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Abstract

A model of the melting of a mushy region in the absence of #uid #ow is presented. Similarity solutions are obtained
which are used to describe melting from a hot plate with and without the generation of a completely molten region. These
solutions are extended to describe the melting of a mushy region in contact with a hot liquid. A signi"cant feature of
melting mushy regions is that the phase change occurs internally by dissolution. Our solutions for melting of a mushy
region are used to investigate this internal phase change and are compared with the classical Neumann solutions for
melting of a pure substance. ( 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A mushy region is a mixture of solid and liquid
elements coexisting in thermodynamic equilibrium
and typically takes the form of a porous matrix of
the solid phase bathed in interstitial liquid. Mushy
regions form in a variety of alloys such as
iron}carbon (steel), copper}zinc (brass) and salt
solutions such as sodium-chloride}water. The con-
voluted geometry of a mushy region is created by
morphological instabilities that enhance the expul-
sion of one or more components from the solid
phase as it grows. These instabilities are typically
caused by constitutional supercooling, which is due

to the large di!erence in the di!usion rates of heat
and the components of the alloy. A discussion of
mushy layers with many examples of where they
occur may be found in Ref. [1].

There have been many studies of solidifying
mushy regions [2]. By contrast, we present a funda-
mental study of a melting mushy layer owing
to internal dissolution. Dissolution is driven by
thermodynamic disequilibrium resulting from
compositional variations, and is rate limited by
compositional di!usion. Melting, resulting from
thermal disequilibrium, proceeds much more rap-
idly, at a rate dictated by heat transfer [3]. Within
a mushy layer, internal dissolution tends to keep
the interstitial concentration on the local liquidus
by solute transport on the microscale of the inter-
nal morphology. On the macroscale, therefore, the
change of phase from solid to liquid is still control-
led by rates of heat transfer. We shall, therefore,
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refer to phase change on the macroscopic scale, as
melting (or freezing) though it is to be understood
that the change of phase on the microscale is due to
di!usion of solute. Depending upon conditions,
melting of a mushy layer can create a completely
molten region or simply reduce its solid fraction.
A signi"cant issue is the extent to which partial as
opposed to complete melting takes place. Internal
phase change plays an important role in "elds as
diverse as the reprocessing of composite materials,
heat transfer during welding, and to the seasonal
melting of sea ice.

We restrict our attention to binary alloys since
this simpli"es the mathematical description of the
mushy layer, and, in any case, the behaviour of
alloys is often dominated by two major compo-
nents. We obtain similarity solutions which can
be used to describe the melting of a mushy layer
when heat and mass transport is e!ected solely by
di!usion.

In Section 2, we introduce the mathematical
model and describe the various assumptions we
make in order to simplify the analysis and avoid
details that are extraneous to the fundamental pro-
cesses. In Section 3, we use our model to determine
similarity solutions that describe how a mushy
layer is melted from a hot plate with and without
generation of an entirely molten region. In Section
4, we extend these solutions to describe how
a mushy layer in contact with a hot liquid may
melt. The solutions that we present are extensions
to binary alloys of the Neumann solution [4], of the
classical Stefan problem for melting. In Section 5,
we use our solutions to investigate the extent of
internal phase change within the mushy layer and
compare our results with those for the melting of
a pure substance. The possible implications of in-
ternal dissolution are brie#y explored using the
example of sea ice. Section 6 summarises our main
conclusions.

2. Mathematical formulation

We consider the melting of a simple binary eutec-
tic. Without loss of generality, we formulate the
problem for the case that the bulk composition of
the alloy is less than the eutectic composition. We

assume that the liquidus is linear,

¹"¹
L
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0
!CC, (1)

where ¹
0

and C are positive constants, and that the
solidus is equal to zero. A more detailed description
of the model we now introduce can be found in Ref.
[5]. Within a mushy zone the alloy consists of
a mixture of solid and liquid elements coexisting in
thermodynamic equilibrium. In the absence of #uid
#ow, local conservation of heat can be expressed by
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where the variables /(r, t) and ¹(r, t) represent the
locally averaged solid fraction and temperature,
respectively, r is a position vector in the mushy
layer and t is time. The latent heat released as liquid
solidi"es is L per unit mass of solid, the densities of
the liquid and solid are ol and o

