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We present a mathematical model for the region of dendritic or cellular growth which 
often forms during the solidification of alloys. The model treats the region of mixed 
phase (solid and liquid) as a continuum whose properties vary with the local volume 
fraction of solid. It is assumed that transports of heat and of solute are by diffusion 
alone, and the model is closed by a condition of marginal equilibrium. Results are 
obtained for the unidirectional solidification of an alloy from a plane wall. The spatial 
variations of solid fraction are highly suggestive of the types of morphology that can 
occur, and a wealth of different structures are found as the physical parameters are 
varied. Although the model ignores gravity entirely, the results can be applied to the 
solidification from below of an alloy which is initially less dense than its eutectic. 
Predictions for the growth rate of the mixed-phase region agree well with existing 
experimental measurements of ice growing from aqueous salt solutions. 

1. Introduction 
Mathematical analyses of solidification are complicated by the need to apply 

boundary conditions at solid/liquid interfaces which are evolving with time and 
whose positions must be found as part of the calculation. The case of a pure melt 
being cooled by conduction of heat to its boundaries is relatively straightforward since 
the geometry of the solidification front is similar to that of the bounding walls 
(Sekerka 1973). Such so-called ‘Stefan’ problems have been solved completely in some 
simple geometries. For example, solidification from a plane wall (Carslaw & Jaeger 
1959 describe resultsattributed to Neumann in the 1860s), and the inward solidification 
of cylinders and spheres (Riley, Smith & Poots 1974; Soward 1980) have been 
considered. However, if a pure melt is supercooled (has a temperature below its 
freezing point), so that latent heat is conducted away from the solidification front 
through the liquid, then the solidification front becomes extremely convoluted and 
forms intricate branching patterns (Langer 1980). Snowflakes provide a common 
example of this phenomenon. When the liquid is an alloy (a mixture of two or more 
components) such behaviour is commonplace even when the liquid is not initially 
supercooled. The aim of this paper is to describe the solidification of an alloy in 
situations where the interface is highly convoluted. 

A t  present, analytical techniques cannot follow the evolution of such convolutions 
far beyond initial perturbations from a flat interface, though important results have 
been obtained recently through the use of high-speed computers (Ungar & Brown 
1984), and boundary-layer models (Ben-Jacob et al. 1983). However, for many 
applications including metallurgy (Copley et al. 1970), solidification in magma 
chambers (Chen & Turner 1980; Turner, Huppert & Sparks 1986), and the structure 
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of the Earth’s inner core (Fearn, Loper & Roberts 1981 ; Loper 1983), it  is the gross 
features of the solid-liquid matrix which forms as a result of the convolutions that 
are of more importance than the precise details of the microscopic morphology. The 
matrix, or region of mixed phase, has been termed a ‘ mush ’ or ‘mushy zone ’ by many 
previous authors who have investigated its behavioiir experimentally and analytically. 
By treating the mush as a new single phase, and the macroscopic envelope of the 
convoluted solid as a phase boundary, it is necessary to follow the evolution of two 
phase boundaries : the solid/mush interface and the mush/liquid interface. However, 
these new phase boundaries are geometrically simple, and hence mathematical 
tractability is restored. 

Hills, Loper & Roberts (1983) developed a full set of thermodynamic equations for 
a mushy zone, and solved a much-reduced set of them approximately for the 
constrained growth of a binary alloy. A more complete solution has since been given 
by Fowler (1986). Constrained growth, in which the interfaces are supposed to 
advance at a prescribed constant velocity, is applicable to industrial crystal pulling 
(Czochralski growth), but not to the solidification of castings nor to many natural 
systems where growth can proceed at a rate inversely proportional to the square root 
of time. 

Huppert & Worster (1985) formulated a simple mathematical model of the mushy 
layer based on considerations of global conservation relationships. Its predictions 
agreed well with their observations of ice growing at  a plane boundary from aqueous 
solutions of various salts. The model is particularly easy to compute, and so may be 
of great practical use. However, it relies on various assumptions (particularly that 
the solid fraction is constant throughout the mush) whose limits of validity are 
difficult to assess. 

In  this paper, we present a subset of the equations derived by Hills et al. (1983), 
more general than the ones solved by Fowler (1986), and solve them for the 
unidirectional solidification of an alloy from a plane boundary. The equations 
conserve heat and solute locally but on a macroscale larger than the typical pore-size 
of the mush. Thus, unlike Huppert & Worster, we are able to ccmpute local bulk 
properties of the mush. In particular, we compute the local solid fraction as a function 
of distance from the cooled boundary, and this gives some indication of the 
morphology of the growing solid. 

In  $2 we describe the phase diagram for a two-component alloy which indicates 
the phases that are present in an alloy of given temperature and composition provided 
the system is in thermodynamic equilibrium. Although a certain amount of 
disequilibrium must exist in order to drive solidification, many systems evolve 
through states that are close to equilibrium, and good approximations may be 
obtained by assuming the system to be in a complete equilibrium at all times. Thus 
the phase diagram provides important constraints on our model of the dynamic 
evolution of a solidifying alloy. Phase diagrams are specific t o  the components of the 
alloy, but the idealized diagram used in the development of our model is appropriate 
to many binary alloys - in particular, to almost all aqueous solutions. 

