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Abstract The form of the solidified product in containerless solidification is sen-
sitive to conditions at the tri-junction between the solid, the melt and
the surrounding vapor. We consider experimentally and analytically
the simple system of a liquid droplet srlidifying on a cold plate. As

o opposed to the one-dimensional analysis of Anderson et al. (1996),
our axisymmetric boundary integral analysis shows that a simple non-
dynamic condition at the tri-junction is sufficient. A simple static zero
growth angle of zero along with a fluid that expands upon freezing pro-
duces a frozen drop that has an inflection point near a cusp that forms
at the symmetry axis. Some dynamics of the droplet are considered
with discussion of possible micro droplet ejection at the final moment
of solidification.

Introduction

Containerless solidification is one of the most common methods of
growing crystals from melts. Many such systems (e.g. Czochralski
crystal growth, float-zone processing, and laser welding) have complex
geometries with free boundaries that are governed in part by the tri-
junction condition, where the solid, its melt, and a vapour phase meet.
By influencing the shape of the liquid-vapour meniscus, the tri-junction
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can directly or indirectly (in conjunction with capillary- or buoyancy-
driven convection) affect the crystal purity, uniformity and the presence
of defects. We simplify the tri-junction conditions (actually, all can be
written as a one-parametric family in this case) in a simple model of the
solidifying sessile water droplet (figure 1). The curious shape of the so-
lidified water droplet provides a simple test of the tri-junction condition
that can be used in theoretical analyses of more complicated systems.
We discover that using a more realistic model for the solidifying inter-
face geometry allows a simpler tri-junction model that still compares
well with experiments.

Figure 1 The initial water droplet and the final frozen form (from Anderson et al.
(1996)). The plate is cooled and freezes the droplet from below. The sessile water
drop is approximately 4 mm high.

We choose to concentrate on the problem of pure water freezing on a
perfectly conducting surface for several reasons:

m it provides a simple generic test of contact line models during phase
change,

m the large latent heat of the solidification process allows the use of
the Laplace equation for the field equation,

m the expansion on freezing allows unusual droplet shapes and kine-
matics, and

m these unusual shapes may play a very important tribological role
for freezing rain on roads or aerodynamic role for freezing rain on
wing surfaces.

This study revisits that of Anderson et al. (1996), except that the
flat solidifying interface assumption is no longer imposed. The reasons
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for relieving the flat interface function are several-fold. The most impor-
tant is to attempt to fit the data with a simpler tri-junction condition.
The relaxation of this restriction is important in that the flat interface
assumption violates a local analysis near the tri-junction condition. Ad-
ditionally, this newer model will allow studying most materials that con-
tract upon solidifying, model possible droplet ejection more accurately,
and determine if a crater can form under these conditions.

1. PROBLEM FORMULATION

The model geometry follows those of previous authors (Satunkin et
al. (1980), Sanz et al. (1987)) and is shown in figure 2. The solidifying
droplet is axisymmetric with known initial contact angle ¢, and liquid
volume V,. We no longer assume the solidification front to be planar as
in Anderson et al. (1996). Hence, ¢ is no longer the apparent contact
angle, although ¢ still defines the angle between the horizontal and the
tangent to liquid-vapour interface at the tri-junction location.

vapour
or air

on z=Z(rt)
singular

l H Tn =0
% solid on 2=G(r.)
r ' T= o”.\

cold wall

1 >

Figure 2 Problem schematic. All variables are dimensionless. In particular, the
wetted drop radius is scaled to unity.

The shape of the solidified droplet is determined by the evolution of
the solid-liquid interface location Z(r,t) and the tri-junction position
(Re, Z.). The tri-junction condition depends on R, and the volume of
the liquid and solid portion of the droplet V; and Vs through a global
conservation of mass

Vs + Vi =V,, (24.1)
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‘where p = p,/p; is the solid to liquid density ratio. Hence, p is less than
1 for a material that expands, like water. Second, the shape of the liquid-
vapour interface, a free boundary subject to the effects of capillarity and
gravity, imposes a relation between r,, V and ¢ at the contact (or tri-
junction) line. These two relations are sufficient to determine the shape
of the solidified droplet once ¢ is known. This inclination at the contact
line is the focus of our study and is described in the next section.

For simplicity and clarity, we shall focus almost exclusively on the
case where gravitational effects are neglected. We assume the freezing
of the drop is axisymmetric and choose a coordinate system with its
origin on the cold surface with z pointing upwards and r pointing away
from the symmetry axis as shown in figure 2.

