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Frost heave is the process by which the freezing of water-saturated soil causes the
deformation and upward thrust of the ground surface. We describe the fundamental
interactions between phase change and fluid flow in partially frozen, saturated porous
media (soils) that are responsible for frost heave. Water remains only partially frozen
in a porous medium at temperatures below 0 ◦C owing both to the depression of the
freezing temperature at curved phase boundaries and to interfacial premelting caused
by long-range intermolecular forces. We show that while the former contributes to
the geometry of fluid pathways, it is solely the latter effect that generates the forces
necessary for frost heave. We develop a simple model describing the formation and
evolution of the ice lenses (layers of ice devoid of soil particles) that drive heave,
based on integral force balances. We determine conditions under which either (i) a
single ice lens propagates with no leading frozen fringe, or (ii) a single, propagating
ice lens is separated from unfrozen soil by a partially frozen fringe, or (iii) multiple
ice lenses form.

1. Introduction
Frost heave is the term given to the upwards displacement of the ground surface

caused by the formation of ice within fine-grained soils. It has long been recognized
(Taber 1929, 1930) that frost heave requires the flow of unfrozen water towards the
freezing front and is unrelated to the fact that water expands upon freezing. Fluids
that contract upon freezing also produce heave, as demonstrated first by Taber,
who performed experiments on a soil saturated with benzene, and more recently by
experiments in which helium (Mizusaki & Hiroi 1995) and argon (Zhu et al. 2000)
were solidified in porous glass and silica powder respectively.

There has been much uncertainty about the nature of the unfrozen water in porous
media, and therefore many suggestions have been made for the mechanism that drives
the flow necessary for frost heave. Unfrozen (premelted) water exists at temperatures
below the bulk-melting temperature Tm for two reasons: the equilibrium freezing
temperature is depressed at a solid–melt interface that has its centre of curvature in
the solid; and long-range intermolecular forces (such as van-der-Waals forces or those
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Figure 1. A cross-section through the region near the base of a growing ice lens. The
characteristic radius of the pore throat, which is half the distance between two adjacent
particles, is Rp .

that arise from interactions among soluble impurities) between different materials and
phases can cause melt to form at free surfaces and at interfaces in contact with another
material. For example, ice is known to premelt against its own vapour and against
silica (Dash, Fu & Wettlaufer 1995; Wettlaufer 1999a) in a layer several nanometres
thick at −1 ◦C and becoming thicker as the temperature increases towards the bulk
melting temperature of 0 ◦C. Figure 1 illustrates how curvature-induced premelting
gives rise to supercooled pore water in a porous medium, while interfacial premelting
gives rise to unfrozen liquid films separating ice from soil particles.

While pore dimensions are on the scale of microns, the films are on the scale of
nanometres. The difficulty of probing materials on such small length scales prompted
early modellers of frost heaving to suggest that the water in unfrozen films (variously
called quasi-liquid or adsorbed liquid) has strange properties, different from those of
bulk water, which cause it to flow down temperature gradients. For example, Vignes-
Adler (1977) suggested that the liquid pressure in the films is anisotropic, having
a longitudinal tension. Others (e.g. Gilpin 1980) have simply noted the empirical
evidence for flow from warmer to colder regions and postulated the existence of a
chemical potential gradient that drives a flux of water molecules.

Around the same time that Taber (1929, 1930) first identified the fluid transport
associated with frost heave, Beskow (1935) noted the similarity between the unfrozen
water content during soil freezing and the residual water saturation encountered
during soil drying. This led some (e.g. Everett 1961) to suggest that the water
transport during frost heave is akin to capillary rise of water into a dry porous
medium, driven by surface tension at the interfaces between ice and pore water. The
same idea pervades discussions by O’Neill & Miller (1985) and Fowler (1989, 1997),
who suggest that the flow of unfrozen water is a consequence of gradients in pore-
water pressure arising from temperature-dependent variations in the curvature of the
ice–pore-water interfaces. While this is phenomenologically consistent – the curvature
is larger and the pore-water pressure is lower at lower temperatures – we show in
this paper that the pore-water pressure is not directly related to the curvature of the
ice–water interfaces, and the associated surface energy plays no role in determining
the upwards force that causes heave.

The mechanism of frost heave that we quantify is simply that the soil and ice grains
repel each other across the interfacially premelted liquid films as a consequence of
the same intermolecular forces that give rise to the films (Dash 1989). Low pressure
is thus generated in the films, which draws in surrounding water, as into a withdrawn
piston. The rate of heaving is mediated by the mobility of the water through the
partially frozen soil, i.e. by the permeability of the soil and the viscosity of the water.
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Figure 2. A photograph, modified from Taber (1930), showing a series of dark ice lenses that
are separated by intervening, lighter layers of partially frozen soil. A cold temperature was
applied to the upper surface of the cylindrical clay sample so that solidification proceeded
from the top down, with lower lenses growing at later times. The formation of ice lenses caused
the sample surface to heave a distance equal to the combined thickness of the lenses. The scale
bar at the bottom is in centimetres.