The classical Stefan problem for the solidification of a pure melt from a plane 
boundary is extended in $3 to the case of a binary alloy. However, we discover in 
$4 that, when the flat interface advances too rapidly, constitutional supercooling 
occurs in the liquid. Local equilibrium is restored by the introduction of a mushy layer 
whose governing equations are introduced in $5. The equations and boundary 
conditions admit a similarity solution which is outlined in $6, and the model is finally 
closed by requiring a condition of marginal equilibrium a t  the mush/liquid interface. 
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FIQURE 1.  (a) Typical equilibrium phase diagram for a binary system comprising two components 
A and B. The liquidus --, the solidus -, and the dashed line ----, separate the diagram into 
regions of different phases: L, liquid; CSA, a crystalline solid in which molecules of B are 
incorporated into the crystal lattice of A; CSB, a crystalline solid in which molecules of A are 
incorporated into the crystal lattice of B; CSA+CSB, a granular solid in which crystalline grains 
of CSA are interspersed with grains of CSB. The solidus and the liquidus intersect at the eutectic 
point E. (a) The approximate phase diagram used in the mathematical analyses. 

Two sets of results are presented in $ 7  which give the positions of the two interfaces 
as they vary with the initial temperature and composition of the liquid and with the 
temperature of the cooled boundary. Selected profiles of solid fraction reveal 
significant variations in the possible morphology of the mushy layer as the external 
and internal parameters of the system are varied. The first set of results is for a 
fictitious alloy whose liquid and solid phases have equal physical properties. Since 
the number of independent parameters is thereby reduced, this system provides a 
convenient starting point for mathematical investigations. The second set of results 
applies directly to experiments of Huppert & Worster using aqueous solutions of 
sodium nitrate, so comparisons can be made between the present model, that of 
Huppert & Worster, and the experimental data. 

2. The phase diagram 
Of central importance to the dynamics of solidification is the equilibrium. phase 

diagram for the particular chemical system under consideration. We here describe 
a typical phase diagram for a system comprising two chemical components A and 
B (for example, water and salt). 

The different regions of the phase diagram are labelled in figure l (a ) .  Given a 
container filled with a mixture of bulk composition C (equal to the weight per cent 
of component B) it is in thermodynamic equilibrium only if the mixture has a uniform 
temperature, T (say). The coordinates (C, T) define a point on the phase diagram, and 
the region in which this point lies determines the phases present in the container once 
the system is in complete equilibrium. In the simple system considered here there 
is just one liquid phase but a number of solid phases. The crystalline solids (for 
example CSA) referred to in figure 1 (a) are solid solutions in which molecules of B 
are incorporated into the crystal lattice of A (vice versa for CSB). Note that the phase 
diagram says nothing about the spatial distribution of the phases, which is determined 
by the dynamical history of the system. 
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There are two important regional boundaries in the diagram : the liquidus curve, 
C = CL(T) or T = TL(C), that  separates the region in which the system is completely 
liquid from that in which solid and liquid phases coexist; and the solidus curve, 
C = C,(T) or T = T,(C), that  separates the latter region from the region in which the 
system is completely solid. Since physical systems tend to evolve towards equilibrium 
it is clear that if a completely liquid system has composition C and temperature 
T < TL(C) then i t  will tend to solidify. Thus the liquidus curve represents the freezing 
temperature as a function of composition. Similarly, the solidus curve Ts(C) represents 
the temperature for the onset of partial melting of a solid. 

An additional interpretation can be given to the solidus and liquidus curves. If a 
system is in equilibrium with (C, T )  in the mixed-phase region then, from our previous 
discussion, the solid part of the mixture must have composition Cs(T) while the liquid 
part must have composition CL(T). One of the major premises in this paper will be 
that during solidification the system is always close to  equilibrium. Therefore, a t  all 
solid/liquid interfaces the temperature is continuous with value T (say), while the 
composition jumps from CL(T) in the liquid to  C,(T) in the solid. 

The solidus and liquidus curves intersect when the system comprises a single 
component (A or B) and a t  the eutectic point where C = C,. For systems with these 
special compositions there is a single melting/freezing temperature, and there is no 
concentration jump across solid/liquid interfaces. 

The fluid dynamics of solidification in the presence of a gravity field depends 
crucially upon the variations in density of the liquid phase due to variations in its 
temperature and composition, and upon the geometry of the system (Chen & Turner 
1980; Huppert & Worster 1985). Suppose that component B is heavier than 
component A so that increasing C causes the fluid density to increase. Suppose also 
(as is generally true) that  the fluid density decreases with temperature a t  constant 
composition. Huppert & Worster (1985) outline six different flow regimes that arise 
depending on whether the initial liquid concentration is less than, equal to, or greater 
than the eutectic composition C,, and whether the liquid is cooled from an upper 
or a lower horizontal boundary. In  the present paper, we shall investigate solidification 
in the absence of gravity, though this situation may almost be realized in the 
laboratory (Huppert & Worster 1985) by cooling, from below, a liquid whose initial 
concentration is less than the eutectic value, since then the temperature and 
concentration fields are individually statically stable to convective turnover. 

It should be noted that the phase diagram is valid only for complete thermo- 
dynamic equilibrium, including an equilibrium of the surface energy (Gibbs free 
energy) associated with any phase boundaries in the system. Therefore, in equilibrium, 
the system will have a morphology which minimizes the total surface area of phase 
boundaries. However, we shall see that in a dynamical situation the phase boundaries 
often contort so as to increase their surface area in order to enhance the transport 
of heat or of solute away from them. This simply reflects the fact that  departures 
from equilibrium of the temperature and concentration fields provide a greater 
driving force back to equilibrium than does surface energy. Therefore, we ignore 
surface energy entirely, but note that there are other situations not discussed herein 
(for example, crystal growth into a supercooled pure melt) in which surface-energy 
effects are rate-controlling (Langer 1980). 

