[4,18]) have avoided this problem by arbitrarily
de"ning a cut-o! distance that corresponds to an
assumed minimum "lm thickness and stating that
the velocity at that point is the critical solidi"cation
velocity. Typically it is assumed that the particle
approaches the phase boundary to within a mo-
lecular diameter (i.e. about 10~4 lm). There is no
theoretical justi"cation for such an assumption. In
fact, the current analysis indicates that the "lm
thickness at the maximum particle velocity is
roughly d+l which depends on both the temper-
ature gradient G and the interaction}strength length-
scale j, and is generally much greater than the
molecular diameter of water. Under typical experi-
mental conditions j+10~4 lm , G+104 Km~1,
and ¹

.
+102 K so that l+10~2 lm; for a particle

with a radius of about 10 lm we predict a critical
velocity of v

#
+1 ls~1 which is roughly consistent

with experimental observations (see Fig. 3). If the
particle were assumed to approach the interface to
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Fig. 3. The dependence of the critical velocity on the particle
radius from a number of experimental studies. A best-"t line is
shown running through each of the data sets. The di!erent
symbols correspond to the following particle materials in water:
(a) copper with G+104 Km~1 [19], the best-"t line has a slope
of !0.9; (b) copper with G+103 Km~1 [19], slope !1.2; (c)
tungsten with G+104 Km~1 [19], slope !0.4; (d) latex with
G+104 Km~1 [20], slope !1.0; (e) latex with G+4]
104 Km~1 [21], slope !0.6; (f) latex with G+1.8]
104 Km~1 [22], slope !0.9; (g) nylon with G+200 Km~1
[23], slope !1.1. The upward pointing triangles corres-
pond to polystyrene particles in a succinonitrile melt with
G+104 K m~1 and a slope of !1.0 [24]. The slope of the line
through data set (h), for silicon carbide particles in a succino-
nitrile melt, is !0.9 [1].

within a molecular diameter, the planar interface
approximation would suggest a critical velocity of
v
#
+102 ls~1 which seems unrealistically rapid.
When the leading edge of the particle sinks below

the ¹
.

isotherm and h is less than unity, a di!erent
approximation for d becomes appropriate. To be
precise, when ed

0
is much less than 1!h, Eq. (11)

reduces to

d~3+e~1(cos h!h). (16)

This is equivalent to approximating the temper-
ature at the solid}liquid interface with the temper-
ature on the surface of the particle. Since the
integrals in Eq. (13) receive their largest contribu-
tions from small values of h, the exact value taken
for h

#
is not critical. As long as h;1!ed

0
we can

write h
#
+cos~1h and evaluate the integrals in Eq.

(13) to give the approximate dimensionless particle

velocity as

u+e
8#4h

3!2h!h2
. (17)

Eq. (17) can be rewritten in terms of the "lm thick-
ness by substituting h+1!ed~3

0
so that the lead-

ing order u+3d3
0
. The dot}dashed line on the left

side of Fig. 2 shows this approximation for the
particle velocity at small "lm thickness. In this
regime the particle velocity decreases monotoni-
cally as the particle is engulfed and the "lm be-
comes thinner. The distinction between the
temperature on the particle surface and the temper-
ature at the phase}change interface must be made
in order to calculate the critical solidi"cation velo-
city.

When the particle is completely captured and
h"!1, the dimensionless particle velocity from
Eq. (17) is u+e. The velocity scale = is thus
revealed to be e~1 times the velocity at which the
particle migrates by thermal regelation immediate-
ly after it has become trapped within the ice. This
indicates that the solidi"cation velocity at which
a particle is captured is much more rapid than the
velocity with which the particle can migrate within
the ice towards warmer temperatures. After the
particle is engulfed within the ice and h(!1, the
formula given in Eq. (17) is no longer appropriate
because the limit of integration h

#
"cos~1 h used

to evaluate the integrals in Eq. (13) becomes inva-
lid. Further analysis using h

#
"p reveals that the

particle continues to travel up the temperature
gradient at a regelation velocity of ;+!e=/h
after it is completely trapped within the ice and
h)!1.