Length time, mass, and temperature are scaled by ry,, psLr2 /(kAT),
PsT w, and AT = T,~Tp,, respectively. Here r, is the wetted drop radius,
ps 1s the solid density, L is the specific latent heat, k is the solid thermal
conductivity, and T, and T;, are the cold plate and melt temperature,
respectively. We assume that the melt temperature is independent of the
interface speed (equilibrium thermodynamics) and surface curvature (no
Gibbs Thompson eﬁ‘ect) The standard heat equation then becomes the
governing (dimensionless) equation

T;+ St VT =0, (24.2)

where the Stefan number St = L/(cAT) is typically very large (c is the
specific heat of the solid). The subscripts r, z, ¢, n represent partial
differentiation. In this study, we choose to examine only the case of
St — o00. The resulting Laplace equation is much more a.menable to a
simple boundary integral analysis.

The boundary conditions are

T =0 on z=0,
T =1 on z=2Z(nrt), and (24.3)
Tn+BiT = 0 on z=((nt),

on the cooling surface, the solidifying interface, and solid-vapour inter-
face, respectively. Here the Biot Number is Bi = hry/k, where h is
the heat transfer coefficient to the vapour region environment that for
simplicity is assumed to be at the same temperature as the cold plate.
The Biot number is often small and will be set to zero here (although
this condition can easily be relaxed). The final boundary condition for
the solid region describes the evolution of the solidifying interface:

r; -ty = Tn(z = Z(r,t) , (24.4)
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where r = (r, Z(r,t)) is a position vector on the interface, and n is the
distance outwardly normal from the interface. This kinematic boundary
condition is a consequence of energy conservation at the interface with
phase change without heat loss from the interface to the liquid, which is
assumed to be at the melt temperature. The constant of proportionality
is unity due to the choice of scaling. It should be noted that Z could
become double-valued when p > 1. This does not cause difficulties
because the interface is represented implicitly in the algorithm.

2. TRI-JUNCTION CONDITION

The problem formulation requires the description of the local move-
ment of the tri-junction denoted by (R, Z¢) in figure 2. As in Anderson
et al. (1996), this can be described by referring its movement direction
to the angle of the solid-vapour interface or the liquid-solid interface. We
define the angle of the liquid-vapour interface compared to the horizon-
tal by ¢. However, unlike Anderson et al. (1996), since the solid-liquid
interface is no longer horizontal, ¢ is not the contact angle. Instead, the
contact angle is ¢ + tan~! Z,(r = R,). Some experimental evidence and
thermodynamic theory suggest (Satunkin et al. (1980), Bardsley et al.
(1974), Surek & Chalmers (1975)) that the motion of the tri-junction
is determined by the advance angle ¢;, representing the change in slope
of the solid-vapour interface to the liquid-vapour interface. Unless oth-
erwise specified, we use a zero advance angle corresponding to a fixed
contact line. Then, when the density ratio p = ps/p = 1, no fluid motion
occurs. Values for ¢; of 5 to 15 degrees are seen for various solidifying
substances. _

All tri-junction conditions depend either directly or indirectly on the
advance angle ¢ at the corner, including when the contact angle is pre-
scribed (see local analysis below). If the Bond number Bo = pigrs /o is
small, where g is the gravitational acceleration and o is the liquid-vapour
surface tension), then gravity can be neglected and surface tension re-
quires a spherical cap liquid-vapour interface. Straightforward geometric
analysis relates the liquid cap volume V,, the radius R, of its base and
the apparent contact angle ¢ via

L = 2R3 (1 — cos ¢)'2(31 + 3 cos ¢). (245)
3 sin® ¢

While in Anderson et al. (1996), V. represented the total fluid volume,
here V; represents the fluid volume above Z,. as shown above the dashed
horizonta] line in figure 2. Since the fluid-solid interface is nonplanar, V4
can become negative when p > 1. This indicates that the liquid-vapour
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interface is concave, but (24.5) still holds. V_ is determined from simple
numerical quadrature.

When the Bond number can no longer be considered negligible, ¢ =
tan~!(H,) is determined after the interface shape is numerically inte-
grated from

1 rH,
Bo(H - Z.) - P—“(m) ) (24.6)

as in Anderson et al. (1996). Here, p is a constant pressure after the
hydrostatic term is eliminated. Even a small Bond number expansion
requires numerical integration. Some comparisons are made to experi-
ments in this study where the Bond number would have a minor effect.
Bond number is set identically to zero since its effect is comparable to
the experimental error, and the effects of other assumptions here (specif-
ically the assumption of an adiabatic solid-vapour interface).

