The Axisymmetric Laminar Plume:
Asymptotic Solution for Large Prandtl Number

By M. Grae Worster

The method of matched asymptotic expansions is applied to the axisymmetric
boundary-layer equations in order to determine approximate solutions for free
convection from a point source of buoyancy in the limit of large Prandtl number
(o >1). In common with other types of free-convection boundary layers at large
Prandtl number, there is an inner region in which the temperature decays to its
far-field value, and a much wider, outer region in which the vorticity decays to
zero. Unlike the other cases, the velocity is not of the same order of magnitude in
the two regions, but is larger in the inner region by a factor of order In(1/¢?) in
the inner region, where ¢ is a root of €*In(1/¢2) =1/o.

1. Introduction

A point source of buoyancy in an unbounded fluid can give rise to natural
convection in the form of a narrow vertical plume [9]. Most plumes in common
experience are turbulent (e.g. smoke from a chimney), but there are cir-
cumstances, typically when the fluid viscosity is large, in which a plume will
remain laminar for a considerable height.

A growing interest in the dynamics of various geological phenomena, espe-
cially the fluid mechanics of molten rock, has inspired investigations into the
flow of extremely viscous fluids. In particular, there is a need to understand
natural convective flows when the Prandtl number o =v»/k (where » is the
kinematic viscosity and « is the thermal diffusivity) is very large, since Prandtl
numbers of geological fluids can vary from about 102 for a hot basalt to about
102 for the earth’s mantle. Convective flows driven by compositional variations
are also important in geological contexts, and these can be described by the same
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analyses as describe thermal convection once the Prandtl number is replaced by
the Schmidt number »/D, where D is the molecular diffusivity of the buoyant
component. Schmidt numbers are typically larger even than the Prandtl number,
owing to the very slow diffusion of most chemical species compared with the
diffusion of heat.

When the Prandt]l number is large, the length scale for thermal variations is
much smaller than that for variations of vorticity. Therefore, most analyses of
free convection at large Prandtl number are of boundary-layer type with thermal
buoyancy balancing viscous dissipation in the inner region. If the Prandtl number
is sufficiently large (as it is in the mantle), then the outer flow is just Stokes flow
driven by viscous shear stresses generated by the inner, thermal layer [7, 6]. In
other words, inertia can be safely neglected throughout the whole flow field.
However, in other situations, such as the input of light fluid from the base of a
magma chamber [4], inertia can play a significant role, an outer boundary layer
exists in which viscous dissipation is balanced by inertia, and the very outer fluid
is stationary. »

The aim of this paper is to investigate axisymmetric, laminar, convective
plumes, at large Prandtl number, rising through an infinite, stationary fluid
region. Thereby, we shall determine the width of the vorticity boundary layer and
thus be able to determine a criterion for the safe neglect of inertia. In situations
where this width is much less than the width of the natural fluid region, and
inertia may not be neglected, we shall obtain asymptotic expressions for im-
portant properties of the flow such as the total convective volume flux and the
center line temperature and velocity of the plume. :

There are many investigations of two-dimensional and axisymmetric laminar
plumes in the literature, beginning with Zel’dovich [13]; see Yih [12] for a review
of past work. However, the few analyses of their behavior at large Prandtl
number have dealt only with the two-dimensional plume [8, 5). Although many of
the same principles apply equally to the case of an axisymmetric plume, and the
analytical technique (matched asymptotic expansions) used in this paper is not
new, the details of the calculation were not found to be straightforward. In
particular, the expansion parameters could not be guessed using the physical
arguments that apply to a two-dimensional plume, and they are determined only
by matching constraints at second order in the expansions.

In Section 2 the similarity transformation of the boundary-layer equations is
introduced and numerical solutions are presented for various finite values of the
Prandtl number up to o =10. Asymptotic expansions for the inner, thermal
boundary layer and the outer, momentum boundary layer are found in Section 3,
and are matched by the introduction of an intermediate variable. Several of the
matching constants are found analytically; the remainder are found numerically
by integrating the scaled equations. The concluding section draws. attention to
the principal results and discusses the limits of applicability of the solutions.