4
, and the speci"c

heat capacities of the liquid and solid are cl and
c
4

respectively. The thermal conductivity of the
mushy layer is approximated by

k
.
"/k

4
#(1!/)kl , (3)

where kl and k
4

are the thermal conductivities in
the liquid and solid, respectively. This expression is
exact for a parallel laminated medium in the case
that the heat #ux is aligned with the lamellae [6].
Local conservation of solute can be written
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where C(r, t) represents the locally averaged con-
centration of the interstitial liquid, C

4
is the com-

position of the solid formed due to freezing, and
D

.
is the solute di!usion coe$cient in the mushy

layer. For the sake of clarity, we assume that the
thermal conductivites of the solid and liquid ele-
ments of the mushy layer are identical and equal
to the constant k; thus k

.
"k. Since di!usion of

the solute within the solid phase is neglected,
D

.
"(1!/)D, where D is the solute di!usion coef-

"cient in the liquid. We assume that local thermo-
dynamic equilibrium prevails within the mushy
layer. This is justi"ed provided that the rate of
phase change within the mushy layer is su$ciently
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slow that thermodynamic equilibrium can be main-
tained between the solid elements. This is satis"ed if
the timescale of solute transport interstitially, d2/D,
where d is the solid-element spacing in the mushy
layer, is short compared to the timescale of temper-
ature variations within the mushy layer. During the
freezing of a mushy layer, solute transport is en-
hanced by the side-branching of dendrites resulting
from morphological instabilities, which reduces d.
During melting, however, d corresponds to the pri-
mary dendrite spacing and the condition is more
restrictive. When similarity solutions apply, the
heating rate scales with the elapsed time t and
thermodynamic equilibrium is therefore main-
tained once t<d2/D. In a typical metallic mushy
layer, with d+3]10~4 m and D+3]10~9

m2s~1 [7], we expect thermodynamic equilibrium
to be maintained after about 30 s. For mushy layers
of ice crystals formed from aqueous solutions of
sodium chloride, for example, d+10~3 m and
D+10~9 m2s~1 so that thermodynamic equilib-
rium is maintained after about 1000 s. This time is
still small compared to the timescales of variation
in various applications such as the diurnal vari-
ations within a sea-ice layer on the polar oceans
[8].

The Lewis number Le"i/D of liquids and
solids is very much greater than unity; for example,
Le+100 in aqueous solutions. This means that,
though solutal di!usion ensures local thermodyn-
amic equilibrium between the solid elements, since
the macroscopic lengthscales of variation in
a mushy layer are dominated by thermal di!usion,
solutal di!usion can be ignored in the macroscopic
model of the interior of a mushy layer. We shall
assume that the bulk composition of the mushy
layer remains uniform at C

0
: if any part of the

mushy layer becomes completely molten then the
resulting melt will also have concentration C

0
.

Note, however, that the concentration of the inter-
stitial liquid is not uniform but determined by the
liquidus given the local temperature.

In order to simplify the following presentation,
we assume that the densities and speci"c heat ca-
pacities of the solid and liquid elements are the
same, ol"o

4
"o and cl"c

4
"c, respectively. We

choose to scale the local conservation Eqs. (2) and
(4) with a velocity scale < and the thermal di!us-

ivity i"k/(oc). Lengths are scaled with i/< and
times are scaled with i/<2. With these scalings, the
conservation equations combined with the liquidus
constraint and the assumption of no solutal di!u-
sion become

R
Rt(h!S/)"+2h (5)

and

R
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We have introduced the dimensionless temperature
and concentration
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The dimensionless melting temperature of the
mushy layer is h"0; above this temperature the
mushy layer becomes completely molten. The di-
mensionless eutectic temperature of the mushy
layer is h"!1; below this temperature the mushy
layer forms a eutectic solid. The dimensionless
parameters are the Stefan number

S"

L

c*¹

(8)

and the compositional ratio

C"

C
4
!C

0
C

0
!C

E

, (9)

where the composition of the solid C
4

is constant.
The Stefan number S represents a balance between
the latent heat release L and sensible heat c*¹

potentially available in a mushy layer. The com-
positional ratio C relates the di!erence in the com-
position of the solid and melt phases to the
potential compositional variation within the melt
phase across a mushy layer.