The dotted lines in Fig. 2 give the predictions of
Chernov and colleagues [8] for u. The lower curve
uses a small h approximation for the "lm thickness,
which is equivalent to approximating the interface
shape as a paraboloid. The qualitative behaviour is
similar to that of the leading order solution given
by Eq. (14), but the magnitude of the critical solidi-
"cation velocity<

#
is underestimated by a factor of

two, and the position of the maximum is displaced
to a larger "lm thickness. The upper dotted line is
derived using an interface shape that consists of
a paraboloid that intersects at a small angle with
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Fig. 4. The dependence of the critical velocity on the temper-
ature gradient. Data set a is for 5.7 lm radius latex particles
[20]; the best-"t solid line through the data has a slope of 0.5.
Data set b is for 7 lm radius latex particles [22]; the best-"t
dashed line has a slope of 0.35.

the plane of the undeformed interface. This approx-
imation yields predictions that are very close to
those given by Eq. (14), which results from a more
rigorous derivation.

Fig. 3 displays experimental data from a number
of studies that show how the critical solidi"cation
velocity changes with the particle radius. Each sym-
bol on the graph corresponds to a di!erent particle
type or temperature gradient. A best-"t line is pro-
jected through each of the data sets. The slopes of
these lines reveal the observed dependence between
the critical solidi"cation velocity and the particle
radius. The predicted inverse relationship between
<

#
and R is consistent with the experimental data

for most of these studies. The exceptions are the
experiments with tungsten (data set c) [19] and one
set of experiments with latex particles (data set e)
[21] where the data is represented best by lines with
slopes of !0.4 and !0.6, respectively. However,
each of the best-"t lines through the remaining
seven data sets has a slope near the predicted value
of negative one.

The thermomolecular pressure that repels the
particle from the ice}liquid interface accounts for
only one component of the total di!erence between
the pressure in the ice phase P

4
and the pressure in

the liquid P
-
. When the phase boundary is highly

curved, the surface energy of the interface p
4-

can
also be responsible for a signi"cant contribution to
the pressure di!erence P

4
!P

-
. Including the e!ects

of interface curvature, the modi"ed form of Eq. (3)
for the "lm thickness can be written as

ll`1

dl
#Ci"(R#d)cos h!H, (18)

where i,RK is the dimensionless interface curva-
ture and the length scale C,(¹

.
p
4-
)/(oq

.
GR). The

magnitude of the dimensionless interface curvature
approaches unity when the particle nears the inter-
face and the "lm thickness is comparable to the
length scale l. Eq. (18) suggests that curvature ef-
fects are negligible when the length scale l<C or
equivalently when the particle radius R<R

#
with

the critical radius R
#
given by

R
#
"

p
4-

oq
.
A
¹

.
jGB

l@(l`1)
, (19)

where p
4-
+0.03 Jm~2 [25]. When nonretarded

van der Waals forces dominate the intermolecular
interactions, l"3 and R

#
+102 lm under typical

experimental conditions. Data set g is the only data
set displayed in Fig. 3 that pertains to particles
larger than the critical radius R

#
given by Eq. (19);

hence Eq. (3) for the "lm thickness is not actually
valid under the conditions present during most of
the experiments summarised in Fig. 3. When the
particle radius is much larger than the critical
radius R

#
, the thermomolecular pressure P

T
is

much greater than the pressure due to interface
curvature so that P

4
!P

-
+P

T
and Eq. (3) holds.