3. LOCAL ANALYSES

Several local solutions will aid the computational analysis. These
include an analysis near the tri-junction line, and the behaviours for
small and late time.

3.1. HEAT FLOW AT TRI-J UNCTION
CONDITION

Since the tri-junction condition is important to the ultimate shape of
the frozen droplet, an examination of the heat flow near this location is
appropriate. The local solution near the contact line can be considered
to be planar except when . — 0. A local schematic near the tri-junction
condition is shown in figure 3. A local (r',#') polar coordinate system
is centered at the tri-junction (R, Z,) with 8 measured from the solid-
vapour interface toward the solid-liquid interface at 6’ = a.

The solution for the resulting local Laplacian operator is of the form
T = r*f(¢"). The Neumann boundary condition at & = 0 and the
inhomogeneity of the Dirichlet condition are satisfied by

T =r cos A +1, as  (r,2) = (Re, Z) (24.7)

where the most dominant behaviour is for A = 7/(2c). For acute angles
a < m/2, X is less than unity, and the infinite flux at the corner leads
to more rapid solidification causing a to grow. Obtuse angles lead to
A > 1, where heat flux and hence solidification rate increase from the
corner, causing o to decrease. In other words, the model cannot support
a singularity and hence a heat flux line (adiabatic surface or in this case,
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Figure § Local analysis.

the solid-vapour interface) is orthogonal to an isotherm (the solid-liquid
interface). Hence o = /2, and the simple solution of the flat interface
of Anderson et al. (1996) leads to a contradiction locally.

The corner angle o = 7/2 has other implications. It means that there
is a simple relationship between the growth angle and the contact angle.
The contact angle becomes ¢’ + 7/2. Hence, the pinned contact line
condition corresponds to a 90-degree contact angle. '

On the other hand, the isothermal cold wall can support a singularity
(infinite heat flux) at (r,z) = (1,0) if the wall has very large thermal
conductivity. Then the temperature field is singular when ¢(r = ry) is
not /2. This is evidenced by the isotherms not being orthogonal to the
adiabatic surface (heat flux line). This leads to computational difficulties
. that will be discussed later.

3.2. SMALL TIME BEHAVIOUR

For small time after the drop has hit the surface, the solidifying in-
terface is very close to the cold surface leading to rapid heat transfer
and growth of the solid ice layer. Our computations must start with an
initial condition that already has a small but finite-thickness solidifying
interface. A planar solidifying layer grows with the square root of time
(Worster (2001)). For small time, the solidifying surface is nearly paral-
lel to the cold wall. From the previous local analysis at the tri-junction
line, the solid-liquid interface would have to quickly adjust to meet the
adiabatic solid-vapour interface orthogonally. We have formulated a
simple initial interface condition such that

Z = Zo+ (% — Zo){explb(r — Re)] + exp[-b(r + Re)]}, ~ (24.8)
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where Z; and Z, are chosen to approximate the edge and center heights
of the solidifying layer, and b is chosen to satisfy the orthogonality condi-
tion at the adiabatic surface. This form also satisfies the smooth axisym-
metry condition at 7 = 0. Initially, bR, > 1, and hence the interface is
nearly flat away from the corner and Z, is a good approximation for Z
at 7 = 0. While (24.8) is not a similarity solution, our computations will
show that the final solution is relatively independent of the parameters
in (24.8) if the initial solidified region is small. This independence is
important because a small-time solution would not be a good model of
the experimental drop application process. In this sense, the focus of
this paper is different than the early freezing process while the drop is
still spreading of Schiaffino & Sonin (1997).

3.3. LATE TIME BEHAVIOUR NEAR TOTAL
SOLIDIFICATION

When the droplet has nearly solidified, the solidification rate again
is large as the interface area shrinks to zero. Then the assumption of
a quasi-static liquid and equilibrium thermodynamics may no longer be
justified. Also, the assumption that all heat flows into the solidifying
interface without escaping to the environment becomes more question-
able. If the solidifying surface develops a cone (¢ > 0 as R, — 0), this
problem is similar to that of the last moments of spherically symmetric
freezing drop as studied by Soward (1980). This is owing to the adiabatic
surfaces emanating radially from the cone apex. Hence the fluid-solid
interface is expected to become spherical as R, — 0.

