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Abstract

We show how the numerical particle method smoothed particle hydrodynamics (SPH) can be used to the simulate

the freezing of one and two-component (binary alloy) systems. We first study the freezing of a pure a liquid, and com-

pare our computations against exact results for one and two dimensional systems, including cases where there are point

sources and the boundary of the system is irregular. The agreement with theory, where it is available, is very satisfac-

tory. We then consider a two-component system which is initially entirely liquid and model it by a set of liquid SPH

particles together with a set of virtual solid SPH particles which initially have no mass. During the thermal evolution

and solidification of the system, mass is transferred from the liquid SPH particles to the ice (solid) SPH particles. For a

binary melt, as the volume fraction of the solid increases the composition of the liquid is enriched in the component of

the alloy that does not form the solid phase. In the case of salty water, this component is the salt. We find that the

variation of temperature and liquid composition calculated with SPH is in close agreement with previous theories of

mushy layers and gives similar agreement with experiment. In this initial study we simplify the calculations by assuming

the solid particles remain in the position where they are formed: a good approximation for the case where the solution is

cooled from above to form ice leaving behind a relatively light residual liquid, or cooled from below leaving behind a

relatively heavy liquid. We compare our results with experiments on the freezing from below of an aqueous sodium

nitrate solution [Nature 314 (1985) 703], and find that the agreement is very satisfactory.

� 2005 Published by Elsevier Inc.
1. Introduction

Solidification from multi-component solutions is an important process in geology and industry. In the

former it plays a major part in the formation of mineral deposits, and in the latter it is a fundamental
0021-9991/$ - see front matter � 2005 Published by Elsevier Inc.
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process in problems as diverse as the refining of metals from ores and the preparation of single crystals of

silica for the semi-conductor industry.

The simplest of the solidification problems is the Stefan problem where the material is pure. A common-

place example is the formation of ice by the cooling of pure water. If the material is stationary and homo-

geneous with material properties independent of temperature, and the boundaries are sufficiently simple,
the calculation of the interface between phases can be reduced to the evaluation of an algebraic eigenvalue

relationship [6]. However, if the material properties depend on temperature, or the boundary of the domain

is complex, numerical methods must be used.

Early numerical simulations were concerned with simple homogeneous fluids of constant composition.

In order to capture a moving interface on a fixed numerical grid, Oleinik [17] replaced the temperature by

the enthalpy as the dependent variable and introduced a smoothing function to mimic the discontinuity in

enthalpy (due to latent heat) across the interface. This idea formed the basis of the finite difference calcu-

lation of the effect of distributed heat sources on melting [2] and the calculation by Crowley and Ockendon
[5] of melting in the presence of time-dependent heating. These calculations assumed that the temperature

only varied in one dimension.

If the material is not homogeneous, as in the case of solidifying salty water, the heat conduction problem

must be enlarged to include composition changes between the phases. Numerical calculations of the two-

dimensional solidification of binary alloys were made by Ungar and Brown [26] using boundary conform-

ing finite elements. Improvements of this method allowed more complicated problems associated with deep

and deformed cells to be simulated [25,23]. However, these calculations were confined to simple cellular

topologies which may be relevant to small scale laboratory experiment but are seldom directly applicable
to larger scale natural situations. Furthermore, the particle equivalent of the heat conduction and concen-

tration diffusion equations can be designed so that discontinuities in the material properties can be handled

easily without explicit reference to the interface. A common feature of current methods is to smooth inter-

faces. Juric and Tryggvason [14] used such smoothing to replace delta functions by continuous functions in

a similar manner to Peskin [19] who simulated flow within an elastic membrane. A detailed review of this

technique is given by Tryggvason et al. [22].

Apart from the problem of pure solidification or melting, there are further problems associated with

solidification in the presence of fluid flow [9]. A typical example is the growth of dendrites in shear flow.
The two dimensional case has been simulated by Tonhardt and Amberg [21], Beckerman et al. [3] and Juric

[13] using interface smoothing.

A further complication is that the change in phase can produce buoyancy forces which result in bulk

motion. For an interesting and comprehensive discussion of these problems in a geological context see Hup-

pert [10,11].

In the present paper, we explore the application of the particle method smoothed particle hydrodynamics

(SPH; for a review see [16]) to solidification. We choose this technique because it is a gridless method which

can be used even when the domain is very complicated. Furthermore, the particle equivalent of the heat
conduction and concentration diffusion equations can be designed so that discontinuities in the material

properties can be handled easily without explicit reference to the interface between phases. This interface

can be found at any time by delineating the boundary between sets of particles representing different phases.