2. The equations and similarity transformation

Consider steady, laminar, free convection from a point source of heat in an
unbounded, homogeneous, Newtonian fluid with constant properties. We seek a
flow that is significant only in a narrow, vertical region above the heat source.
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Therefore, we adopt the usual boundary-layer approximation [2] that radial
variations are much more rapid than those in the longitudinal direction. This
approximation needs post hoc justification, which it will receive in the conclu-
sion. The radial component of the Navier-Stokes equation shows that the
nonhydrostatic pressure is constant everywhere, so the longitudinal component
can be expressed as

N 9%w
rW)+§]+ag(T—To), (2.1)

in terms of cylindrical polar coordinates r (radial) and z (vertical and upwards),
where « is the coefficient of thermal expansion and g is the acceleration of
gravity. The velocity components corresponding to (r,z) are (u,w) and are
assumed to be axisymmetric. The last term of (2.1) is the buoyancy force due to
the difference between the local temperature T and the temperature of the
ambient fluid, 7. Note that the temperature field can be replaced by any
diffusing agent that causes variations in the fluid density. It is the buoyancy term
which provides the coupling between the Navier-Stokes equation and the diffu-
sion-advection equation

oT . dT [_1_58_( 9T)+§_2_7_"], (2.2)

8r+waz "ar

In these equations the Boussinesq approximation has been employed: variations
in density are ignored except insofar as they modify the buoyancy, and all other
physical properties of the fluid are taken as constant. The boundary conditions
are that the vertical shear and the radial temperature gradient vanish on the axis
of symmetry r = 0, and that the vertical velocity w and the temperature perturba-

tion T—T, vanish as r > co. In addition, there is an integral constraint,
~ expressing conservation of the vertical heat flux, given by

'pcpjww(T—To)zwrd} -0, (2.3)
0

where p is the fluid density, C, is its specific heat, and @ is the constant heat flux
of the point source. Mass conservation is assured by the introduction of a Stokes
steam function Y (r, z) such that

1 9y 19y '
T YT (2.4)

u=-

Within the boundary-layer approximation, the vertical diffusion terms in (2.1)
and (2.2) are ignored, and, since there is no externally imposed lengthscale in the
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. problem, the remaining equations admit a similarity solution of the form

¥ = vzF(¢), | (2.5)
T~ T, = 2h(s), (26)
$ =G4/, (2.7)
G = ag%f—z-, (2.8)

where k =pC,k is the thermal conductivity of the fluid, and G is a local,
modified Grashof number. This formulation is similar to that given by Yih [11]
and by Brand and Lahey [3]. Note that G is not a constant parameter but is a
function of z. We shall see that G needs to be large in order for the boundary-layer
analysis to be valid. We shall then have an adequate description of the plume
provided G, = ag(Q/k)L*/»* is large, where G, is the (constant) modified
Grashof number based on the vertical dimension L of the system. The dimen-
sionless functions F and h satisfy ordinary differential equations

[$(F/¢Y] = —¢h— F(F/%), (2.9)
B o= — -‘;-Fh, (2.10)
_271/000F’hd§ - % (2.11)

subject to the boundary conditions

F=0, (F/8) =0, (§=0), (2.12)
h -0, F/¢ >0 ({-). (2.13)

Yih [11] and Brand-and Lahey [3] independently found closed-form solutions to
(2.9)-(2.13) for the special cases 6 =1 and o =2, and Brand and Lahey in-
tegrated the equations numerically for various values of ¢ up to o =10. The
numerical results of Brand and Lahey are inconsistent with the asymptotic results
found later in this paper, and so I recomputed the solutions for some finite values
of o. I believe my numerical results, given in Table 1, to be accurate to the
number of significant figures shown. The solutions decay algebraically as ¢ — oo,
so a nonlinear coordinate transformation

w = In¢ (2.14)

was applied before integrating the equations using a fourth-order Runge-Kutta
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Table 1
Nondimensional Volume Flux F,_, Centerline velocity W,
and Centerline Temperature H for an
Axisymmetric Laminar Plume at
Various Values of the Prandtl Number ¢ *

o F, w H
1 6.000 0.3989 0.1061
2 4.000 0.3154 0.0995
h) 3.398 0.2279 0.0924
10 3.309 0.1768 0.0896
o0 3.267 0.3989¢?Ine™? 0.0796
+0.0018¢%+ - - - +0.0122(lne™ %) "1+ - - -

a Qee Section 3 for the derivation of the infinite-Prandtl-number results.