Here we examine the problem more simply and assume either a planar
or spherical interface and assume a cusp forms so that a local analysis
can be found. These two shapes are appropriate to examine because
the interface starts out nearly flat and stays fairly flat for much of the
solidifying process. In the latter stages, the interface becomes spherical
with intermediate stages that look like ellipsoids with varying aspect
ratios although we examine only the two limiting cases here.

There are three volumes to consider as shown in figure 4: V, for the
liquid spherical cap volume above Z., V_ for that of the liquid reservoir
below Z, (for a spherical liquid-solid interface, and V, for the portion of
the sphere with solid angle 6 (or cone above Z, and the spherical cap
V_). The volume V, is found from (24.5) with ¢ replaced by % + ¢; — 6.
Since the liquid-solid interface must be orthogonal to the conical surface,
V_ is found from (24.5) with ¢ replaced by #.
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Figure 4 Cone formation geometry.

Here § = /2 — ¢ + ¢ as r — 0. We simply use conservation of mass
(24.1) and include V_ for the flat interface case and V_ as a liquid for
the spherically-shaped interface. The results are shown in figure 5.
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Figure 5 Cusp angle formation as a function of density ratio. The curve made of
closely spaced plus signs is the flat interface model and is identical to a portion of
the dashed line of figure 4 in Anderson et al. (1996). The solid line and that line
composed of circles are for the spherically-shaped interface with growth angle ¢’ of
0 and 10 degrees, respectively. Note that conical peaks are predicted when 6 < /2
and conical dimples are predicted for 6 > /2. For the case with ¢’ = 0 (the fixed
contact line condition), this transition from dimples to peaks occurs exactly at p = 1.
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We assume: 1) that the solid-vapour interface is adiabatic, 2) the
specific heat of the solid is negligible compared to the latent heat, and
3) the heat transfer at the cold plate is relatively constant in the final
short moments of the freezing process. Hence the heat flux to the solid-
ifying interface is constant as is the volumetric solidification rate. This
leads to -
Zy, = const(Zy — Z,) "%, (24.9)
where Z, is the ultimate cone apex location. If the liquid volume is
proportional to (Z,— Z,)? or R? where R is an effective “drop radius”, the
kinetic energy of the liquid (proportional to volume times speed squared)
increases as the drop radius decreases like 1/R. Hence eventually, there
could be enough energy to convert into the extra surface tension energy
caused by drop detachment that would be proportional to R2. However,
it would seem that sudden deceleration of the solidification would be
necessary to catapult, rather than bin the drop to the solid. It is also
likely that surface contamination would play an important role in the
final moments®.

4. NUMERICAL METHOD

4.1. AXISYMMETRIC BOUNDARY
INTEGRAL METHOD

When the time dependent term in the heat equation can be ignored,
the resulting Laplacian equation can be readily handled by boundary
integral techniques. The free space three-dimensional Green’s function

is

1
Al — x|’
where r is the evaluation point and r, is the singular location. Then
Green’s identity gives an integral equation

T(r,) = / TG, — T,G dS, (24.11)

G = (24.10)

oY%
27
where the integration is principal valued over the boundary of the solu-
tion domain and « is the solid angle of the surface at r = r,.
The axisymmetric problem can be integrated analytically in the az-
imuthal direction to give (Zhou & Graebel (1990))

%T(ro) - / Ty — ToJ dS, (24.12)
where X
J = —rk(m) (24.13)

w[(r +70)2 + (2 — 2,)2]1/2
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to form a principal-valued line integral instead of the surface integral and
« is the included angle equal to 7 except at corners of the domain. Here,
ro = (o, %) and K is the elliptic integral as defined by Abramowitz &
Stegun (1970) with argument m given by

4rr,

= . 24.14
il TN E PEPAL (2419

Solving (24.12) also requires the gradient of J that becomes

VJ = ! X

w[(r 4 10)2 + (2 — 2,)2]3/2

E(m) 1% —12—(2—2)?

[ = - (24.15)

(r+710)2+ (2 — Z0)? E(m)
9 m ’T'(Z - ZO)] .

The modified Green’s function J has a logarithmic singularity as r—r, —
0. The singularity of VJ is greater, but the expected 1/|r—r,| singularity
does not contribute except at corners of the contour integral.