Recent direct measurements using atomic force microscopy (Raviv & Klein 2002)
have shown that water behaves as a Newtonian fluid, with no change in its viscosity,
down to scales of about two molecular diameters. We therefore work with the
assumption that all the unfrozen, supercooled water in a porous medium is Newtonian
and seek a quantitative description of frost heaving using classical hydrodynamics,
though taking explicit account of the intermolecular forces that give rise to the
premelted liquid films. This work builds upon recent studies (Wettlaufer & Worster
1995; Wettlaufer et al. 1996) of the flow of liquid in premelted films, which similarly
made the assumption that the premelted liquid is Newtonian and obtained predictions
in very good agreement with experiments by Wilen & Dash (1995).

Frost heaving often occurs while a series of discrete, soil-free ice lenses form
parallel to the isotherms and alternate with layers of soil that contain ice in their
pores (figure 2). It is usually assumed that pore ice additionally exists in a ‘frozen
fringe’ separating the warmest (lowermost) ice lens from unfrozen soil. A model of
the frozen fringe was proposed by O’Neill & Miller (1985), who introduced a criterion
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for the initiation of a new ice lens within the fringe using a prescribed partition of
total stress between the ice, soil particles and pore water. In contrast, Worster &
Wettlaufer (1999) proposed a model for a single ice lens with no frozen fringe,
which is similar to the pushing of a suspended particle in a melt at an advancing
solidification front (Chernov, Tempkin & Mel’nikova 1976; Rempel & Worster 1999,
2001). The model in this paper has much in common with the model of O’Neill &
Miller (1985) but differs in two important respects: we recognize the need to determine
fluid pressures from integral force balances, given that the fluid is bounded by rigid
elastic solids (ice and soil particles); and we take explicit account of the microscopic
physics that drives the frost-heaving process. In consequence, we are able to replace
the prescribed partitioning of total stress with an exact integral expression for the
frost-heaving pressure. Moreover, we recognize that although the analogy with wetting
characteristics of unfrozen soil can be used to determine the volume fraction occupied
by ice, it cannot be used to determine pressures directly. The results of our current
model are qualitatively similar to those of O’Neill & Miller (1985) when there is
a frozen fringe present, but we additionally predict the conditions under which no
frozen fringe exists, when it reduces to the model of Worster & Wettlaufer (1999).

As an introduction to the fluid dynamics and thermodynamics that enable soils to
heave, in § 2 we analyse the motion of an isolated particle through a solid such as ice,
subjected to a temperature gradient, by a process of melting and refreezing known
as thermal regelation. Using the insight thus gained, we develop in § 3 a continuum
model to predict the heave rate at which an ice lens grows as a function of the
temperature at its boundary. We identify a maximum heave rate and consider the
dynamics when the freezing rate at which the isotherms advance exceeds the heave
rate so that the temperature at the lens boundary decreases over time. By examining
the conditions that apply beneath the lens boundary, we derive a criterion to predict
where a new lens can form and determine the basic characteristics that a soil must
possess in order to heave. In § 4 we explore how changes to the control parameters
alter the freezing behaviour so that either: (i) no segregated ice lenses will grow,
or (ii) a single lens will grow in steady state, or (iii) periodic ice lenses will form. We
summarize our findings in § 5 and suggest directions for future work.

2. Thermal regelation
If a solid surrounds a substrate particle against which it premelts, as shown in

figure 3, then a temperature gradient will cause the particle to move by a process
of melting and refreezing known as thermal regelation. This phenomenon was first
modelled by Gilpin (1979) and discussed in the context of interfacial premelting by
Worster & Wettlaufer (1999). We revisit it here in order to illustrate the dominant
mechanisms involved in frost heave in a simpler context.

If a particle is separated from the surrounding solid by a thin layer of liquid then
the total surface energy of the solid–melt and melt–particle interfaces is less than the
surface energy of a solid–particle interface. Such is the case for the system ice–water–
silica, for example. The net intermolecular forces between the solid, the premelted
liquid film and the particle are then such as to repel the particle from the ice
with a force per unit area, pT (d) that depends on the film thickness d . In the wetting
literature, pT (d) is referred to as the disjoining pressure (e.g. de Gennes 1985; Schick
1990). Minimization of the total free energy of the system gives the equilibrium
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Figure 3. A schematic diagram of a substrate that is separated from a solid by a premelted
film and held within a temperature gradient ∇T . The film thickness d is thinner on the cold
side of the substrate than on its warm side, and hence the repulsive pressure between the
substrate and the solid PT is spatially varying. This gives rise to a net thermomolecular force
FT that tends to push the substrate towards warmer temperatures.

condition

ρsL
Tm − T

Tm

= γslK + pT (d) (2.1)

(e.g. Baker & Dash 1989; Rempel & Worster 2001) where ρs is the density of the
solid (ice), L is the latent heat of fusion per unit mass, and γsl is the surface energy
of the solid–liquid interface, which has a curvature K that is defined to be positive
when the centre of curvature is in the solid. The right-hand side of equation (2.1)
describes the interfacial effects that enable liquid to remain in equilibrium within the
solid region of the bulk-phase diagram. In the absence of these interfacial effects, bulk
thermodynamics tells us that liquid and solid can only coexist at equilibrium when
the temperature T = Tm. The left-hand side of equation (2.1) quantifies the degree
of departure from bulk coexistence that is associated with these interfacial effects.
We note that, more generally, Tm also depends on pressure so that a second term,
related to the Clausius–Clapeyron slope, can be incorporated on the left-hand side;
the magnitude of this effect is negligible and does not play a significant role in the
dynamics of the current problem (see e.g. equation (2.7) of Dash et al. 1995).