scheme with variable step lengths. A shooting method was employed which
started from the asymptotic expansions

F ~ 1We?® — kHe*",
h ~ H—YoHWe* + (4oH?+ %02 HW?)e*,

applied at some w = w; <0 and integrated to some w = w; > 0. The constants W
and H, which respectively represent the vertical velocity and the temperature on
the plume axis, were adjusted until the boundary conditions (2.13) were satisfied
at w = w,. The range for w in the differential equations is — oo < w <0, so the
numerical boundary positions w, and , were systematically decreased and
increased respectively until their varying made no appreciable change to the

computed results. Graphs of the vertical velocity and the temperature are shown
in Figure 1. '

3. Asymptotic expansions for large Prandtl number

The results of the previous section show that as the Prandtl number becomes
large a two-layer structure develops. There is an inner region in which the
temperature decreases from its maximum value at the plume axis to zero as {
increases. In this region the vertical velocity remains at the same order of
magnitude, and it decreases to zero only in a much wider outer region. The
method of matched asymptotic expansions [10] is now used to find rational
expansions for the temperature and vertical velocity fields valid for large o.

The inner solution

The system of equations (2.9)—(2.13) is singular in the limit 6 — co. An inner
scaling is required which is determined in part by the requirement that the
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Figure 1. (a) The nondimensional vertical velocity F’/¢, and (b) the nondimensional temperature h

as functions of the similarity variable { for various values of the Prandtl number o. Note the
separation of scales as ¢ increases.

highest derivatives are retained. This ensures that the boundary conditions at the
plume axis (2.12) can be applied. The conduction term is retained, and there is a
balance between the two terms in the thermal energy equation, provided that

F(§) = o7'f(m), - (3D

where

n =€, . - (32)

f and 7 are of order unity as o — co in the inner region, and e =€(0) <1 is a
small parameter which is, as yet, undetermined. The differential equations, scaled
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appropriately for the inner layer, are then

[n(f/n)]" = = €bomh — oa7f(f7/n)’, (3.3)
o1 |
h' = 'flfh’ (34)

T Cf =1. 35

2o [ fhdn=1. (35)

The boundary conditions at the plume axis require

f=0, (f/n)' =0 (n=0), (3.6)

while matching with the outer solution determines the behavior of the inner
solution as 7 — co. Note that, since f is positive, Equation (3.4) shows # — 0 as
7 — c0. We shall see that this is consistent with the matching requirement
imposed by the outer solution. This also allows us to compute the constraint (3.5)
from the inner solution only, since there is no contribution to the integral from
the outer region.

From (3.3) we see that €' must be O(1) in order to retain the highest
derivative. In fact, it can be shown that €% must be o(1), else & ~ 0 at leading

order and the constraint (3.5) cannot be satisfied. There then exist asymptotic
expansions of the form

f~fo+esfi+ -, h~hyg+e'oh +- - (o > 00). (3.7)

The leading-order equations for the inner layer,

PN’ ], . 1
(5 =0 wm-Tan

0 2 0 ’ 3 0 ’

The leading-order centerline temperature H,=1/47 was determined from the
integral constraint (3.5), but the leading-order centerline velocity W, must be
determined by matching with the outer solution.

Equations governing the first-order corrections are

7\ - Won'/4 _ |
(?) B 27Wen (3.9)
2 ! 1 f
(hlewo" /4) -2 (3.10)
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These equations can be solved analytically, and the solutions will be given later
[see Equations (3.19) and (3.20), and Appendix A] once the constants of mtegra-
tion have been determined. For now it suffices to note that as 7 — oo

fi ~ an’*lnn + bn® + ¢, (3.11)
where

=1
= 20w,
b — W1 1-y+In(4/W,)

2 87W, ’
1
2aW3’

and y is Euler’s constant [see Appendix A, Equation (A4)]. The first-order
correction to the centerline velocity W, must be determined by matching with the
outer solution.