The mathematical analyses described in subsequent sections assume the idealized 
phase diagram shown in figure 1 (b ) .  It differs from figure 1 (a)  in that  the solidus is 
approximated by the line C = 0, and the liquidus by the line 

T = TL(C) = -rc. (2.1) 
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FIQURE 2. ( a )  Schematic diagram of solidification from a plane wall when the solid/liquid interface 
is flat. The hatched region shows where the liquid is supercooled - where the temperature T is below 
the local liquidus temperature - r C .  (b)  A schematic plot of (T(z), C(z))  defining the variables used 
in the mathematical analyses. 

where the liquidus slope r is a constant. The first approximation is valid for many 
binary systems (particularly, for almost all aqueous solutions) in which molecules of 
B do not easily fit into the crystalline lattice of A. The linear liquidus relationship 
(2.1) is a common metallurgical approximation which is mathematically convenient 
and leads to good practical results. 

3. Plane solidification front 
In order to set the scene for the rest of the paper, we present analytical results for 

the plane-front solidification of a binary alloy (Worster 1983; Huppert & Worster 
1985). These results extend the Neumann solution of the classical Stefan problem for 
pure melts (Carslaw & Jaeger 1959) to the case of a two-component melt. 

Consider a semi-infinite region z > 0 filled with liquid which initially has uniform 
composition C = C, < C, and temperature T,. Note that T, must be greater than 
TL(Co) in order for equilibrium solidification to proceed even if a mush forms. 
Non-equilibrium, plane-front solutions can, however, be found with T, < TL(Co). We 
ignore the effects of gravity; but to fix ideas, and for later comparison with 
experimental results, we imagine that the plane z = 0 forms the lower, horizontal 
boundary of the domain. A t  time t = 0 the temperature of the boundary is suddenly 
changed to (and subsequently maintained at) a value T = TB lower than the initial 
liquidus temperature TL(Co). 

We seek a solution of the governing equations in which there is solid growing 
adjacent to the cooled boundary, separated from the remaining liquid by an interface 
which is perfectly flat and parallel to the boundary (figure 2). The transport of heat 
and solute is by thermal conduction and molecular diffusion alone, so the governing 
equations are 

(3.1 a)  
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(3.lb) 

( 3 . 1 ~ )  

where z = h( t )  is the position of the solidification front. The physical parameters are 
the density p,  the specific heat C,, the thermal conductivity k, and the solute 
diffusivity D ,  all of which are assumed constant in each phase. Subscripts s and 1 
attach to properties of the solid and liquid phases respectively. We apply an extended 
Boussinesq approximation (Hills et al. 1983) that the change in density between 
phases affects the thermal diffusivity K = k / p C ,  but does not induce flow in the melt 
due to conservation of mass at the moving phase boundary. 

In  addition to the applied boundary conditions 

T = TB ( Z  = 0 ) ,  (3.2a) 

(3.2b) 

( 3 . 2 ~ )  

there are two flux conditions to be applied at the unknown position of the interface 
h(t) .  Conservation of heat requires that the latent heat of solidification be diffused 
away from the interface so that 

(3.3) 

where L is the latent heat parameter. Solute must also be conserved so, since C = 0 
in the solid, 

Finally, we make the assumption that the interface is close to equilibrium and use 
(2.1) to approximate 

(3.5) 
so that the interface temperature is equal to the liquidus temperature of the adjacent 
liquid. 

The partial-differential system (3.1)-(3.5) admits a similarity solution with variable 

T(h, t )  = - fC(h+ ,  t ) ,  

'I=- (3.6) 

h(t)  = 2A(Dt)4 (3.7) 

(4Dt)i' 
in which the interface has position 

where the constant A is to be determined. The governing equations reduce to ordinary 
differential equations in the similarity variable, and can be integrated to give 

T(z9 t )  = TB + (Th-TB) erf(ss erf(ss7) A)  (71 < A ) ,  

T ( z ,  t )  = T, + (Th-Tco) erfc ( € 1 7 1 )  (7 > A ) ,  

(3.8a) 

(3.8b) 

(ch-cO) erfc (7) ., A), ( 3 . 8 ~ )  

erfc (el A )  

erfc ( A )  
C(z, t )  = c,+ 
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FIQURE 3. The dashed lines are contours of the normalized extent of the solid region h for the 
parameter values in table l a  and T, = 15 “C. The solid line gives the critical value of TB below 
which supercooling will occur in the liquid. Note that the critical line is asymptotic to the line C, = 0, 
and that i t  diverges slowly away from the liquidus for large values of C,. 

where Th and c h ,  the temperature and concentration in the liquid at the interface, 
are independent of time. The error function erf(z) and its complement erfc (5) are 
defined in Abramowitz & Stegun (1964). There are two non-dimensional parameters 

The three unknowns (Thr Ch, and A) are determined by the three interface conditions 
(3.3)-(3.5). The interface temperature and composition are related simply by (3.5), 

€1, s = ( m 1 ,  s)i. 

while the interface position is found as the root of 

where 

F(z) = dz exp (z2) erfc (z), 

G(z) = dz exp (9) erf(z). 

The driving temperature differences 

(3.10) 

(3.11a) 

(3.11b) 

are illustrated in figure 2. Contours of constant growth rate for fixed T, are shown 
in figure 3. In  addition, graphs of A versus T,, T,, and Co are shown in the many figures 
of $7 where they are compared with the results of the mushy-layer model. More details 
of this solution can be found in Huppert & Worster (1985). 
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4. Constitutional supercooling 
As suggested in the diagrams of figure 2, the temperature of the liquid ahead of 

an advancing flat interface can fall below the local liquidus temperature. This effect 
is termed ‘constitutional supercooling’ since i t  arises primarily due to the build-up 
of solute which depresses the local freezing temperature. It is clear that constitutional 
supercooling will occur in the liquid immediately adjacent to  the interface if 

Now, a plane solidification front advancing into a supercooled pure melt is unstable 
to small perturbations of the interface (Langer 1980). By analogy, i t  was supposed for 
some time that the solidification front in a binary system is unstable once (4.1) is 
satisfied (Rutter & Chalmers 1953). However, Mullins & Sekerka (1964) analysed the 
linear stability of an interface advancing with constant velocity and found 

to be the criterion for instability to  infinitesimal disturbances in the absence of surface 
tension. Once morphological instability occurs the perturbations continue to grow 
to form a region of dendritic or cellular growth which we shall call the ‘mushy layer ’. 