The contour integral in (24.12) can be limited to the solid-vapour and
the liquid-vapour interfaces if images are used to automatically satisfy
the Dirichlet boundary condition at z = 0. This is accomplished by
adding a term identical to J with r, = (7o, 2,) replaced by (7o, —Zo)-

The evaluation of any traditional boundary integral is complicated by
the integration of the singular kernels. Numerical evaluation of the sin-
gular terms is insufficiently accurate so that analytic subtraction of the
singularity is usually required. This analysis is tedious, especially when
the singularity is subtracted out globally instead of just locally within
one mesh spacing of the singularity. A global subtraction is desirable
because mesh refinement will mean that the integration will be nearly
singular for several mesh points about the singularity. We had devel-
oped a boundary integral method with local singularity subtraction, but
a more global approach turned out to be very complicated and had too
many special cases (depending on various branch cuts, etc.) to be imple-
mented successfully in an algorithm. The method with local singularity
subtraction turned out to be first-order accurate for very simple test
cases: a linear temperature profile in the axial direction for a cylindrical

domain.

4.2. DESINGULARIZED METHOD

Since our problem (considering the local analysis above) is not singular
with the possible exception at wall-ice-vapour triple point at r = (1,0),

K(m) ,
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a simpler method is suggested. The standard boundary integral method
can be thought of as a continuous distribution of sources G' and dipoles
VG on the contour. If the solution is not expected to be singular, this
distribution can be moved away from the contour outside of the solu-
tion domain. Once these singularities are away from the contour, it is
nearly equivalent to consider them as point sources so that integration
is replaced by simple summation. ‘

This technique has been used successfully for some time in two- and
three-dimensions (von Karman (1930)). A desingularized solution me-
thod can involve systematically placing the singularities just outside
the solution domain (Webster (1975)) or having the singularity location
determined as part of the solution (Han & Olson (1987)). This second
approach makes the solution of the potential problem nonlinear and
hence less attractive. Instead we will use a method similar to that in
Cao et al. (1991) that places the singularities outside the domain that
are proportional to the local mesh spacing.

Here, the singularity is an axisymmetric ring source and its image.
The solution is then constructed using the singularity in (24.13)

il —rK(m) ,
T= ZZ; a; [w[('r oy + (2 = 20172 + 1mage] : (24.16)

The normal derivative can be formed from the gradient as found in
(24.15). We form an N by N algebraic system by evaluating known
quantities at IV locations along the solid-vapour (7},) and solid-liquid (T°)
interfaces to find the unknown source strengths a;. Then, the unknown
quantities of the interface can be determined a posteori. In fact, it is
possible and sometimes desirable, to form an over-determined system by
adding more evaluation points while keeping the number of singularities
constant.

The location of the singularities is important and requires careful
study. We have opted to place one for each node point on the contour.
We place them on the perpendicular bisectors between adjacent nodes,

at a distance
d =[4AS (24.17)

away from piecewise-linear representation of the contour as shown in
figure 2. An additional singularity is placed at the midpoint of the
two singularities closest to the corner at (R, Z.) to keep the system
determinant since we know both a Dirichlet and Neuman condition at
the corner.

In keeping with the approach of Cao et al. (1991), we increase 4 with
refinement to ensure proper “quadrature” by the summation procedure.
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A simple evaluation of the very simple test case with a linear temperature
profile in the axial direction for a cylindrical domain showed exponential
accuracy with mesh refinement, especially with large desingularization
distances. This is to be expected as one can solve the test case singularity
(and its image) if it is placed a large distance above the cylinder. -

A more realistic test case involves a contour similar to that found
during a simulation. We have determined that the expression (24.8) is
a fair representation of the interface for much of the freezing process.
We started out with A = 0.5 and p = 1 and found that appropriate
values approximately halfway through the freezing process were Ze =
0.05, Z, = 0.02 (b determined from the orthogonality condition) fit the
interface contour with minimal error.

Since the solution of the differential equation is “exact”, the accuracy
of the method can be measured by determining the error in satisfying
boundary conditions on the boundary other than at collocation points
(where the error should be zero if M = N ). Naturally, an overdetermined
method would minimize this “residual”, and we found it to be the case
here. However, the accuracy change was minimal and it turned out to
cause a zigzag instability in the time-marching program later. Since the
time-marching solution is most critically affected by errors near (Re, Ze),
we used the boundary condition error at the midpoint between the corner
node and an adjacent node on the adiabatic or solidifying interface. We
found that this convergence was roughly fourth order.

4.3. TIME INTEGRATION AND NODAL
MOVEMENT

We use a standard fourth-order Runge-Kutta algorithm to march the
resulting system of ordinary differential equations for updating the so-
lidifying interface. The boundary condition effectively only determines
the normal component of nodal movement, except for the tri-junction
node that has an extra condition.