The outer solution and matching

In the outer region a balance between viscous dissipation and inertia is expected.
Examination of Equation (2.9) shows that this requires F to be O(1). Equation
(2.10) then gives h ~ 0 at all orders in the outer region, which is consistent with
the observation that h -0 as 5 — o0 in the inner region. Only the momentum
equation remains, and this can be expressed as

[e(Frrey) = - F(Fyg)y, (3.12)

where £ =§7{ is the outer variable of order unity and 8(0) is the outer scaling
factor. The outer boundary condition

F/§=0  (¢§-) (3.13)
remains, while the behavior as £ — 0 is determined by matching with the inner

solution. The inner limit of the outer solution is found by noting that F becomes
small as £ - 0, so the right-hand side of (3.12) can be neglected and we obtain

F~ A8 In¢+ B2+ C  (£-0), ‘ (3.14)

where A, B, and C are constants of integration.
Matching is achieved by requiring f to be equal to oF in an intermediate
region defined by a general intermediate variable

x=(8/6) "M =(8/e)) " (0<A<1).
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The expressions (3.11) and (3.14), rendered in terms of x, are

1 1(8\ 8\ (8
of ~ale) o v e() ()

€
NEAC 2y 4 4
+etl o) (ax’lnx+bx?)+efe+ -

and

-2(1-1A)
F ~ c—(-si) ln(g)(l—}\)sz

€

€\ =21-2)
+(§) (Ax*lnx+ Bx2) + ---,

which are seen to be equal for all values of A provided that

C = ce*, A = ae*(8/¢),

2 2 2
B = act(2)n( 2]+ (o 2]
€ € € €

Thus, (3.14) can be rewritten as

F ~ o_l(g)z%Wogz + 64(§)zln(§)a§2

€
+e4(§)2(a$21n£+ b£?) + O(e*).

The first two terms of this expansion are both proportional to ¢2. If either
constituted the asymptotic form as £ = 0 of the leading-order, large-o solution
for F, then Equation (3.14) would imply F ~ 0 for all £. Therefore, these two
terms must cancel to leave the third term as the leading-order term, which is
required to be of order unity. These considerations lead to the proposals

o~ = €*In(8/e), a=—-LW,,  €(8/¢) =1, (3.15)
so that
F~a¢’ln¢+ bg2  (£-0). : (3.16)

The relations (3.15) are then readily manipulated to yield

1
W, —_, 8§ =¢l, : 3.17
0 ‘/2—77_ € ( )
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and
€‘lne™? = g1, (3.18)

The value of € is given by the root of (3.18) that lies in the range 0 <e<e~1/4
= 0.779, so that € is a decreasing function of ¢. All the scalings have now been
determined, albeit implicitly, via the transcendental equation (3.18). The way is
now clear for higher-order terms to be determined in a straightforward, if
laborious, manner.

A point of interest is that the ratio of the vertical-velocity scales in the inner

and outer layers is
W . 8~ 2 1 -1
Woute = 0_16_2 = I:ln(e—z-):l ,

inner

which is very much smaller than unity. This contrasts with the large-Prandtl-
number solutions for two-dimensional convective boundary layers, in which the
inner and outer velocities have the same order of magnitude [5]. This difference is
almost certainly due to the cylindrical geometry, which means that the viscous
stress generated in the inner layer has a much greater volume of outer fluid to
raise for a given surface area at which the stress is applied.

We found W, analytically, but in order to determine W, it is necessary to solve
the outer equation (3.12), and this is most easily done numerically. A shooting
method, similar to that described in Section 2, was employed once the equation
had been transformed using the coordinate stretching w = In £. Pertinent numeri-
cal results are shown in Table 2, and graphs of various terms in the expansions
are displayed in Figures 2—4. The graphs for the inner solution (Figures 3 and 4)
were plotted using analytical solutions which are derived in Appendix A, namely.

h=3wm = {1-e7*+2[E(2)-1]},

Ky EG)

=W, - -, 3.19
m o (3.19)
, fitz—E(z)
he* = H, — =L 5 , (3.20)
Table 2

Some Numerical Results for the
Large-Prandtl-Number Solutions
for an Axisymmetric Laminar Plume?

a=—0.1995 W, = 0.3989 H, = 0.0796
b= 02730 W, = 0.0018 H,=0.0122
c=-10 F_=3267

2See text for definitions of the constants.
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Figure 2. The nondimensional vertical velocity field F’/§ in the outer region of the boundary layer
as a function of the rescaled similarity variable £. Note the logarithmic singularity at £ =0 and the
very slow (algebraic) decay as £ — oo. -
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Figure 3. The first-order correction to the nondimensional vertical velocity f{/7 in the inner region
of the boundary layer. Note the negative logarithmic growth as # — co, which matches to the outer
solution as § = 0.

where z = n2/4\/2—77; E(z)=E,(z)+y+Inz, and E (z) is the first exponential
integral [1].