The two inequalities (4.1) and (4.2) do not actually give very different criteria, and 
laboratory experiments have not yet been able to validate one in preference to the 
other as the correct criterion for instability (Sekerka 1973). Hills et al. (1983) claim 
that supercooling always preceeds linear instability and that the interface may be 
unstable to  finite-amplitude disturbances as soon as supercooling occurs. However, 
while we note that supercooling does indeed precede linear instability if 

where y = L/rC , ,  (see Appendix A), a flat interface can be linearly unstable while 
the adjacent liquid is still undersaturated if (4.3) is not satisfied. The latter behaviour 
always occurs if k,  > k, / ( l -ye: /C, , ) ,  and seems likely to  occur quite frequently in 
practice since typically k, > k, and ye: 4 1.  

We use (4.1) as the criterion for a mushy layer to develop, and postpone until $8 
any further discussion of the criterion for morphological instability. In  terms of our 
similarity solution, (4.1) can be written as 

which can be solved simultaneously with (3.10) to  find the value of TB for the onset 
of supercooling. This critical value of TB is displayed in figure 3 as a function of the 
initial concentration Co for a fixed value of T,. 

5. Governing equations for a mush 
We seek a description of a mushy layer that  is independent of the precise 

morphology of the growing dendrites, and that may, therefore, be applied to  a range 
of solidifying systems. The model of Huppert & Worster (1985) can predict some 
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features of the growing mush by considering only global conservation relationships. 
The approach adopted here, which gives a more detailed description of the mush, is 
to formulate equations expressing local conservation of heat and solute on a scale 
that is small compared with the macroscopic dimensions of the system but large 
compared with the typical spacing between dendrites. Implicit in this is an assumption 
that the temperature and the concentration of solute in the interstitial fluid are 
approximately uniform on the inter-dendrite scale. The validity of this and other 
assumptions of the model are discussed in $8. The mush is thus treated as a 
continuum, and its physical properties, specifically the transport coefficients of heat 
and solute, are taken to be functions of the local volume fraction of solid 4. Since 
the solid fraction can vary with space and time, the physical properties of the mush 
are non-constant. The model about to be described was derived by Worster (1983). 
The differential equations can be shown to be a special case of those that Hills et al. 
(1983) obtained using a form of diffusive mixture theory. 

It is assumed, as before, that transport of heat and solute is by diffusion alone. 
However, as the solid fraction increases within the mush, latent heat is released and 
solute is rejected by the growing solid. Therefore, the diffusion equations for the 
temperature T and for the concentration of solute in the interstitial fluid C are forced 
by terms proportional to the rate of change of solid fraction with time. Local 
conservation of heat and solute can be expressed in differential form as 

and 
ac aq5 x- = V*(DxVC)+C-, at at 

respectively, where 
x =  1-4, (5.3) 

is the local liquid fraction, and subscript ' m' attaches to mean properties of the mush. 
The terms psL(aq5/at) and C(a$/at) on the right-hand sides of (5.1) and (5.2) 
respectively express the release of lakent heat into the mush and of solute into the 
interstitial fluid. Without these +,erms, the equations are familiar as diffusion 
equations with non-constant transport coefficients. The derivation of (5.1) and (5.2) 
is most readily performed in integral form where the integrals are taken over 
vanishingly small volumes which, nevertheless, overlap many dendrites. The thermal 
properties of the mush are assumed to be volume-fraction-weighted averages of the 
properties of the individual phases so that 

(5.4) 

and (5.5) 

Batchelor (1974) discusses the validity of these approximate expressions. We note 
that they give exact results for a laminated medium when there is no component of 
the heat flux normal to the planes of the laminates. Since it is found experimentally 
that the primary dendrites are aligned with the mean thermal gradient, (5.4) and (5.5) 
are likely to give reasonable approximations for our present purposes. 

Supercooling ahead of the solidification front occurs essentially because the excess 
solute rejected by the growing solid cannot diffuse away sufficiently rapidly. By 
increasing the surface area of the interface, dendrites serve to enhance the release 
of latent heat and solute. Thus the local temperature is raised, and the local freezing 

km = x E ~  + (1 -x) ks, 
( P c p ) m  = XPI Cp1+ ( 1 - 2) PS c p s -  
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temperature is depressed. Both these effects serve to reduce the level of supercooling. 
Since the convoluted interface can increase its area without bound (neglecting the 
limitations imposed by surface tension and molecular dimensions), we assume that 
the dendrites grow just sufficiently to restore equilibrium throughout the domain 
z > 0. We therefore couple (5.1) and (5.2) via the liquidus relation (2.1). 

Note that there is no reason for q5 to be continuous even in our continuum model. 
For example, in the model analysed in $ 3 , $  jumped from 1 to 0 across the solid/liquid 
interface. Any moving discontinuity in $ results in a delta function in the heat and 
solute production densities, and must therefore be associated with jumps in the 
normal derivatives of T and C across the plane of the discontinuity. The jump 
conditions can be calculated directly by integrating the governing equations over an 
elementary volume enclosing (and collapsing onto) the interface. The heat and solute 
flux conditions are respectively 

ps Lh[x] = - [k, n * V T ] ,  (5.6) 

Ch[X] = -[Dxn.VC], (5.7) 

where [ ] signifies the jump in the enclosed quantity across an interface with normal 
n moving with normal velocity h. Note that (3.3) and (3.4) are a special case of (5.6) 
and (5.7) for a flat, solid/liquid interface. 