The reduction in pT with increasing film thickness d is controlled by the type
and strength of the intermolecular interactions that dominate the system. With non-
retarded van-der-Waals forces, for example,

pT = A/6πd3, (2.2)

where A is the total effective Hamaker constant. In the cases that we treat
here, the substrate dimensions are much larger than the film thickness, so the
interfacial curvature is dictated by the substrate geometry. A temperature decrease
is accommodated by a reduction in film thickness. For reference, the premelted film
separating ice from a planar (i.e. K = 0) substrate is typically of order 10−8 m thick
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when the temperature is a few tenths of a degree below Tm (e.g. see, most recently,
figure 1 of Sadtchenko & Ewing 2002) and diverges as the temperature warms to Tm.

The net thermomolecular force on the particle, arising from the intermolecular
interactions, is

FT ≡ −
∫

Γ

pT dΓ =

∫
Γ

(
γslK − ρsL

Tm − T

Tm

)
dΓ (2.3)

where the surface area element dΓ points in the direction of the outward normal to
the particle. An important result is that the integral of the curvature term is zero
(Rempel, Wettlaufer & Worster 2001), so that

FT =
ρsL

Tm

∫
D

∇T dV, (2.4)

where D is the interior of Γ , as can be seen by applying the divergence theorem to
the final integral in (2.3). Equation (2.4) can be written as

FT = ms

L

Tm

〈∇T 〉 = ms G (2.5)

where 〈∇T 〉 is the mean of the temperature gradient over the interior of the particle,
ms is the mass of solid displaced by the particle and G ≡ (L/Tm)〈∇T 〉. If the particle
and surrounding solid have different thermal conductivities then the mean internal
temperature gradient may be a function of the conductivity ratio and the geometry
of the particle. However, in this paper we ignore those complications, which are
not fundamental to the frost-heaving mechanism, by taking the conductivities to be
equal, in which case G = (L/Tm)∇T , where ∇T is the applied temperature gradient.
The importance of the simple result (2.5) is that the net thermomolecular force
is independent of the curvature and independent of the type and strength of the
intermolecular interactions giving rise to pT . Furthermore, the net force is simply
proportional to the mass of displaced solid (ice), which is a key feature of the model
of frost heave to be introduced.

In order for the particle to move (for heave to occur) given the force FT , the
premelted liquid in the thin film surrounding the particle must flow from fore (warm)
to aft (cold). Here the geometry and thickness of the film, influenced both by curvature
and by the intermolecular interactions, play a crucial role in determining flow rates.

For illustrative purposes, consider a spherical particle of radius R that is much
greater than the thickness of the premelted film. We neglect the density difference
between water and ice, in which case mass conservation implies that the volume flux
of fluid integrated over the azimuthal angle is

q = −π(R sin θ)2U (2.6)

where U is the speed of the particle in the opposite direction and θ is the polar angle.
Lubrication theory (Batchelor 1967) is used to express the volume flux in terms of
the pressure gradient as

q =
πd3 sin θ

6µ

dpl

dθ
, (2.7)

where d is determined from the temperature field via (2.1). For a similar problem,
Fowler (1997, p. 367) writes (translating to the notation we use in this paper)

pl = pi − pT − γslK (2.8)
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and takes the pressure in the ice pi to be constant in order to evaluate (2.7) directly –
an approach similar to that used in the context of thin-film flows with stress-free
surfaces. However, it is important to recognize that, on the time scales relevant to
frost heave ice behaves as an elastic solid and can support gradients in normal stress.
Therefore, the liquid pressure can only be determined by an integral force balance,
similar to the approach needed in squeeze films or slider bearings (e.g. Batchelor
1967): the ice pressure pi cannot be assumed constant. Combining equation (2.6)
with (2.7) and integrating twice, we obtain the net hydrodynamic force on the particle

Fµ =

∫
Γ

pl dΓ = 2πR2 ẑ
∫ π

0

pl cos θ sin θ dθ = −8πµR4

d3
0

U, (2.9)

where d0 is the film thickness at the equator of the particle, where θ = π/2. This
result can be written as

Fµ = −4

3
πR3 µU

k
, (2.10)

in order to make an analogy with the flow in partially frozen soils later, where the
permeability

k =
d3

0

6R
=

A
36πR

[
ρL

(
Tm − T0

Tm

)
+

2γsl

R

]−1

(2.11)

depends both on the strength and type of the intermolecular interactions, and on
curvature. For illustration, the final expression in (2.11) is obtained using (2.1) for the
special case of non-retarded van-der-Waals interactions (2.2).

The net force on the particle is zero, so the sum of FT and Fµ must balance the
force due to gravity to give

U =
ρd3

0

6µR
(G + g′), (2.12)

where g′ = g(ρp − ρ)/ρ is the reduced gravity for a particle of density ρp . For
temperature gradients and particle densities that are typical of those found in nature,
the effect of gravity is often negligible in comparison to that of the thermomolecular
force (i.e. |g′| � |G|). A micron-sized particle separated from ice by a premelted film
of thickness 10−8 m and experiencing a temperature gradient of 1 Km−1 moves by
thermal regelation approximately 10 microns per day.