In this paper we consider one-dimensional situ-
ations only; we work in one spatial dimension
(coordinate z) and combine Eqs. (5) and (6) to
obtain

A1#
SC

(C!h)2B
Rh
Rt"

R2h
Rz2 (10)
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Fig. 1. A schematic diagram of a mushy layer brought into
contact with a hot plate. At t"0 the plate temperature discon-
tinuously switches to h

i
. If h

i
'0 then the melt forms.

and

/"

h
h!C

, (11)

because of our assumption that the bulk composi-
tion is uniform. Note that our assumptions of ther-
modynamic equilibrium and zero solutal di!usion
within the mushy layer have led us to an equation,
Eq. (10), describing heat transfer through a medium
with a thermal di!usivity that is a function
of temperature.

3. Melting from a hot plate

Consider the one-dimensional system in Fig. 1.
We use a Cartesian coordinate system with its
origin "xed in the plate and with the z-axis increas-
ing into the mushy layer. At times t(0, the plate is
in thermodynamic equilibrium with the mushy
layer at temperature h

=
which is taken to be be-

tween the melting and freezing temperatures of the
mushy layer. At t"0, the temperature of the plate
switches discontinuously to a new temperature h

i
.

If h
i
'0 then part of the mushy layer will melt

completely into a melt region with uniform concen-
tration C

0
. If 0'h

i
'h

=
then the mushy layer will

melt, decreasing its solid fraction, but no com-
pletely molten region will be generated. If
h
=
'h

i
'!1, then the mushy layer will freeze by

increasing its solid fraction but will not become
completely solid. Finally, if h

i
( !1, then part of

the mushy layer freezes completely to form a eutec-
tic solid. We con"ne our attention to the cases in
which melting occurs and consider "rst the situ-
ation in which h

i
(0 so that no completely molten

region is formed.

3.1. No melt generated, h
i
(0

The equations describing the evolution of the
mushy layer are Eqs. (10) and (11). The boundary
conditions for t'0 are

h"h
i

(z"0), (12)

hPh
=

(zPR), (13)

This implies that

/
=
" lim

z?=
/"

!h
=

C!h
=

(14)

The solid fraction of the mushy layer in contact
with the plate is /(z"0)"!h

i
/(C!h

i
).

This problem admits a similarity solution
h(z, t)"h(g), where the similarity variable is
g"zt~1@2. Searching for this solution reduces Eq.
(10) to an ordinary di!erential equation. The re-
duced problem becomes

!1
2
gh@A1#

SC

(C!h)2B"hA, (15)

subject to

h"h
i

(g"0), (16)

hPh
=

(gPR), (17)

where /(g) is given by Eq. (11). Eq. (15) was solved
numerically using the method of shooting.

In addition, we examined a simple asymptotic
limit. Suppose C<1, S<1 with S/C of O(1) and
(by assumption) h is of O(1), see [9]. Then, Eq. (15)
approximates to

!1
2
gXh@"hA, (18)
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Fig. 2. Temperature h and solid fraction / within the mushy
layer for h

i
"!0.1, h

=
"!0.5, S"1 and C"1. The solid

line shows the solution to the full nonlinear problem, the dashed
line shows the solution to the asymptotic problem.