This completes the description of our model mush except that, since we have 
introduced a new dependent variable q5, and its first derivative, an extra boundary 
condition or interface condition is needed in order to close the model. The extra 
condition is introduced in the next section when we solve the model for the particular 
geometry described in $3. 

6. Solidification from a plane boundary 
We now present a model of the solidification of an alloy from a plane boundary 

in which a thin solid layer, adjacent to the boundary, is separated from an 
infinitely deep liquid layer by a mushy layer. The model and the governing equations 
applied in each layer are illustrated in figure 4. 

The governing equations admit similarity solutions with the same similarity 
variable given in (3.6). The positions of the solid/mush interface and the mush/liquid 
interface are 

a(t)  = 2h,(Dt)’, b ( t )  = 2hb(Dt)’) (6.1 a, b)  

where A, and A, are constants. Within the solid region the temperature field is given 
by ( 3 . 8 ~ )  with subscript ‘h’  replaced by subscript ‘u’. Similarly, the temperature and 
concentration fields in the liquid region are given by (3 .8b,  c )  with subscript ‘h’ 
replaced by subscript ‘ b ’ .  Thus the results of $3 will provide boundary conditions 
for the mushy layer. 

We use the coupling liquidus relation (2 .1)  to express the two governing equations 
for the mushy layer (5 .1)  and (5 .2)  in terms of the similarity variable 7, and 
manipulate them to yield 

AX’ = - - ( l - € k ) C X ,  km 

k S  
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Liquid (3.1 b, c) 

b(t) 

Solid (3.1 a) 

Cooled boundary 

FIQURE 4. (a) Schematic diagram of solidification from a plane wall once a mushy layer has formed 
showing which equations are used to model each region. ( b )  The trajectory in the phase diagram. 
Note that it lies along the liquidus through the mush, and is tangent to the liquidus at the 
mush/liquid interface. 

where 

The third-order system (6.1)-(6.3) must be solved in ha < 7 < hb with boundary 
conditions applied at the unknown boundary positions ha and A,.  Therefore five 
boundary conditions are needed in all. The flux conditions (5.6) and (5.7) applied at 
the two interfaces give 

where mean quantities are evaluated on the mush side of 
conditions, together with the solutions for the solid and liquid 
out of the five necessary boundary conditions. 

(6.5a) 

(6.5b) 

the intexface. These 
regions, provide four 

Hills et al. (1983) solved a similar model for the constrained growth of an alloy, 
and closed it by insisting that Xb = 1 (i.e. that x is continuous at the mush/liquid 
interface). This condition seems unjustifiable a priori especially given all we have said 
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about x not needing to be continuous anywhere. We favour a condition of marginal 
equilibrium of the liquid 

(Worster 1983). This condition ensures that none of the liquid region is supersaturated, 
and i t  is marginal in the sense that (6.6) gives the smallest temperature gradient 
consistent with complete equilibrium, cf. (4.1). We shall continue to  use the term 
'marginal equilibrium' in this sense; and note again that i t  expresses equilibrium 
according to the phase diagram for a static system but does not ensure stability of 
the solidifying system ($4). The possibility of using a condition of marginal stability 
in lieu of (6.6) is discussed in $8. 

I n  terms of our similarity solution, condition (6.6) can be used to find 

c b  = C o + C i ( A b ) ,  (6.7) 

where Ci(A) is defined in (4.4). The two flux conditions (6.5b) can then be rearranged 
to  yield a quadratic equation, 

for the liquid-fraction x b  a t  the edge of the mushy layer. One of the roots is X b  = 1, 
the boundary condition suggested by Hills et al. (1983). It can be shown (Appendix 
B) to  be the only root in [0,1] if k,  2 k,, and was therefore appropriate for the analysis 
of Hills et al. since they only considered k,  = k,. The other root is X b  = xi where 

It is also shown in Appendix B that if 0 < xi c 1 ,  then using X b  = 1 as the boundary 
condition leads to a physically unreasonable solution, or to  no solution a t  all, of the 
governing equations. Therefore, we take as our boundary Condition 

X b  = xi if 0 < x i  < 1,  
xb  = 1 otherwise. 

Finally, we use (6.5b) to  find 

and express ( 6 . 5 ~ )  as 

(6.10) 

(6.11) 

(6.12) 

(C:, + 2Aa C,) 2, = 0. (6.13) 

The equations (6.2)-(6.4) with boundary conditions (6.7) and (6.10)-(6.13) form a 
closed differential system describing our model mushy layer. 