3. Frost heave
The physical interactions described above that drive thermal regelation also control

the dynamics of frost heave. In both cases the equilibrium condition (2.1) determines
the geometry of the fluid pathways (hence the permeability), while the forces produced
by intermolecular interactions and gravity are balanced by the hydrodynamic pressure
gradient established by the flow.

We examine the one-dimensional system sketched in figure 4, which relates to
controlled laboratory experiments (e.g. Mutou et al. 1998; Watanabe & Mizoguchi
2000) in which a saturated soil is pulled through an imposed, constant temperature
gradient ∇T at a constant speed V . The coordinate frame is fixed relative to the
isotherms, with the origin z = 0 at temperature Tm, and z increasing towards lower
temperatures. Since the pulling speed equals the rate at which the 0 ◦C isotherm
advances relative to the soil particles, we refer to V as the freezing rate.

There are potentially three regions: an ice lens in z > zl , which has no soil particles;
a frozen fringe in zf < z < zl containing soil particles and partially frozen pores; and
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Figure 4. A schematic diagram of an ice lens that is pulled through a temperature gradient at
a constant speed or freezing rate V and experiences heave rate Vl . The porosity φ in the soil is
constant and the fraction of the pore volume that is filled with ice Ss decreases monotonically
from the lens boundary zl to zero at zf .

liquid-saturated, ice-free soil in z < zf . Pore ice can only penetrate the soil where the
curvature of the ice–water interface K = (ρsL/γsl)(Tm − T )/Tm is greater than 2/Rp ,
where Rp is the characteristic radius of the ‘throats’ between pores. Therefore

zf =
2γsl

ρGRp

, (3.1)

where G ≡ (L/Tm) |∇T | is constant. For physical intuition, if the pore throats are a
micron in diameter then the temperature at zf is approximately −0.1 ◦C. If zl < zf

then no frozen fringe can exist. In this case, there are just two regions: an ice lens in
z > zl and unfrozen soil in z < zl . In either case, the only geometrical variable to be
determined is the location zl of the base of the ice lens. The heave rate Vl is defined
as the velocity of the ice lens relative to the soil particles. Thus the position of the
lens boundary satisfies

dzl

dt
= V − Vl(t), (3.2)

so that steady states are achieved when Vl = V and the lens boundary migrates
towards colder temperatures when Vl < V .

Within the frozen fringe, when it exists, there is a fraction Ss (called the ice
saturation) of the porosity or pore volume fraction φ that is occupied by ice. Assuming
local equilibrium, Ss is a function of the geometry of the soil particles, the packing
arrangement, and the local temperature and pressure. A particular example is given
in the Appendix, where we assume constant porosity φ, uniform soil properties and
note that the effect of pressure is negligible. Since we are considering a situation in
which the temperature is a fixed function of z, it follows that Ss = Ss(z) only.

3.1. Lens growth

The intermolecular interactions between the soil particles and the ice produce the net
force

FT ≡ −
∫

Γ

pT dΓ =

∫
Γ

(γslK − ρGz) dΓ (3.3)
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Figure 5. A cross-section through the region near the base of an ice lens. Ice extends into the
pore space beneath the lens boundary at zl and forms a connected, three-dimensional network
with its surface Γ separated from the soil particles by premelted liquid. The position zf marks
the temperature at which the effects of interfacial curvature prevent ice from extending through
the pore throats into the adjacent, warmer pores.

that causes heave, where Γ is the entire surface of the ice connected to the lens and
dΓ points in the direction of the outward normal to the ice. The surface Γ can be
closed by the addition of the dashed surface shown in figure 5, and the divergence
theorem applied to show that the force on a cross-section of the lens of area A is

FT = ρAG ẑ
∫ zl

0

(1 − φSs) dz. (3.4)

Just as in the case of the regelating sphere analysed in § 2, the curvature term integrates
to zero and the resultant force is proportional to the volume of the region that is
cooler than the bulk melting temperature, but does not contain ice.

Equation (3.4) replaces the temperature-dependent term in equation (25) of
O’Neill & Miller (1985), which in our notation can be written

FOM
T = ρAGzl ẑ, (3.5)

i.e. the second term in the integrand of (3.4) is missing. More important than the
quantitative difference produced is the physical understanding of the origin of FT

that we have given, which can be carried over to other problems. The false physical
reasoning that leads to (3.5) is that the pressure in the ice is locally uniform (cf. the
discussion surrounding equation (2.8)), whereas large variations in the stress within
the ice can persist over the time scales during which liquid is supplied to the growing
lens. Once the ice pressure is assumed to be locally uniform then it can be calculated
as being equal to the pore-water pressure minus the surface energy times the curvature
of the ice–water interface, and the false dynamic analogy with capillary wetting of
dry soils is advanced.