Experimental e!orts aimed at determining the
relationship between the temperature gradient and
the critical velocity have been much more limited.
Fig. 4 depicts the results of two such studies. The
solid line through data set a has a slope of 0.5, while
the dashed line through data set b has a slope of
0.35. If the point corresponding to the lowest tem-
perature gradient and critical velocity in data set
b is omitted, the best-"t line through the remaining
points has a slope of 0.2. Evidently, the predicted
dependence of the critical velocity on G1@4 is not
well established. Once again the particles used in
these two studies were smaller than the critical
radius given by Eq. (19). In addition, it should be
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Fig. 5. Dimensionless particle displacement D as a function of
the dimensionless particle height h, both scaled in terms of the
particle radius. Eq. (21) was used for the calculations with each
curve corresponding to a di!erent ratio of the solidi"cation
velocity v to the critical velocity v

#
as noted on the graph. The

particle displacement decreases rapidly as the solidi"cation velo-
city becomes signi"cantly larger than the critical velocity.

noted that the temperature gradient is di$cult to
control and measure during an experiment. Indeed,
the temperature gradient can change considerably
over the course of a single experimental run. Fur-
ther experimental e!orts are required to demon-
strate the precise dependence of <

#
on G.

4. Particle displacement

If the solidi"cation velocity exceeds the critical
velocity, the particle will eventually become trap-
ped within the solid. The distance it is pushed is

D(t)"P
t

0

; dt"P
d0(t)

d0(t/0)

;
dt

dd
0

dd
0
, (20)

where d
0
(t"0) is the initial "lm thickness at h"0

and d
0
(t) is the "lm thickness at time t. The change

in "lm thickness with time is found from an implicit
di!erentiation of Eq. (3). The dimensionless dis-
placement D, scaled in terms of the particle radius,
becomes

D(t)"
D

R
"eP

d0(t)

d0(t/0)
A1#

3

x4BA
u

u!vB dx, (21)

where v is the dimensionless solidi"cation velocity
(i.e. v,</=). If the solidi"cation velocity is close
to the critical velocity, the denominator u!v be-
comes small near d

0
"1 and the particle displace-

ment can be signi"cant.
The derivation for the particle velocity is applic-

able when the "lm thickness immediately beneath
the particle is much less than the particle radius.
With this in mind, we choose an initial dimension-
less "lm thickness that is much larger than unity,
but much less than e~1. Initially, for large "lm
thickness u+d~1

0
and the particle displacement is

roughly

D+

e
v

ln
d
0
(t"0)

d
0
(t)

. (22)

As the particle nears the interface its velocity rises
rapidly and the displacement increases more quick-
ly. When the "lm thickness is small and u+3d3

0
the

particle displacement depends logarithmically on
d
0

once again.

Fig. 5 shows a plot of the particle displacement
as a function of the dimensionless height h for
di!erent values of the solidi"cation velocity v. Far
from the interface the particle velocity is much less
than the solidi"cation velocity and the particle
barely moves. Near h"1 the particle velocity
reaches its maximum and there is a correspond-
ingly large increase in D. The peak in the particle-
velocity "lm-thickness curve is extremely narrow,
however, so that even for the slowest solidi"cation
velocity displayed, just 5% greater than the critical
velocity, the total displacement is only a fraction of
the particle radius. This result is consistent with the
observations of Azouni and colleagues [26] who
measured particle displacements of up to a few
particle diameters in a series of solidi"cation ex-
periments involving coated nylon spheres.

5. Di4erent interfacial interaction types

The results presented thus far have been
predicated on the assumption that nonretarded van
der Waals forces control the "lm thickness. In
many systems a more dominant role is played by
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other interfacial forces. However, the dependence of
the "lm thickness on the interfacial undercooling
can often be described by a power law of the form
given in Eq. (1). For example, retarded van der
Waals forces can be modelled by setting l"4,
while for long range electrical interactions l"2
[13].

If we allow l to take some value other than 3, the
length scale l is conveniently generalised so that
l,(jl¹

.
/G)1@(l`1). The generic form of Eq. (3) for

the "lm thickness as a function of position becomes

ll`1

dl
"(R#d )cos h!H. (23)

We focus on the case in which the particle radius
R is much larger than the critical radius R

#
from

Eq. (19) so that the curvature of the phase bound-
ary does not a!ect the "lm thickness. The ther-
momolecular pressure is directly proportional to
the interfacial undercooling ¹

.
!¹

*
so that for

arbitrary l we can write

P
T
"oq

.