7. Results 
The differential system formulated in the previous section is rather complicated, 

and we have sought solutions numerically. A shooting scheme was implemented as 
follows. We start by guessing values for A, and A,. Equations (6.2)-(6.4) are then 
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r 

k S  

k, 

L 
D 

P S  

P1 
CPS 
CPl 

(a) Set I 

0.4 
80.0 

1.0 x 10-5 
1.3 x 10-3 
1.3 x 10-3 
1 .o 
1 .o 
1 .o 
1 .o 

(b) Set I1 (NaN03+H,0) 

0.4 
80.0 

1.0 x 10-5 
5.3 x 10-3 
1.3 x 10-3 
0.92 
1 .o 
0.48 
1 .o 

TABLE 1. Parameter values used for the two sets of results 

Units 

"C 
cal g-' 
om2 s-l 
cal g-l s-' "C-' 
cal g-I s-l "C-1 
g 
g cm-3 
cal g-l "C-' 
cal g-' "C-' 

4' 

3 -  

h 

2 -  

- 

12 0 3 6 9 

FIGURE 5. Normalized interface positions as functions of for the parameter values in table 1 a, 
T, = 15 "C, and C, = 14. The solid lines show the position of the flat solid/liquid interface when 
no supersaturation occurs in the liquid, and the positions of the solid/mush interface and the 
mush/liquid interface once a mushy layer forms. The dotted line shows where the flat-interface 
would be if no mushy layer formed when supercooling occurs in the liquid (i.e. for Tl > 1.99). The 
dashed line is the position of the mush/liquid interface predicted by Huppert & Worster, and should 
be compared with A,. Linear instability of the flat interface occurs at = 2.077. 

integrated from 71 = A,, where the boundary conditions are all known explicitly in 
terms of A, via (6.7), (6.10) and (6.11), backwards to 7 = A,. Finally, the left-hand 
sides of (6.12) and (6.13) are used as residuals in a Newton iteration scheme to update 
A, and A,. 

In  the present system there are three independent, dimensionless, physical 
parameters (el, E,, and k l / k ,  for example) as well as three independent, dimensionless, 
external parameters (C,/y, T,/rC,, and q / r C , ,  for example), making six independent 
parameters in all. Since appropriate scales for this system can vary widely depending 
on all these parameters, and since we have found solutions numerically, the equations 
have been left in the form suggested by the original scaling of $3, and no attempt 
at  further approximation has been made. 

It would be unreasonable to present results for all possible combinations of different 
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0 2 4 6 8 

CO 

FIQURE 6. Normalized interface positions as functions of C, for the parameter values in table 1 a, 
T, = 15 "C, and TB = -5 "C. See text for an explanation of the discontinuity in the curve for A,. 

1.5 3.0 

7 

1 0 . 0  x - 1  0 1 - 1  0 1 - 1  0 1 ' - 1  0 1 0.0 - 1  0 1 

(a) C, = 0.4 (b) C,, = 0.5818 (c) Co = 0.5819 ( d )  C,, = 4.0 (e) C, = 14.0 

FIGURE 7. (a)-(d) Profiles of the mush for the parameter values of figure 6 and various values of 
C,. The solid line in the open interval 0 < x < 1 represents the liquid fraction in the mush at  each 
height 1, and has been reflected in the line x = 0. See text for a more complete explanation of these 
diagrams. (e) Profile for system of figure 5 with 

TI = 12°C 

= 12; note the enlarged scale for 1. 

values of the six independent parameters, so we restrict attention to two sets of 
results. The first is for physical properties which are equal in the two phases. This 
reduces the number of dimensionless parameters to four and thus provides a suitable 
starting point for further investigations. The second uses parameter values appropriate 
to the experiments with aqueous solutions of sodium nitrate (NaNO,) reported by 
Huppert & Worster (1985). This allows comparison of the present model with the 
existing experimental results. As far as possible we have kept parameters equal 
between the two sets of results (see table 1 ) .  

Set I .  The physical parameter values for this set of results is given in table 1 (a), 
and results are shown in figures 5-8. In all the results, temperature is measured in 
degrees Celsius, and C measures the weight per cent of the solute rejected by the 
growing solid. We begin in figure 5 with a graph of the positions of the interfaces 
as functions of TI for constant C, and T,. For small values of TI the solution with 
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0 5 10 15 20 
To 

in table 1 a, TB = - 17 "C, and C, = 14. 
FIQURE 8. Normalized interface positions as functions of for the parameter values 

a flat interface described in $3  is the only equilibrium solution. Thereafter, the 
position of the flat interface A is shown by a dotted line. Once the critical value of 

is reached, the interface position bifurcates supercritically to give the normalized 
positions of the solid/mush interface A, and the mush/liquid interface A,. For small 
supercritical values of T,, hb-h is much greater than A - A ,  and the solid fraction 
is small throughout the mush. This is suggestive of the formation of long, narrow 
dendrites in the mush. In figure 5 ,  and in all subsequent similar figures, we show with 
a dashed line the prediction for A, of the model of Huppert & Worster. 

In figure 6 the interface positions are plotted as functions of C, for fixed T, and 
TB. As expected from figure 3, there are two critical points, and they are both 
supercritical bifurcations in C,. The striking feature of this graph is the discontinuity 
in A, near C,  = 0.5819. Some understanding of this behaviour is gained by examining 
the profiles in figure 7 ,  in which the liquid fraction in the mush x is plotted against 
the scaled height 7. The graph, which shows x only in the open interval 0 < x < 1 ,  
has been reflected in the line x = 0, and the area below the graph has been shaded. 
Therefore, if a horizontal line is drawn at a particular height then the fraction of the 
line in the unshaded region represents the liquid fraction at  that height. This is done 
primarily to highlight important features near x = 0. In  addition, each picture might 
be viewed as a vertical cross-section through the solidifying region with the shaded 
area representing solid and the unshaded area representing liquid. The morphology 
of the mush will generally be much more convoluted than shown in figure 7 ,  and will 
vary according to the particular alloy being solidified. However, the diagrams are 
suggestive of the types of morphology that can arise. 