In order for the force calculated by equation (3.4) to cause heave, continuity
demands that water is drawn through the pores to the lens and fringe. The resultant
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low pressure in the water produces a net hydrodynamic force on the lens given by

Fµ = −
∫

Γ

pl dΓ, (3.6)

where pl is the deviation in the fluid pressure from hydrostatic equilibrium. Applying
the divergence theorem, we obtain the hydrodynamic force on a segment of the lens
surface with cross-sectional area A as

Fµ = A

∫ zl

zh

∇pl (1 − φSs) dz = −A

∫ zl

zh

µU
k

(1 − φSs) dz, (3.7)

where k(Ss) is the permeability and zh is the position at which the fluid pressure
attains hydrostatic equilibrium, so that pl(zh) = 0. This expression can be compared
with equation (2.9). Continuity relates the transport velocity to the heave rate so that
U = (1 − φSs)Vl ẑ and equation (3.7) can be written as

Fµ = −µVlA ẑ
∫ zl

zh

(1 − φSs)
2

k
dz. (3.8)

Note that the hydrodynamic force on the lens surface is proportional to the heave
rate and increases, for a given heave rate, as increased ice saturation reduces the
permeability.

The net force on the lens boundary is zero, so the sum of FT and Fµ must balance
the force of gravity on the overlying material FO = − POA ẑ, where the overburden
pressure PO is treated as a constant. Combining this with equations (3.4) and (3.8),
we find that the heave rate is

Vl =

[
ρG

∫ zl

0

(1 − φSs) dz − PO

] [
µ

∫ zl

zh

(1 − φSs)
2

k
dz

]−1

. (3.9)

This expression, used in (3.2), determines the evolution of the ice lens once the
ice saturation is determined from thermodynamic considerations. Note that the
predictions from equation (3.9) are not sensitive to the value of zh as long as
most of the drop in hydrodynamic pressure occurs near the lens boundary, where the
permeability is reduced by the confining presence of ice.

There are some aspects of the system that are similar no matter what the precise
spatial distributions of Ss and k. For example, the heave rate is zero when the
thermomolecular force balances the overburden, which occurs when

PO = Pmax ≡ ρG

∫ zl

0

(1 − φSs) dz. (3.10)

Pmax is referred to as the maximum frost-heave pressure. The intermolecular interactions
between the lens and the soil particles are insufficient to support loads that are greater
than Pmax – these cause the lens to melt rather than grow. For physical intuition, Pmax is
approximately one atmosphere (0.1 MPa) when the temperature at the lens boundary
is −0.1 ◦C. When no frozen fringe is present, Ss =0 and Pmax = ρGzl is equivalent to
the maximum crystallization pressure discussed by Derjaguin & Churaev (1978) and
is consistent with the predictions of O’Neill & Miller (1985). However, equation (3.10)
shows that once a frozen fringe is present Pmax <ρGzl .

The lens grows (Vl > 0) when the overburden is less than Pmax . The heave rate is
then given as a function of the position zl of the base of the ice lens by a curve similar
to that shown in figure 6. The figure is plotted in terms of dimensionless variables,
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Figure 6. The heave rate of an ice lens as a function of its boundary position for the ice
saturation and permeability models that are described in the Appendix, calculated using
po = 0.5, φ = 0.5 and ξh = 0 in equation (3.11). For a temperature gradient of 1 ◦Cm−1, when
the radii of the pore throats are approximately 10−6 m so that the temperature at the fringe
boundary is −0.1 ◦C, a dimensionless position of unity corresponds to a distance from the Tm

isotherm of 0.1 m. A typical ice-free permeability for such a fine-grained soil is k0 ≈ 10−14 m2,
which would indicate that a dimensionless heave rate of unity corresponds to approximately
10−5 m s−1. The points ξn and ξ ∗

l are discussed in § 3.2.

ξl ≡ zl/zf and

vl ≡ µVl

k0ρG
=

[∫ ξl

0

(1 − φSs) dξ − po

] [∫ ξl

ξh

(1 − φSs)
2

k̃
dξ

]−1

, (3.11)

where ξ ≡ z/zf , ξh ≡ zh/zf , po ≡ PO/(ρGzf ), k̃(ξ ) ≡ k/k0 � 1 and k0 is the permeability

of the ice-free soil. For ξ < 1, Ss = 0 and k̃ = 1. Figure 6 was produced using the specific
models for ice saturation Ss(ξ � 1) = 1−ξ−2 and permeability k̃(ξ � 1) = ξ−4 described
in the Appendix and given by equations (A 1) and (A 2) respectively. However, the
qualitative aspects of figure 6 are universal. Note first that since Ss → 1 and the
permeability k(Ss) thus tends to zero as z → ∞, equation (3.9) implies that the heave
rate Vl tends to zero at large values of zl . Therefore, since Vl is zero when the lens
boundary is located where PO = Pmax and is positive at larger values of zl , there
is always a maximum heave rate Vmax attained at an intermediate position of the lens
boundary. The same qualitative behaviour is also predicted when the frozen fringe
is not present (Worster & Wettlaufer 1999).

When the freezing rate V is less than Vmax , a steady state can develop with the
lens boundary at the fixed position where Vl = V . The curve in figure 6 would
seem to indicate that two steady-state lens positions are possible for any particular
V < Vmax . However, further analysis shows that only the branch of the curve with
ξl < ξc is stable to perturbations of the boundary position – a point we return to later.
At colder temperatures where ξl > ξc the reduction in permeability associated with
further increases in ice saturation causes the heave rate to decrease with ξl . Hence,
the temperature at the lens boundary decreases as the heave rate continues to trace
the curve in figure 6 and an increasing fraction of the pore space fills with ice. This
suggests the potential for a new lens to form at a location where the temperature is
higher.