Fig. 3. Solutions of the full nonlinear problem for temperature
h and solid fraction / within the mushy layer for
h
i
"!0.1, h

=
"!0.5, S"1 and C"1 (solid line), S"100

and C"1 (dashed line), and S"1 and C"100 (dotted line).

where

X"1#
S

C
. (19)

This equation is linear and admits an analytical
solution. Integrating Eq. (18) twice and applying
the boundary conditions (16) and (17) yields the
solution

h"h
i
#(h

=
!h

i
) erf (X1@2g/2), (20)

where erf(x) is the error function given by

erf(x)"
2

JpP
x

0

e~s
2 ds (21)

and / is given by Eq. (11).
The solutions for h and / are plotted in Fig. 2 for

h
i
"!0.1, h

=
"!0.5, S"1 and C"1. The

solution to the full nonlinear problem (obtained
numerically) is shown with a solid line, the solution
to the asymptotic problem is shown with a dashed
line. The asymptotic problem relies on the limit
C<1, S<1 yet the error is less than 10%.
Throughout this paper, we shall present the true
solutions together with the solutions obtained us-
ing the asymptotic limit. Since we take C"1 and
S"1 throughout, the di!erence between the true
and asymptotic solutions can be viewed as an up-
per limit to the inaccuracy of the asymptotic ap-
proximation. For many materials C<1, S*1
and the asymptotic approximation is excellent.
Fig. 3 shows solutions to the full nonlinear problem
with h

i
"!0.1, h

=
"!0.5, S"1 and C"1

(solid line), S"10 and C"1 (dashed line), and
S"1 and C"10 (dotted line). We see that in-
creasing the Stefan number S decreases the extent
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of temperature and phase change, and increasing
the compositional ratio C has little e!ect on the
temperature pro"les but decreases the volume of
material undergoing phase change. Increasing S is
equivalent to increasing the latent heat L; more
energy is required to dissolve solid elements and
more energy is released on freezing the liquid ele-
ments of the mushy layer. This acts to weaken the
e!ect of the imposed temperature h

i
. IncreasingC is

equivalent to steepening the liquidus curve, which
implies a smaller amount of phase change is re-
quired to keep the interstitial liquid on the liquidus.

3.2. Melt generated, h
i
'0

We now consider the situation in which at t"0,
the temperature of the plate is increased discon-
tinuously to a temperature above the liquidus tem-
perature at the bulk composition h

i
'0 and a melt

region forms with the position of the mush}melt
interface at z"f(t).

The equations describing the mushy layer are
Eqs. (10) and (11). The equation describing conser-
vation of heat in the melt is

Rh
Rt"

R2h
Rz2 . (22)

Since the composition of the mushy layer is uni-
form, there is no concentration variation in the melt
formed and thus no solutal di!usion. The boundary
conditions at t'0 are Eq. (12),

h"0 (z"f(t)) (23)

[h]ml"0 (z"f(t)), (24)

S/
Rf
Rt"C

Rh
RzD

m

l

(z"f(t)), (25)

and Eq. (13) where [2]ml denotes the di!erence in
the enclosed quantity between the mushy layer
m and melt l. Note that (23) combined with (11)
implies that /"0 at the interface which is consis-
tent with the general set of boundary conditions
derived by Schulze and Worster [10] since, relative
to the phase boundary, the liquid #ows from mush
to liquid. This reduces the Stefan condition (25) to
continuity of heat #ux; this condition determines

the motion of the mush}melt interface. We search
for the similarity solution h(z, t)"h(g) with the
mush}melt interface position given by f"jt1@2,
where j is an eigenvalue determined from
the Stefan condition. In the similarity variable,
the problem becomes Eq. (15) in the mushy
layer and

!1
2
gh@"hA (26)

in the melt, subject to Eq. (16),

h"0, (g"j), (27)

[h]ml"0 (g"j), (28)

[h@]ml"0 (g"j) (29)

and Eq. (17). The solid fraction is given by Eq. (11).
The solution in the melt is simply obtained from

integration and application of boundary conditions
to be

h"h
iA1!

erf(g/2)

erf(j/2)B. (30)