¹
.
!¹

*
¹

.

"oq
.

jl
dl

. (24)

Integrating P
T

over the deformed interface in the
same manner as demonstrated in Eq. (5) gives the
thermomolecular force as

F
T
"(2pR2)oq

.
jlP

h#

0

sin h cos h
dl

dh. (25)

Eq. (9) for the lubrication force is not a!ected by
changing the interaction type. Balancing the forces
on the particle using Eqs. (9) and (25) allows the
particle velocity to be written as

;"!

oq
.
jl

6kR2

:h#
0
sin h cos h d~l dh

:h#
0
sin h cos h(:hh# sin / d~3 d/) dh

.

(26)

The "lm thickness is naturally nondimen-
sionalised using d"dl as before. The change in the
de"nition of l brings about a slight modi"cation to
the velocity scale from Eq. (12) so that

=,

oq
.
l3G

6k¹
.
R
"

oq
.
j3l@(l`1)G(l~2)@(l`1)

6k¹(l~2)@(l`1)
.

R
. (27)

The velocity scale remains inversely proportional
to the particle radius independently of the type of
power-law interaction between the particle and the
interface. The dependence of= on the temperature
gradient is, however, a function of the value of l. In
fact, for electrical interactions that can be modelled
by setting l"2 the velocity scale is independent of
the temperature gradient. In this special case, the
lubrication force and the thermomolecular force
share the same dependence on the temperature
gradient, whereas when l is greater than two, the
thermomolecular force increases more rapidly with
G and the particle velocity must rise to enable
Fk and F

T
to balance. Using Eq. (27) for =, the

dimensionless velocity becomes

u"
;

=
"!

e:h#
0
sin h cos h d~ldh

:h#
0
sin h cos h(:hh#sin / d~3 d/) dh

(28)

where e,l/R as before. Once again the integrals in
Eq. (28) can be transformed in order to integrate
over the varying "lm thickness rather than the
angular position. When l*2, the leading-order
behaviour is given by

u+A
1

2d2l
0

#

1

(l!1)dl~1
0
B A

l2
(l#3)(2l#3)

1

d2l`3
0

#

l(l#5)

2(l#3)(l#2)

1

dl`2
0

#

1

2d
0
B

~1
. (29)

Approximations for u at large and small values of
d
0

can be readily derived using the same arguments
as before.

Fig. 6 shows the dimensionless particle velocity
as a function of the dimensionless particle height
when d is governed by Eq. (1) with l"2, 3, and 4,
corresponding to electrical interactions, non-
retarded van der Waals interactions, and retarded
van der Waals interactions, respectively. The solid
line indicates that when l"3, the dimensionless
critical velocity is roughly u+1 as we have seen
before (see Fig. 2). The dotted line, corresponding
to l"4, has a peak at u+0.8 when h+1 and the
base of the particle is level with the bulk melting
temperature isotherm. At larger values of l the
interfacial interactions are dominated by an in-
creasingly limited region immediately beneath the
particle where the "lm thickness is smallest. The
thermomolecular force decays more rapidly with
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Fig. 6. Dimensionless particle velocity u as a function of the
dimensionless particle height h for di!erent types of interfacial
interactions. Each line displays the predicted behaviour for
a di!erent interaction type and hence a di!erent value of l. The
solid line is for nonretarded van der Waals interactions where
l"3. The dotted line is for retarded van der Waals interactions
with l"4. The dashed line represents electrical interactions that
are modelled using l"2.

height h when l is higher so the particle velocity
must decrease in order to enable a reduction in the
lubrication force. When l"2, as seen by the
dashed line in Fig. 6, the present theory suggests
that the particle velocity tends to a constant value
of u+2 once the dimensionless particle height is
slightly greater than unity. The formulation pre-
sented here is based on the assumption that the
forces on the particle are dominated by the region
where the surface of the particle and the phase
boundary are nearly parallel. This is no longer the
case when l is allowed to take values of 2 or less
and hence the current theory becomes inadequate.
Nevertheless, the essential behaviour of the system
is still controlled by the balance between the ther-
momolecular force and the viscous force. The criti-
cal velocity should remain a function of the velocity
scale= given in Eq. (27).