238 A. W. Rempel, J. S. Wettlaufer and M. G. Worster

�n

pp

0 1 2 3 4              5
�

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

Compression

Tension

�l

5
5.5
6
�

po – 2φ

Figure 7. The scaled pressure between soil particles as a function of position for po = 0.5,
φ = 0.5 and ξh =0 using the ice saturation and permeability relations described by equations
(A 1) and (A 2). Each line represents the profile obtained when the lens boundary is at a
different position ξl , as noted in the legend. The soil particles are pushed against each other
when pp > 0, whereas they are pulled apart when pp < 0; there is no net force between the soil
particles at ξn. The horizontal dotted line at pp = po − 2φ shows the asymptote as ξ → ∞ for
the curve corresponding to ξl → ∞.

3.2. Lens initiation

To determine where a new lens can form, we consider the net vertical force Fp

acting between soil particles. At a position z < zl within the frozen fringe the net
thermomolecular and hydrodynamic forces on the ice are given by expressions similar
to (3.4) and (3.8) respectively with the upper limits of integration zl replaced by z.
Therefore, since Fp balances the sum of FT , Fµ and FO , we have

Fp = µVlA ẑ
∫ z

zh

(1 − φSs)
2

k
dη + POA ẑ − ρGA ẑ

(
zφSs −

∫ z

0

φSs dη

)
, (3.12)

which can be written in dimensionless form as

pp ≡ Fp · ẑ
ρGzf A

= vl

[
1 − ξh +

∫ ξ

1

(1 − φSs)
2

k̃
dη

]
+ po −

(
ξφSs −

∫ ξ

1

φSs dη

)
, (3.13)

with vl determined from equation (3.11). Note that the final bracketed term in (3.12)
reduces to (3.4) when z = zl , where the total ice fraction φSs = 1.

A new lens can form at the position zn where Fp = 0 and there is no net force to
hold the particles together. Equation (3.12), or equivalently (3.13), provides a general
expression that accounts for the effects of the microphysical interactions between the
soil particles, the ice and the premelted liquid. It depends only on physical properties,
such as ρ and µ, control parameters, such as G and PO , and characteristics of the
soil that can, in principle, be measured, namely φ, Ss and k. We use equation (3.12)
in our model to provide a prediction of the conditions required to form a new lens,
thus avoiding the need to prescribe a stress-partition function, such as that used by
O’Neill & Miller (1985).

In figure 7 we plot the scaled pressure between soil particles pp as a function of the
dimensionless position, using the ice saturation and permeability models described
in the Appendix. Separate profiles are displayed for the different locations of the
lens boundary noted in the legend. In the liquid-saturated soil beneath ξ = 1
the force between soil particles balances the combination of the overburden and
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the hydrodynamic force associated with fluid flow. Once ξ > 1, a thermomolecular
force pushes against the pore ice and transmits a portion of the load to the lens
so that initially the net vertical force between soil particles decreases with ξ . The
resistance to fluid flow is enhanced with increased ice saturation, and at some point
the rising hydrodynamic force overcomes further increases in the thermomolecular
force so that the net pressure between soil particles begins to increase with ξ . When
ξl > ξc and the lens is brought to a colder temperature, the flow velocity decreases
and the net force between soil particles can vanish at some level ξn ≡ zn/zf , as shown
by the solid curve in figure 7 for ξl ≡ ξ ∗

l ≈ 5.5. In the example given here we expect
a new lens to form at ξn ≈ 2.5, and the dimensionless lens spacing is predicted to be
ξ ∗
l − ξn ≈ 3.
It is observed that clays, silts and other fine-grained porous media heave, whereas

coarse sands and gravels do not. For an ice lens to form at all, so that heave can
occur, a minimum requirement is that the thermomolecular force exerted by the pore
ice must support the overburden. In the limit that ξl tends to infinity, the heave
rate tends to zero and equation (3.13) shows that the pressure between soil particles
approaches

pp = po − φ

[
ξSs −

∫ ξ

1

Ss dη

]
. (3.14)

For example, using the ice saturation model from equation (A 1) we find that

pp = po − 2φ

(
1 − 1

ξ

)
, (3.15)

which is displayed with the dot-dashed line in figure 7. Clearly, with this ice saturation
model a new lens can only form if po < 2φ. This is equivalent to stating that new
lenses can only form when the fringe boundary is sufficiently cold that

zf �
PO

2φρG
. (3.16)

From the definition of zf in equation (3.1), this implies that the radii of the pore
throats is limited by

Rp �
4φγsl

PO

. (3.17)

This places a constraint on the characteristics that a soil must possess in order to be
susceptible to significant heave. For example, if the porosity is 0.5 and the overburden
to be heaved is equivalent to the weight of a layer of soil one centimetre thick so that
PO ≈ 102 Pa, then the soil is only ‘frost susceptible’ if the pore throats are less than
about 10−3 m in radius.