It was important to have a tangential component to this movement in
order to keep constant nodal spacing on that surface. Rather than move
the nodes on the solid-vapour surface in a similar fashion, we found that
it was better to keep these nodes stationary and then add one node for
each time step at the tri-junction point.

Numerical integration of the drop volume showed that mass was con-
served to within one part in 10°. The time step was chosen so that
nearly all of this error was due to special discretization.
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Figure 6 The shape of the solidifying droplet when p = 0.9, A = 1. The dashed line
shows the droplet shape if p = 1.

5. NUMERICAL RESULTS

Figure 6 shows a typical computation for a drop that starts as a
hemispherical sessile drop and expands upon freezing. What is shown
is a time sequence of solid-liquid interfaces from the centerline to the
triple point. We see that the shape of the solidified droplet (as shown by
the history of triple point locations) forms a cusp, with the angle of the
solid-vapour interface approaching a constant for late times when the
droplet is nearly solidified. The computations become difficult as the
node spacing on the liquid-solid interface becomes small for late time.

Figure 7 is a similar curve except the original aspect ratio is 4 = 0.5,
that is the initial height of the sessile drop is one-half its radius. This
shows that the liquid-solid interface stays nearly flat for much of the
freezing process. However, it always curves upward near the triple point
so that it satisfies the local condition there. This too, approaches a cusp
with constant angle at late times. Figure 8 is an enlargement of the
cusp region shown in figure 7. This shows that the liquid-solid interface
approaches a spherical cap shape at late times when a cusp forms. A
similar figure when a cusp does not form (A = 0.5, p = 1,¢ = 0 is not
shown, but the surface appears to form an ellipsoid with an aspect ration
of approximately 2.5.

The drop kinematics are shown in figure 9 as a function of time. The
vertical derivatives of the top of the drop, the base of the liquid drop,
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Figure 7 The shape of the solidifying droplet when p = 0.9, A =0.5.
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Figure 8 A close-up of the apex in figure 7 shows that the solidifying interface is
nearly spherical when a cusp forms.

and the triple point (Zt, Zo, ZC, respectively) are shown along with
the asymptotic trends predicted in sections 3.2 and 3.3. The vertical
velocities of each point becomes infinite at ¢ =0 and at the final moment
of freezing. _

Dimples can form if the material contracts upon freezing p > 1 (figure
10) or if the growth angle is negative (figure 11). These computations




224  INTERACTIVE DYNAMICS CONVECTION/SOLIDIFICATION

00—t —
! £
N, i
Y, i
10 EN I A Lt E
e vl
\ T —-:__ ....... - :_L-'-.' ". /
1 T ,/
.:\ ,_,--'/ 3
21 s
[ 0.02 004 008 008 01 012
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Figure 10 Corner Coordinates versus R, for A = 0.5 and p =1.05. — ¢, — - - Z,

- ++ Z;. The extrapoloation of the angle to R, = 0 shows that a dimple can form.

are even more difficult at late time than those that form a dimple. The
dimple is not that pronounced, but can be seen by extrapolating the
curve for ¢ tor =0.
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Z.. The extrapoloation of the angle to R. =0 shows that a dimple can form.

CONCLUSIONS

The following are the conclusions for the simple tri-junction condition
of constant growth angle (usually ¢ = 0):

Cusps form when the flat interface assumption relaxed and instead
computed with an axisymmetric model for either of two cases: the
density ratio p < 1 (as in water) or when the growth angle ¢; > 0
(which may be unphysical). -

A dimple can form for opposite case for either p or ¢;.

Dropping the flat solidifying interface assumption causes the solid-
vapour and solid-liquid interface to meet at right angles at the
contact line, effectively eliminating the heat-transfer contradiction

of the earlier model.

The interface is fairly flat early, and inflexion points occur late,
near the axis of symmetry when p < 1.

When a cusp forms at late time for water, a conical approach
of the solid-vapour surface forms with a spherical cap solidifying
interface.

Flat and dimpled droplets have ellipsoidal interfaces. For p = 1,
this ellipsoid has 2.5 for major to minor radii.




226  INTERACTIVE DYNAMICS CONVECTION/SOLIDIFICATION

m An experimental comparison can be made with Anderson et al.
(1996) by setting A = 0.46, p = .917 leads to z; = .56 in agreement
with the data. The inflection point is also well described.

» Possible micro-droplet ejection is beyond the scope of this model.
However, energy arguments indicate droplet ejection is possible.

Notes

1. Private communication, M. Glicksman (2000)
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