6. Buoyancy e4ects

The preceding analysis has focused on predicting
the outcome of the interactions between an insol-

uble particle and an advancing solidi"cation front
under the simplest physically relevant conditions.
The thermomolecular force that acts to repel the
particle from the interface competes with the lubri-
cation force that tends to promote particle encap-
sulation in order to determine the particle velocity
as a function of key parameters such as the radius
and the temperature gradient. When the density of
the particle is signi"cantly di!erent from the den-
sity of the liquid, the buoyancy force can be impor-
tant. The tendency for the particle to be captured
within the growing solid phase can be either en-
hanced or reduced by gravitational e!ects, depend-
ing on the direction of the buoyancy force relative
to the advancing solidi"cation front. In this section
we explore brie#y how the particle buoyancy a!ects
the behaviour of the system and the value of the
critical velocity.

If *o is the density di!erence between the particle
and the liquid, then the buoyancy force is

F
B
"4

3
pR3g*o, (30)

where g is the acceleration of gravity. As the base of
the particle nears the position of the bulk melting-
temperature isotherm, the particle velocity be-
comes comparable to the velocity scale= from Eq.
(27) and the "lm thickness beneath the base of the
particle becomes comparable to the lengthscale l.
The magnitude of the lubrication force from Eq. (9)
becomes roughly

Fk+12pkR2
=

l
. (31)

We can compare the ratio of F
B

from Eq. (30) to
Fk from Eq. (31) to "nd that the buoyancy force is
negligible when the particle radius is much less than

R
B
,A

9k=R

lg*o B
1@2

"A
3oq

.
j3@2G1@2

2¹1@2
.

g*o B
1@2

, (32)

where the second equality is appropriate when the
velocity scale= and the length scale l are de"ned
with l"3. When nonretarded van der Waals for-
ces dominate and the density ratio *o/o is near
unity, the particle radius at which buoyancy e!ects
begin to become important is roughly 10 lm. The
force balance is modi"ed so that the leading-order
expression from Eq. (29) for the dimensionless
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Fig. 7. Dimensionless particle velocity u as a function of the
dimensionless "lm thickness d

0
for large particles where the

intermolecular interactions are dominated by nonretarded van
der Waals forces. The dashed line is the velocity that is predicted
when the particle radius is much larger than R

B
and buoyancy

e!ects are negligible. The solid lines correspond to the predic-
tions of Eq. (33) for di!erent values of the dimensionless buoy-
ancy force f

B
as noted on the graph. When f

B
is negative, the

e!ects of gravity tend to promote particle encapsulation and the
critical velocity is reduced. When f

B
is greater than zero the

particle tends to migrate away from the interface under the
in#uence of gravity and the particle velocity is more rapid.

particle velocity becomes

u+AfB#
d~2l
0
2

#

d1~l
0

l!1B A
l2d~2l~3

0
(l#3)(2l#3)

#

l(l#5)d~l~2
0

2(l#3)(l#2)
#

d~1
0
2 B

~1
, (33)

where the dimensionless buoyancy force
f
B
,$R2/R2

B
is negative when gravity causes the

initial particle motion to be towards the solidi"-
cation front.