4. Discussion
The various predictions of the model presented above are summarized in the

regime diagram presented in figure 8, which shows the predicted behaviour given
values of the control parameters V and PO . The solid lines separate three main
regions corresponding to having a steady lens without a frozen fringe, periodic ice
lenses or no segregated ice. The solid line

v = 1 − po (4.1)
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Figure 8. A regime diagram displaying the behaviour as a function of the freezing rate v and
overburden po. At low v and po, a steady lens will grow without a frozen fringe. At higher v,
periodic ice lenses will form. At higher po (po > 1 for φ = 0.5), no segregated ice lenses can be
inititated. Hysteretic behaviour is possible at intermediate v and po, as described in the text.
Points A and B are discussed in figure 9.

corresponds to the condition that ξl = 1, as can be seen from equation (3.11). For
lower freezing rates it is possible to have a steady lens with no frozen fringe. Starting
from such a state, the lens boundary can only penetrate the pores to form a frozen
fringe once zl > zf (i.e. ξl =1), which is a necessary precursor for periodic lensing,
as we have seen. The vertical solid line at po = 2φ indicates the overburden pressure
above which it is possible to have no segregated ice, as was described at the end
of the last section. More generally, for different ice saturation models, this regime
boundary is found where equation (3.14) is satisfied for pp = 0 in the asymptotic limit
ξ → ∞.

However, the system is hysteretic. If the freezing rate v is increased from zero and
po < 2φ then a steady lens with no fringe gives way to a steady lens with a fringe,
which becomes unsteady and produces periodic lenses once v exceeds vmax , indicated
by the upper dashed curve. If the freezing rate is subsequently reduced then periodic
lensing continues until v < vl(ξn), indicated by the lower dashed curve. If po > 2φ and
there is a pre-existing lens then it is possible to maintain it propagating steadily with a
frozen fringe if v <vmax . However, if the freezing rate is increased above vmax then the
lens boundary will recede to infinity without a new lens being initiated. An example
of hysteretic behaviour in a case with po < 2φ is shown in figure 9.

The description of the regime diagram thus far has referred to long-term asymptotic
states. When po < 2φ, and segregated ice is not present initially so that vl = 0, the first
lens is formed at the position where the pressure between soil particles, described by
equation (3.14), first reaches 0. The dotted line shows the position where the freezing
rate matches the initial heave rate of this first lens. Above the dotted line, periodic
lensing results; below the dotted line the lens propagates steadily.

The evolving conditions that held during the step-freezing experiment that produced
the periodic lensing behaviour shown in figure 2 could be represented on the regime
diagram as a progressively decreasing freezing rate at constant overburden. In
agreement with the model calculations shown in figure 9, during periodic lensing
a reduction in v leads to increased lens thickness. The gradual increase in spacing
between the lower lenses shown in figure 2 is consistent with the slow increase in the
length scale zf associated with a reduction in G as freezing progressed.
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Figure 9. The lens position ξl and heave rate vl as a function of time t for a constant load
of po = 0.5. The freezing rate, shown with the dashed line in the lower panel, is set to v = 0.2
initially, which corresponds to point A in figure 8. The liquid flow rate is initially zero and the
first lens forms at ξl = 2, as marked by the ξ -intercept of the curve for ξl → ∞ in figure 7. Since
v <vl(ξl = 2) (i.e. point A is below the dotted line in figure 8), the lens grows towards warmer
temperatures and approaches a steady state with vl = v, as shown by the solid line in the lower
panel. At t = 20, v is increased to 0.7, corresponding to point B in figure 8, so that v >vmax (i.e.
point B is above the upper dashed line in figure 8). The lens recedes to colder temperatures
and a new lens is initiated at ξn ≈ 2.5 when ξl = ξ ∗

l ≈ 5.5. The new lens then grows as it recedes
to ξ ∗

l and the sequence repeats. At t = 40, v is reduced to 0.2 once again. Periodic lens growth
continues since v >vl(ξl � ξn) (i.e. point A is above the lower dashed line in figure 8). The
inset shows the lens thicknesses

∫
vldt (white) and spacing ξ ∗

l − ξn (shaded) for this freezing
scenario. When the system experiences periodic lens growth, the lenses have more time to grow
at smaller v and become thicker. The dimensionless lens spacing is independent of v.

5. Conclusions
The existence of unfrozen water at the interfaces between soil particles and ice

underlies the phenomenon of frost heave in porous media. Our model predicts the
macroscopic features (e.g. the heave rate, lens thickness and lens spacing) of the
heaving system while taking explicit account of the local intermolecular interactions
that drive the entire process. By considering the force balance over the surface of a
single soil particle that is coated with premelted liquid and encapsulated in ice, we
have shown how the intermolecular interactions acting across the liquid film cause the
particle to be pushed towards warmer temperatures, while continuity demands that the
premelted liquid flow in the opposite direction. In porous media the same fundamental
physics results in the flow of liquid that supplies the lens growth and produces heave.
The balances of mass and force over the lens surface determine the heave rate as a
function of the thermal conditions on its boundary. Our model explicitly accounts
for the microphysical interactions that occur between the soil particles, the ice and
the liquid, and yields predictions that are in agreement with observations. When
the freezing rate is greater than the heave rate at which a lens grows, its boundary
recedes to colder temperatures. For a banded structure to develop, in which ice lenses
alternate with layers of soil, the pore space beneath the boundary of the growing
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lens must be partially filled with ice. Intermolecular interactions between this pore ice
and the soil particles can give rise to a net thermomolecular force that is sufficient to
support the combined effects of overburden and hydrodynamic forces. We provide a
rigorous justification for the form of the stress-partition relationship, equation (3.12),
that determines when the pressure between soil particles vanishes and a new lens can
form. This obviates the need for a prescribed stess-partition relationship, which has
been a feature of earlier, phenomenological models (e.g. O’Neill & Miller 1985) that
neglect essential elements of the microscopic physics. There is a limit to the load that
a given soil can heave, and this limit increases as the throats that join adjacent pores
decrease in size. The model provides the underlying fluid-mechanical explanation of
the qualitative distinctions between the heaving characteristics of various soil types.
If the freezing rate drops below the rate at which a newly initiated lens can grow, the
lens boundary migrates towards warmer temperatures and a stable steady state can
develop in which a single lens grows indefinitely.