Enthalpy methods also have this advantage (for a general reference see [8]) but they achieve it by writing the

heat conduction equation so that it involves the rate of change with time of a discontinuous enthalpy func-

tion rather than the rate of change of the thermal energy. The problems associated with this procedure are

discussed in detail by Crank [8].

A possible disadvantage of particle methods is that, during the solidification, the liquid particles may
produce a small mass of solid (ice) during any time step. It would be natural to construct a new SPH

ice particle for each such mass, but that would produce so many small mass particles during the evolution

that the calculations would be paralyzed. In this paper, we evade this problem by extending SPH to include
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a set of ice particles which initially have no mass (and are therefore called virtual), but increase in mass as

the system is cooled according to the thermodynamics of the phase change. The small parcels of ice that are

formed in any time step are added to these ice particles which increases their mass. The initial virtual ice

particles therefore become real ice particles as the calculation proceeds. Typically, at any time there are

both real and virtual ice particles, but the total number remains constant.
A natural consequence of the formation of the ice SPH particles is a region of ice and liquid SPH par-

ticles between the pure solid and pure liquid phases which mimics the region of interpenetrating solid

bathed in interstitial liquid (the mush) found in all experimental situations of solidification of binary alloys.

We will show that the predictions of SPH are very similar to those based on mushy layer theory [28,29].

The aim of this paper is to lay the foundation for the application of SPH to problems with phase changes

and, in particular, to problems involving solidification, melting and their associated fluid flow. The full

range of problems is large and we confine our present study to problems without fluid motion. We first de-

rive the SPH equations for the Stefan problem associated with a fluid with a single composition. We then
derive SPH equations for the freezing of binary solutions and apply them then to the freezing from below of

a sub-eutectic aqueous solution of sodium nitrate which has been investigated experimentally by Huppert

and Worster [12].
2. Heat conduction and salt diffusion

The fundamental field equations describing solidification are the heat conduction and composition dif-
fusion equations. We begin by giving the SPH forms of these equations.

2.1. The SPH heat conduction equation

The heat conduction equation is
cp
dT
dt

¼ 1

q
rðjrT Þ; ð2:1Þ
where T is the absolute temperature, cp is the heat capacity per unit mass at constant pressure, q the density,

j the coefficient of thermal conductivity, and d/dt the derivative following the motion.

Because the heat conduction equation involves second derivatives it is necessary to choose an SPH form

with care. If this is not done, the disorder that often occurs with SPH particles in a problem involving mo-
tion will result in second derivatives with large errors. In addition, any such equations should guarantee

that energy and matter are conserved for isolated systems, and ensure that the conduction and diffusion

lead to an increase in the entropy of the system. A suitable form can be found by starting with the integral

[7]
1

qðrÞ

Z
½jðr0Þ þ jðrÞ�½T ðrÞ � T ðr0Þ�F ðr� r0; hÞdr0; ð2:2Þ
where dr 0 is a volume element and h is a length scale. The function F is defined by
rF ðr; hÞ ¼ rW ðr; hÞ; ð2:3Þ

where W(r,h) is an interpolation kernel and for the usual choices of W we find F 6 0 and F(�r,h) = F(r,h).

In this paper, we use the cubic spline kernel [16] which has compact support and vanishes for r P 2h. Val-

ues of h in the range Dp 6 h 6 1.5Dp, where Dp is the particle spacing, give satisfactory results. If the inte-

grand in (2.2) is expanded in a Taylor series around r, and terms of O(h2) are neglected, we recover the right
hand side of (2.1).
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The SPH method allows us to approximate volume integrals by summation over particles according to

the rule
Z
Aðr0Þdr0 �

X
b

mb
Ab

qb
; ð2:4Þ
where mb is the mass assigned to particle b, qb is the density and Ab is the value of the function A at particle

b.

If we apply this rule to the integral (2.2) and take r to be the coordinate ra of particle a, the SPH form of
(2.1) for any particle a becomes
cp;a
dT a

dt
¼
X
b

mb

qaqb
ðja þ jbÞðT a � T bÞF ab; ð2:5Þ
where the coordinate of particle b is rb and Fab denotes F(rab) with the notation (used throughout this paper

for vectors) rab = ra � rb. The summation is formally over all particles, but because the kernel Wab and

hence Fab have compact support, only near neighbours contribute to the summation.