We see that for small supercritical values of C, (figure 7 a )  the solid fraction is small 
throughout the mush; $b is zero, and 4, is small. As C, increases, 4, increases to 1 
(figure 7 b ) .  As C, increases further, 4, remains equal to unity while 4; decreases to 
zero, thus forming a cusp (at C, x 0.581 86, not shown). At this point the system can 
make no distinction between a solid layer and a mush which extends deeply with 
almost zero liquid fraction (figure 7 c ) .  For still higher values of C,  a deep mushy layer 
is required to accommodate rejected solute which cannot diffuse away very quickly. 
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FIQURE 9. Normalized interface positions as functions of for the parameter values in table 1 b, 
T, = 15 "C, and C, = 14. Linear instability of the flat interface occurs at = 0.72. The circles are 
data from the experiments of Huppert & Worster. This graph should be compared with that in 
figure 5. 
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.................... 

- - 
0.0405 
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For moderate to large values of C, we recover a structure, shown in figure 7 d ,  similar 
to (but deeper than) that in figure 7 a .  The structure of figure 7 d  is the one appropriate 
throughout the supercritical region of figure 5 ;  for example, see figure 7 e .  

Finally, in figure 8, we show the interface positions as functions of To for fixed values 
of C, and TB. The critical point of this plot is a long way to the right of the figure; 
the important feature here is the behaviour for small values of T,. There is a mild 
(logarithmic) singularity in A, as T , + O  (Worster 1983) which suggests an infinite 
growth rate for the mush. This situation is akin to  the growth of dendrites into a 
supercooled pure melt (Langer 1980) and results because in this limit there is no 
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0.8 5.0 

0 
x - 1  0 1 - 1  0 1 - 1  0 1 - 1  0 I - 1  0 1 

(a) TI = 1.719 (b) TI = 1.696 (c) T,  = 1.719 ( d )  T,  = 1.915 (e) TI = 12.0 
(lower branch) (upper branch) 

FIGURE 11. Profiles of the mush for various values of c. The parameter values are the same as 
for figure 9. Note the different scales for 7 between figures (a)-@) and figure ( e ) .  

L o  
8 1 I I 

- 

4 '  

0 10 20 30 40 

co 
FIGURE 12. Normalized interface positions as functions of C, for the parameter values in table 1 b, 
T, = 15 "C, and TB = - 17 "C. The circles are data from the experiments of Huppert & Worster 
(1985). 

thermal gradient in the liquid to inhibit growth of the mush. The growth can no longer 
be controlled by diffusion alone, and either the effects of surface energy or of 
attachment kinetics must be incorporated into the model. In either case, i t  would 
be necessary to know more about the detailed morphology of the mush, and a simple 
one-dimensional model such as the one considered here may not be sufficient. 

Set 11. Here we present results using physical parameters appropriate to a solution 
of sodium nitrate in water (table 1 b ) ,  where C measures the weight per cent of NaNO,. 
Notice, from the values in table 1, that the only parameters to have changed from 
set I are k,, p,, and Cps.  

for fixed C,, and 
T,, should be compared with figure 5.  The principal difference is the region in the 
vicinity of the critical point which is expanded in figure 10. In this case, there is a 
subcritical bifurcation so that equilibrium solutions to the model system exist for 
values of T, less than the critical value for supercooling to occur. Notice also that 

Figure 9, which shows the interface positions as functions of 
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the curve for A, does not join with the critical point. From figure 11 we see that, in 
the vicinity of the critical point, the solid fraction is large (near 1) throughout the 
mush and, in particular q5b is not zero. This seems to suggest the formation of deep 
cells rather than dendrites. Figure 11 ( d )  shows the point of transition from X b  = xi 
to xb = 1. The structure of the mush for large values of (figure 11 e) is similar to 
that for set I except that 9, = 1 in set I1 but not in set I .  

Finally, figure 12 shows the interface positions as functions of C, with the values 
of TB and T, held fixed. In figures 9 and 12 we have included data points from the 
experiments of Huppert & Worster (1985). There is clearly good agreement between 
the present model, the theoretical model of Huppert & Worster, and their experimental 
data. 

8. Discussion 
The present model fits the data we have available just as well as, though not 

appreciably better than, the model of Huppert & Worster. However, the models differ 
significantly in some other regions of parameter space for which we have no data, 
so a critique of the individual merits of the two models seems in order. 

There are three major assumptions in the present model: that the mush can be 
treated as a continuum; that there is no convective transport of heat or solute; and 
that the system is in a state of marginal equilibrium. The first assumption is common 
to both models, and must be intrinsic to any model of mushy zones. It would seem 
a reasonable approximation for a fully developed mush in which the solid/liquid 
interface is highly convoluted, but is questionable near the critical points where the 
interface may only be slightly corrugated. 

The bulk temperature and solute fields are individually statically stable to 
convective motion if the system is cooled at a lower horizontal boundary and if the 
light component of the alloy is being solidified. Lateral variations on a sub-pore scale 
could lead to convection of the interstitial fluid, but the existence of the stable 
bulk-density gradient can confine the convection to horizontal buoyancy layers 
(Veronis 1970; Martin & Kauffman 1974). Therefore, such convection is likely to 
enhance horizontal homogeneity of the interstitial liquid while not contributing 
significantly to the vertical transport of heat or solute. 

The condition of marginal equilibrium is appealing due to its simple physical 
interpretation which seems at once natural and plausible. It suffers in that it produces 
finite-amplitude results which do not connect with the critical point for linear 
instability. This could be remedied by applying a condition of marginal stability - a 
philosophy proposed by Langer (1980) to determine the growth of a single dendrite. 
However, such a constraint would presumably need to be derived from a stability 
analysis using the model equations for the mush whose validity is in question at small 
amplitudes. It is likely that there will always be some difficulty matching results for 
small amplitudes obtained by following the solid/liquid interface precisely with those 
of any model which treats the mush as a continuum. 