Again, we consider the asymptotic problem with
Eq. (15) replaced with Eq. (18). The solution to this
approximate system is found from integration and
application of boundary conditions to be

h"h
=

(erf(X1@2g/2)!erf(X1@2j/2))

erfc(X1@2j/2)
, (31)

where erfc(x) is the complementary error function,
erfc(x)"1!erf(x), and / is given by Eq. (11). Ap-
plication of the Stefan condition (29) yields the
transcendental equation

h
=

X1@2e~Xj2@4

erfc(X1@2j/2)
"!h

i

e~j2@4

erf(j/2)
, (32)

which determines the eigenvalue j.
We solved the full nonlinear problem consisting

of Eq. (15) subject to Eq. (27) and (17) numerically.
We integrate from the initial conditions

h"0, h@"g
j

(g"jH), (33)

to match the condition hPh
=

as gPR. Once we
converge on h

=
then g

n
"gH (jH) is recorded. This

quantity gH (jH)"h@(g"jH) is the dimensionless
di!usional heat #ux from the mushy layer at the
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Fig. 4. Variation of j with h
i
for h

=
"!0.5, S"1 and C"1.

The solid line shows the solution to the full nonlinear problem,
the dashed line shows the solution to the asymptotic problem.
There is no solution shown for h

i
(0 because then no melt

region is generated and the model is inappropriate.

Fig. 5. Temperature h and solid fraction / in the mushy layer
and melt for h

i
"0.5, h

=
"!0.5, S"1 and C"1. The solid

line shows the solution to the full nonlinear problem, the dashed
line shows the solution to the asymptotic problem.

mush}melt interface and is used in the Stefan
condition. The procedure is automated and repeat-
ed to obtain the curve gH(j). In terms of gH , the
Stefan condition (29) can be rewritten

gH"gH (j;S, C, h
=

)"B, (34)

where

B"B(j, h
i
)"!

h
i

Jp

e~j2@4

erf(j/2)
. (35)

Eq. (34) is the transcendental equation determin-
ing the eigenvalue j. Since gH is independent of
h
i
and B is expressed in closed form, we can calcu-

late the dependence of j on h
i
using repeated root-

"nding with the secant method. In Fig. 4, we show
j(h

i
) for S"1, C"1 and h

=
"!0.5. The

asymptotic solution (the dashed line) was obtained
from Eq. (32) using a Newton}Raphson root-"n-
der. For h

i
*0, there exists a solution j*0 corre-

sponding to an evolving mush}melt boundary. For
h
i
(0, there is no solution for j. This is because no

melt region is generated and the model is inappro-
priate; where there is no melt region we use the
equations of the previous section. We plot the
solutions h and / in Fig. 5 for h

i
"0.5, h

=
"!0.5,

S"1 and C"1.

4. Mushy layer in contact with a hot liquid

Consider the one-dimensional system in Fig. 6 in
which a mushy layer is in contact with a liquid.
Before t"0, the mushy layer is of uniform temper-
ature h

=
, bulk composition C

0
and hence solid

fraction /
=

. There is no melt region. We consider
the physical properties of the liquid to be identical
to the melt generated as the mushy layer becomes
completely molten. Thus, there is no solutal di!u-
sion in the liquid region. We set the far-"eld
temperature in the liquid to be h

~=
'0 and calcu-

late the evolution of this system after t"0. A Car-
tesian coordinate system is used with the origin of
z "xed at the position of the mush}melt}liquid
interface at time t(0, with z increasing into the
mushy layer.
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Fig. 6. A schematic diagram of a mushy layer brought into
contact with a hot melt. The melt may form due to the hot liquid
dissolving the mushy layer after t"0.

Fig. 7. Variation of j with h
~=

for h
=
"!0.5, S"1 and

C"1. The solid line shows the solution to the full nonlinear
problem, the dashed line shows the solution to the asymptotic
problem.