To focus on the essential physical interactions that control heaving behaviour we
have employed a few simplifying assumptions in constructing our theoretical model.
For example, by treating the porosity φ adjacent to the lens boundary as a constant,
we have neglected any role that might be played by the rearrangement of soil particles.
A related issue is our assumption that a new lens is initiated immediately once pp

reaches zero, thereby neglecting the dynamics involved in separating the soil particles
at zn. Partial justification for using a constant φ is provided by the observation
that the scaled pressure between soil particles is entirely compressive prior to the
predicted initiation of a new lens, as shown in figure 7. We recognize, however, that
intermolecular interactions between the soil particles themselves can lead to finite
particle separations that change with variations in pp , and these interparticle forces
might gain particular importance as pp tends to zero. If the packing arrangement of
soil particles beneath the warmest extent of the pore ice zf changes significantly, it is
possible that ice may nucleate in larger pores that are disconnected from the base of
the growing lens. In addition, the presence of soluble impurities may strongly influence
the heaving behaviour in both laboratory and natural environments (e.g. Wettlaufer
1999b; Watanabe & Mizoguchi 2002). While such complications are beyond the scope
of the current work, the model we have presented here provides a framework for
further investigation of these issues.

This work has benefited from critical discussions and correspondence with Greg
Dash, Andrew Fowler, Bernard Hallet, Howard Stone, Oscar Vilches, Larry Wilen and
an anonymous referee. This research is supported by the National Science Foundation,
under Grant No. OPP9908945, and by Yale University.

Appendix. Ice saturation and permeability
For T <Tm, interfacial premelting causes liquid to coat particle surfaces in thin

films (e.g. see figure 1). The Gibbs–Thomson effect leads to the formation of melt
conduits, similar in cross-section to the plateau borders of a foam, near the particle
contacts and other regions where the curvature of the ice–liquid interface is high. The
liquid fractions in both the films and the conduits decrease as �T ≡ Tm −T increases –
the former as �T −1/ν , where ν � 1 depends on the type of intermolecular interactions
that dominate (e.g. Wettlaufer et al. 1996); the latter as �T −2. Cahn, Dash & Fu
(1992) calculated the liquid content in porous media composed of idealized packings
of mono-dispersed spheres for the case where ν = 3. Their predictions were consistent
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with results from freezing experiments conducted in polystyrene and graphitized
carbon-black powders. They found that the liquid fraction is dominated by the melt
conduits when �T � 10(Tm − Tf ) where Tf is the coldest temperature at which the
pores are completely filled with liquid (i.e. Ss = 0). In this thermal regime we can
neglect the volume of liquid contained within the premelted films and assume that
the liquid fraction varies as �T −2. We treat the case where the ice saturation level
is continuous across the boundary where ice first begins to invade the pore space so
that Ss = 0 for z < zf and

Ss = 1 −
(

zf

z

)2

for z � zf , (A 1)

where zf is given by equation (3.1). Note that although the pressure dependence of
Tm can be included in the above development, this effect is negligible, as discussed
following equation (2.1). Equation (A 1) is used instead of the function describing the
unfrozen water content W (T ) employed by O’Neill & Miller (1985).

The manner in which the permeability of the partially frozen soil decreases as the
pores fill with ice depends on the geometry of the pathways through which the liquid
flows. Since we expect the Gibbs–Thomson effect to be responsible for the presence
of most of the liquid, we model the permeability by considering the flow through
a randomly oriented set of conduits with radii r proportional to the interfacial
curvature, which varies as �T −1. For this conceptual model of a porous network, the
permeability is proportional to the product of the liquid fraction and the square of
the conduit radii (e.g. Phillips 1991, p. 33). We define the permeability of the fluid-
saturated soil as k(z � zf ) = k0 and assume that k is continuous across zf so that

k = k0 (1 − Ss) r2 = k0

(
zf

z

)4

for z � zf . (A 2)

In some porous media, the conduits will only connect through the films so that
the overall permeability will be significantly affected by the flow resistance through
both. Indeed, empirical determinations of both Ss and k might improve quantitative
comparisons between the model predictions and experiments. For our current
purposes, however, we retain these simple formulations to focus better on the
essential features of frost-heave phenomena common to all porous materials rather
than the heave characteristics of any particular soil. Using equations (A 1) and (A 2)
in equation (3.11) for the heave rate gives

vl =
1 − po + (1 − φ)(ξl − 1) + φ

(
1 − ξ−1

l

)
1 − ξh + 1

5
(1 − φ)2

(
ξ 5
l − 1

)
+ 2

3
φ(1 − φ)

(
ξ 3
l − 1

)
+ φ2(ξl − 1)

. (A 3)
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