4. Conclusions

Rational asymptotic expansions, in the limit ¢ — oo, have been found for a
similarity solution of the axisymmetric boundary-layer equations which describe
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Figure 4. The first-order correction to the temperature field h, as a function of the rescaled similarity
variable 7.

a laminar, convective plume. The width of the inner, thermal boundary layer was
shown to be of order r ~eG~'/;, where G is the local, modified Grashof
number defined by (2.8), and ¢ is that root of €*In(1/e2) =1/0 that lies in the
range 0 < e <e~'/% There is an outer region, of width ¢~2 times larger than the
inner region, in which there is no buoyancy, and in which viscous dissipation
balances inertia. The boundary-layer analysis is valid provided that the predicted
width of the plume is much less than its height, so ¢G'/* must be much greater
than unity. Since G is an increasing function of z, we see that the boundary-layer
assumption is always correct sufficiently far above the buoyancy source. In a
region of limited horizontal extent our analysis still applies provided the horizon-
tal dimensions of the fluid region are at least of order ~!G;1/* times its height
L. However, it is clearly possible for € "'G}/* to be much greater than unity while
€G}/* is much less than unity. In this situation inertia is negligible everywhere,
and there will be a narrow thermal boundary layer driving an outer Stokes flow.
The analysis of Roberts [7] is then applicable.

A comparison of the computed results for ¢ =10 with the predictions of the
large-o solutions is interesting. Let subscript a denote the asymptotic results;
then, from the results in Table 1, it is straightforward to compute F, (10)/F, , =
1.013, w(10)/W,(10) =1.249, and H(10)/H,(10) =1.005, once e*(o=10)=
0.2805 has been determined. So the low-order asymptotic expansions that have
been presented are very accurate at predicting the mass flux and the centerline
temperature even when o is as small as 10, but the result for the centerline
velocity is much less impressive. '

The principal achievement of this paper has been the determination of the
functional dependence on Prandtl number of the thermal and velocity fields in an
axisymmetric laminar plume once the Prandtl number is large. This allows for
confident scaling of more complex physical systems involving laminar plumes,
and it shows the way for higher-order approximations to be obtained if they are
required.
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Appendix A -

From Equation (3.9) we have, on integrating once,

fi=Wn— ﬁﬁo fo "(1- e~ wof'/4) ‘%, (A1)

where the constant of integration W, represents the first-order correction to the
vertical velocity at the plume axis. Then, integrating by parts, we obtain

5 ,
=lwan2__1 Mo - wettsa) 98
Hh=3zWnm 47W0./(;(1 e 0 )g

P [e(1- et ) g (A2)

Equations (A1) and (A2) can be rewritten in terms of exponential integrals as

/i o 1 I’Vo"'l Wo"l2
__—1 5 l 1 4 2
fl—FWO-n lnn+2[W yp= W(l y+ln%)]
1 Won?
()| 49

where E,(x) = [P(e”!/t) dt, E,(x) = e *— xE;(x),and y = 0.57721... is Euler’s
constant [1, p. 228 ff.]. :
Now, from Equations (3.5) and (3.7) we have at first order

0 =/ (fohy+ fiho) dn
0 .
= [7| (et ) wame= 4+ g
0
Integration by parts gives

2H,

ll

1 2 L\ |
Z‘f (Tl“ 1)6’ "ot /8 dy. (A5)

Note, from (A1) and (A2) that

2f1

- = 47rW[ Wi (1;e"w°"2/4)]’ (As)
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so (AS5) can be evaluated to yield

1
H =—  (1-In2).
1 16772WO2( n2)

Finally, from (3.10) we have

(h1€W°7'2/4), = — 8_17; [(% _fll) +f1,],

Equation (A6) can again be used, and one integration gives

2 1
hi e/t = H, ~ o

1 VVO,nZ VVonz WOnZ
+16ﬂ2W02[E1( 7} )+y+ln( a1 | (AR)
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