We search for a similarity solution in the sim-
ilarity variable g"zt~1@2, with the mush}melt
interface located at f(t)"jt1@2. The equations de-
scribing the mushy layer are (15) and (11), the
equation describing the liquid and melt is (26). The
boundary conditions are

hPh
=

(gP!R), (36)

Eqs. (27)}(29) and (17). The solution in the melt
region is obtained straightforwardly by integration
of the governing equation and applying boundary
conditions to be

h"h
~=

(erf(j/2)!erf(g/2))

1#erf(j/2)
. (37)

The problem of obtaining the temperature (and
hence solid fraction) in the mushy layer is identical
to that presented in the preceding section. The
equation determining j, however, is modi"ed by
the solution in the liquid}melt region to

gH"BI , (38)

where

BI "!

h
~=
Jp

e~j2@4

1#erf(j/2)
. (39)

The variation of j with h
~=

is calculated using
repeated root-"nding. In Fig. 7, we plot j(h

~=
)

for S"1, C"1 and h
=
"!0.5. There exists

a critical temperature h#3*5
~=

, below which j(0 and
the mushy layer advances into the liquid by
freezing.

We can easily determine the variation of
h#3*5
~=

with h
=

. The value of h#3*5
~=

is given by Eq. (38)
with j"0, rearranging and substituting for
BI yields

h#3*5
~=

(h
=

)"!JpgH(h
=

; j"0), (40)

where gH (h
=

; j"0) is obtained numerically using
shooting. We can estimate h#3*5

~=
analytically by con-

sidering the asymptotic equation for the mushy
layer (18). Solving this equation subject to Eqs. (27)
and (17) gives the temperature in the mushy layer to
be

h"h
=

(erf(X1@2g/2)!erf(X1@2j/2))

erfc(X1@2j/2)
, (41)

with / given by Eq. (11). Application of the Stefan
condition (29) yields the transcendental equation

h
~=

e~j2@4

1#erf(j/2)
#

h
=

X1@2e~Xj2@4

erfc(X1@2j/2)
"0. (42)

This equation was used to calculate the asymptotic
dependence of j upon h

~=
shown in Fig. 7 for
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Fig. 8. Variation of h#3*5
~=

with h
=

for S"1 and C"1. The
solid line shows the solution to the full nonlinear problem, the
dashed line shows the solution to the asymptotic problem.

Fig. 9. The temperature h and solid fraction / in the mushy
layer and melt for h

~=
"1.0, h

=
"!0.5, S"1 and C"1.

The solid line shows the solution to the full nonlinear problem,
the dashed line shows the solution to the asymptotic problem.

Fig. 10. Variation of the volume of phase change with h
~=

for
h
=
"!0.5, S"1 and C"1. The solid line shows the total

phase change, M
T
; the dashed line shows j/

=
; and the dashed-

dotted line shows j
14

/
=

.

S"1, C"1 and h
=
"!0.5. Setting j"0, we

obtain

h#3*5
~=

"!X1@2h
=

. (43)

In Fig. 8, we plot h#3*5
~=

versus h
=

for S"1 and
C"1. The asymptotic problem badly over-esti-
mates h#3*5

~=
(h

=
) at large h

=
but numerical studies

show that the approximation greatly improves as
C is increased into the appropriate asymptotic
regime of C<1. We plot the solutions h and /
in Fig. 9 for S"1, C"1, h

=
"!0.5 and

h
~=

"1.0.

5. Investigation of internal phase change and
discussion

We consider the case of a mushy layer in contact
with a hot liquid since this system exhibits behav-
iour which encompasses that of the simpler sys-
tems. We investigate the extent and volume of the
internal phase change within the mushy layer and
contrast the melting behaviour with that of a pure
material. A full exploration of the realistic para-
meter regimes would be infeasible; we concentrate
here upon the e!ect of varying the far-"eld temper-
ature in the hot liquid.

Consider Fig. 10, which is plotted for S"1,
C"1 and h

=
"!0.5. The solid line shows the

total volume of phase change M
T
"M

I
#j/

=
,

where M
I
":=j (/

=
!/) dg is that melted inter-

nally and is calculated using shooting and numer-
ical quadrature. The dashed line shows j/

=
which,

for the melting values of h
~=

(j positive), equals the
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Fig. 11. Variation of the volume of internal phase change
M

I
with h

~=
for h

=
"!0.5, S"1 and C"1.