Despite these remarks, the present model may have important consequences 
relating to the global stability of a flat interface. In set I (figure 5 )  supercooling 
precedes linear instability. The existence of our finite-amplitude solutions for values 
of q below the linear critical point suggests the possibility of a subcritical bifurcation 
of the stability curve. The fact that our solutions bifurcate supercritically suggests 
that, in this case, the onset of supercooling gives a lower bound for the point of global 
marginal stability. By contrast, in set I1 (figure 9) the value of q at marginal linear 
stability is lower not only than the point of marginal equilibrium but also than the 
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least value of T, for which our model solutions exist. It is likely, therefore, that the 
details of the present model near the bifurcation point (figure 10) bear little relation 
to observed phenomena. In this case, there is no evidence to suggest that the stability 
curve is other than supercritical, and that instability first occurs at the linear critical 
point. 

The key approximation in the model of Huppert & Worster is that solid fraction 
is constant throughout the mush. Thermal transport is then accurately modelled with 
a diffusion equation while the solute field is required to satisfy the liquidus relation 
(2.1). Together, these constraints imply a large transport of solute - larger than can 
be achieved by diffusion alone. While this transport could, conceivably, arise due to 
convection of the interstitial fluid, we have argued against such convective transport, 
indeed the present results indicate that none is needed to account for the experimental 
observations. However, the assumption of constant solid fraction really implies just 
that the bulk of the latent-heat and solute release occurs at or near the mush/liquid 
interface. In other words, that the growth of new solid is most rapid near the edge 
of the crystals. Now, the release of latent heat and of solute within the mush are each 
proportional to 74'. Although figures 7 (e) and 11 (e) look similar, close examination 
reveals that a greater proportion of the total release takes place near the top of the 
mush in the latter case. Numerical calculations show that 42 yo of the total release 
occurs in the top tenth of the mushy layer of figure 11 ( e )  but only 27 % occurs in the 
top tenth of the layer of figure 7(e). This seems to be the reason for the better 
agreement between the present theory and that of Huppert t Worster seen in figure 
9 compared to that seen in figure 5. Thus, if we use the present model as a benchmark, 
we see that the model of Huppert t Worster is more plausible in set 11, when 
K, X 1 0 K ~ .  

9. Conclusion 
The model equations, which are based on reasonable physical hypotheses, accurately 

predict existing experimental observations. The structure of the mushy layer varies 
enormously with the physical parameters of the system, and the layer is found to 
occupy a significant fraction of the solidifying region if the initial concentration (of 
contaminant) is too high. The simpler model of Huppert t Worster (1985) gives 
results for the growth rate of the mushy layer with less computational effort, and 
comparisons of the two models suggest that their model may be most accurate for 
large values of the ratio K,/K=. It is hoped that the richness of behaviour resulting 
from the present model will prompt further experimental investigations of its range 
of validity. 

I am indebted to H. E. Huppert whose careful experiments and subsequent 
discussions encouraged me to complete this investigation. I would also like to thank 
him, A. C. Fowler and R. C. Kerr, for their critical reading of the manuscript. 

Appendix A 
We find a condition under which the liquid adjacent to a growing, flat interface 

must be supercooled in order for the interface to be morphologically unstable. 
Equation (3.3) is used to eliminate (aT/az)h- from the condition for linear instability 
(4.2), which becomes 
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Comparing this with condition (4.1) shows that supercooling precedes instability if 

which can be rearranged to yield 

This is re-expressed in terms of the similarity solution as 

which is the same as (4.3) once Cf, is replaced by its expression given in (3.9). 

Appendix B 
The boundary condition on the liquid fraction x at the mush/liquid interface was 

derived in this paper from a condition of marginal equilibrium. Here, we show that 
this implies a continuous change in liquid fraction across the interface, i.e. xb = 1, 
if k, 2 k,. The condition for marginal equilibrium leads to the quadratic equation (6.8) 
for Xb, which has roots xb = 1 and Xb = xi where 

(equation (6.9)). Now, C,(A) is a decreasing function of A ,  while Cf,(A) is an increasing 
function of A. Let A, be the critical height of a flat interface at  which supercooling 
first occurs in the liquid. Then, since hb for a mush is always greater than A,, 

Ci(Ab) < Ci(Ac) = Cfi(Ac) < cfi(Ab), 

so the numerator of (6.9) is always negative. Therefore, xi is negative if the 
denominator of 16.9) 

(B 1) 

is positive, and vice versa. In  particular, if k, 2 ks then xi is negative, and we must 
choose Xb = 1 as the physical root of (6.8). 

Here, we show that only one of the roots of (6.8), X b  = 1 or xb = xi, can lead to 
a physical solution of the governing differential equations for each particular set of 
external parameters. If xb = 1 then x;, must be positive in order for x to be less than 
unity in the mush (7 < Ab). Note first that the solute flux must always be away from 
the cooled boundary, so C' < 0 everywhere. Equation (6.2) then shows that x 
increases with 7 (decreases with depth into the mush) provided the factor A ,  which 
premultiplies the highest derivatives, is positive. An expression for A is given in (6.4). 
At the mush/liquid interface it takes the value 

Expressions (6.11) for CL and (5.4) for k, can be used to rewrite (B 2) as 
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while expressions (6.7) for cb and (6.9) for xi can be used to obtain 

50 1 

Finally, setting x b  = 1 produces 

Now, the discussion leading to (B 1) explains that the term in square brackets of (B 5 )  
is positive if xi is negative and vice versa. If xi is less than zero or greater than one, 
we must choose xb = 1 as the root of (6.8) since x is a liquid fraction. On the other 
hand, if 0 < xi < 1 then (B 5 )  shows that X b  = 1 makes A ,  negative, so we must choose 
X b  = xi* 
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