Fig. 7 shows the particle velocity from Eq. (33) as
a function of the "lm thickness for several di!erent
values of the dimensionless buoyancy force f

B
with

the intermolecular interactions dominated by non-
retarded van der Waals forces so that l"3. When
the buoyancy of the particle is towards the solidi"-
cation front, f

B
is negative and the particle velocity

is reduced from the value it would have if the e!ect
of gravity were negligible. In this case the particle
motion is towards the interface when the "lm thick-

ness is large so that u is negative at large d
0
. At

some "nite "lm thickness, marked by the horizon-
tal intercept of the curves in Fig. 7, the thermom-
olecular force becomes larger than the buoyancy
force and the particle begins to move in the same
direction as the solidi"cation front. The particle
velocity increases as the "lm thins further until
u either matches the solidi"cation velocity or the
critical velocity is reached and the particle is trap-
ped within the solid phase. Both the magnitude of
the critical velocity and the "lm thickness at which
it occurs are reduced at negative f

B
.

When the density di!erence is such that f
B

is
positive, the e!ect of gravity is to pull the particle
away from the interface. In the theory developed
thus far, the particle velocity is predicted to be
larger than the solidi"cation velocity when the "lm
thickness is large and f

B
'0. This simply re#ects

the fact that gravity acts to transport the particle
away from the solidi"cation front when the buoy-
ancy force is positive. We have not taken into
account the viscous drag that is associated with
#uid #ow around the bulk of the particle. When the
"lm thickness is small, the drag is dominated by the
lubrication force that accompanies #uid #ow in
the thin "lm that separates the particle from the
phase boundary. At larger "lm thickness, the vis-
cous drag around the bulk of the particle is more
important. This bulk component of the drag, which
can be approximated simply as Stokes' drag, bal-
ances the buoyancy force so that the terminal par-
ticle velocity

;
T
+

2gR2*o
9k

, (34)

is reached at large "lm thickness. If the terminal
velocity is greater than the solidi"cation velocity,
the particle and the interface will separate and
never interact. The dimensionless form of the ter-
minal velocity can be written as

u
T
,

;
T
=

"

2f
B

e
. (35)

When f
B
is of order e, in addition to being compara-

ble to the critical velocity, the terminal velocity can
be less than the solidi"cation velocity. If u

T
is less

than v, the solidi"cation front will overtake the
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particle and the "lm thickness will be reduced. The
thermomolecular force causes the particle velocity
to increase as the dimensionless "lm thickness
nears unity and u either matches the solidi"cation
velocity or the critical velocity is reached. When
f
B

is positive, the critical velocity is more rapid than
it would be without the e!ect of gravity, and it
occurs at a slightly larger "lm thickness.

7. Conclusions

As a solidi"cation front nears a particle, inter-
molecular forces between the particle, the solid, and
the liquid can act to repel the particle from the
phase boundary. This repulsion is opposed by vis-
cous forces in the premelted "lm that forms be-
tween the particle and the deformed interface. By
balancing these two forces we have shown that the
velocity of the particle reaches a maximum when
the leading edge of the particle is roughly level with
the bulk melting-temperature isotherm. The
solid}liquid interface deforms so that the thickness
of the "lm separating the particle from the interface
depends on the strength of the intermolecular inter-
actions, the temperature gradient, and the melting
temperature of the bulk solid. This interface defor-
mation must be accounted for in order to calculate
the maximum (critical) particle velocity. If the sol-
idi"cation velocity is greater than the critical velo-
city, the particle eventually becomes trapped within
the growing solid region. When the dependence of
the "lm thickness on the undercooling takes the
form of a power law, the critical velocity is inversely
proportional to the particle radius. The critical
velocity is generally less sensitive to the temper-
ature gradient, and the dependence is a function of
the type of intermolecular forces that dominate the
system behaviour. For example, if nonretarded van
der Waals forces control the "lm thickness, the
critical velocity depends on the temperature gradi-
ent raised to the one fourth power. The particle is
pushed some distance ahead of the phase boundary
even when the solidi"cation velocity exceeds the
critical velocity. This particle displacement is signif-
icant only when the solidi"cation velocity is very
close to the critical velocity. Particle buoyancy can
a!ect the behaviour of larger particles by either

raising or lowering the critical velocity depending
on the direction of the buoyancy force relative to
the motion of the solidi"cation front.
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