Fig. 12. Variation of the extent of internal phase change g
e

with
h
~=

for h
=
"!0.5, S"1 and C"1.

volume of mushy layer that becomes completely
molten. Negative values of j/

=
correspond to

freezing of the hot liquid, which increases the depth
of the mushy layer. The di!erence between the
total phase change curve and j/

=
is the volume of

internal phase change, M
I
. From Fig. 11, we see

that the volume of internal phase change within the
mushy layer decreases as h

~=
increases. The extent

of the internal phase change within the mushy
layer is also of interest; we de"ne g

e
from

/(g"j#g
e
)" 9

10
/
=

, the depth within the mushy
layer at which the solid fraction reaches 9

10
of its

far-"eld value. From Fig. 12, we see that the extent
of internal phase change decreases as h

~=
in-

creases. In Fig. 10, the dashed-dotted curve is
j
14

/
=

, where j
14

is the position of a pure solid}melt
interface. The value of j

14
is determined as part of

the classical melting Stefan problem given by (10)
with CPR subject to Eqs. (36), (23)}(25), with
/P1 and Eq. (13), see [4]. As h

~=
increases, j/

=
approaches j

14
/
=

, this is because the volume and
extent of phase change within the mushy layer
decreases as h

~=
increases. From these results it is

clear that internal melting can be signi"cant for
both melting and freezing mushy layers and be-
comes less signi"cant in strong melting conditions
(h

~=
<h#3*5

~=
).

An example of a mushy layer in which internal
phase change is of importance is sea ice, which is
well approximated by ice formed from aqueous
solutions of sodium-chloride [11]. As sea ice melts
internally its solid fraction decreases which dimin-

ishes its strength and can allow break-up under the
stresses imposed by the wind and ocean. A decrease
in the solid fraction of sea ice also increases its
permeability (a measure of its resistance to internal
#ows). This may promote signi"cant brine #ows
and #ushing of fresh water through the sea ice from
the melting of snow and ice at its surface. These
#ows desalinate the sea ice and enhance the fresh-
water #ux into the North Atlantic. More details
about sea ice can be found in [8]; a discussion of
mushy layers applied to sea ice can be found in
Refs. [11,12].

6. Conclusions

In this paper, we have presented some solutions
of the equations describing local conservation of
heat and solute in a mushy layer and melt in the
absence of #ow. This section summarises our main
conclusions.

A mushy layer can be partially melted from
a plate without generation of a completely molten
region by altering its solid fraction. Increasing the
Stefan number S decreases the region of substan-
tial phase change and temperature variation. In-
creasing the composition ratio C decreases the
volume of material undergoing phase change.

Increasing the temperature of a plate in contact
with a mushy layer above its melting point causes
part of the mushy layer to melt completely. The
higher the plate temperature above the melting
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point, the more rapidly the melt}mush interface
advances into the mushy layer. The solid fraction of
the mushy layer at the mush}melt interface is zero.

A mushy layer placed in contact with a hot liquid
with "xed far-"eld temperature can shrink or grow.
The critical value of the far-"eld temperature in the
liquid below which the mushy layer grows has been
calculated.

The equations describing local conservation of
heat and solute in the mushy layer can be de-
coupled and the asymptotic limit C<1, S<1
with C/S of O(1) taken which gives a linear equa-
tion for temperature that yields an analytical solu-
tion. We have plotted the asymptotic solutions for
C"1 and S"1 in order to indicate an upper
limit to the inaccuracy of the asymptotic approxi-
mation. For many materials C<1, S<1 and,
in these cases, the asymptotic solutions are an
excellent approximation.

The extent and volume of internal phase change
within a mushy layer can be signi"cant during both
melting and freezing, and decreases during strong
melting conditions. Internal phase change de-
creases the solid fraction of the mushy layer, which
can weaken it, and increases its permeability, en-
hancing #ows of the internal melt.
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