The previous form of the heat conduction equation (2.5) does not guarantee that the heat flux will be

continuous when j is discontinuous. Cleary and Monaghan [7] show from an analysis of the finite difference

case that this problem can be solved by replacing (ja + jb) by
4jajb

ðja þ jbÞ
: ð2:6Þ
The heat flux is then continuous even with jumps by a factor 103 in j across 3 particle spacings [7]. A

slightly different j term based on similar ideas gives satisfactory results for jumps in j by a factor 109

[18]. However, because the very simple form (2.6) gives excellent results for the normal range of material

properties we use it in this paper. The final heat conduction equation we use is therefore
cp;a
dT a

dt
¼
X
b

mb

qaqb

4jajb

ðja þ jbÞ
ðT a � T bÞF ab: ð2:7Þ
Cleary and Monaghan [7] showed that this SPH form of the heat conduction equation had similar accuracy

to finite difference methods and was not sensitive to the particle disorder that occurs in some SPH calcu-
lations. In addition, heat conduction problems with discontinuous j, and with j varying with T, were accu-

rately integrated.

If the particles are thermally isolated (so they can only exchange heat amongst themselves) then (2.2)

shows (noting that Fab = Fba), that the total heat content
X
a

macp;aT a ð2:8Þ
is constant.
2.2. Heat conduction with sources or sinks

When the system contains point sources or sinks (2.1) becomes
qcp
dT
dt

¼ rðjrT Þ þ
X
k

Qkdðr� RkÞ; ð2:9Þ
where Qk denotes the strength of the source or sink and is negative for a sink. Rk denotes the position of

source/sink k and d denotes a Dirac delta function. The SPH equation corresponding to this becomes
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cp;a
dT a

dt
¼
X
b

mb

qaqb

4jajb

ðja þ jbÞ
ðT a � T bÞF ab þ

1

qa

X
k

QkfkW ðra � RkÞ; ð2:10Þ
where the delta function has been replaced by a smoothing kernel which is consistent with the smoothing of

the original continuum equation and, to ensure that the rate of change of thermal energy due to the source

is correct, we have introduced a normalizing factor fk for source k defined by
1

fk
¼
X
b

mb

qb
W ðrb � Rk; hÞ; ð2:11Þ
where the right hand side is an SPH estimate of the constant 1 at the position of the source. We then find

that, for an adiabatic enclosure,
d

dt

X
a

macp;aT a

 !
¼
X
k

Qk ð2:12Þ
as expected.

2.3. Salt diffusion

We denote the mass fraction of salt by C so that the mass of salt in a mass M of liquid is CM. The dif-

fusion of the salt is given by an equation similar in form to the heat conduction equation namely
dC
dt

¼ 1

q
rðDrCÞ; ð2:13Þ
where D is the coefficient of diffusion with dimensions of ML�1T�1. The time scale for salt diffusion over a

distance ‘, is q‘2/D which is almost a factor 100 greater than that for heat diffusion for the materials con-

sidered in this paper.

The SPH form of this equation follows in the same way as for the heat conduction equation. We find

that the rate of change of the concentration Ca of particle a is given by
dCa

dt
¼
X
b

mb

qaqb

4DaDb

ðDa þ DbÞ
ðCa � CbÞF ab: ð2:14Þ
The combination of D in the SPH equation ensures that the flux of material across an interface between two

materials with different diffusion coefficients is constant. The total mass of salt
P

aCama is conserved by the
SPH equation.

2.3.1. The increase of entropy

It is useful first to note that the contribution of a particular particle b to the rate of change of the tem-

perature of particle a is given by
mb

qaqbCp;a

4jajb

ðja þ jbÞ
ðT a � T bÞF ab: ð2:15Þ
Recalling that Fab 6 0 we find that, if Ta > Tb, Ta decreases as it should.

The SPH conduction equation also results in entropy increasing in the absence of sources. If S is the total

entropy of the system then
dS
dt

¼
X
a

ma
dsa
dt

¼
X
a

ma

T a

dqa
dt

; ð2:16Þ



J.J. Monaghan et al. / Journal of Computational Physics 206 (2005) 684–705 689
where sa is the entropy/mass of particle a, qa is the heat content/mass of particle a and T is the absolute

temperature. From Eq. (2.7), with an interchange of labels, we find that
dS
dt

¼ 1

2

X
a

X
b

mamb

qaqb

4jajb

ðja þ jbÞ
1

T a
� 1

T b

� �
ðT a � T bÞF ab: ð2:17Þ
Since Fab 6 0 we deduce that dS/dt P 0.

When the composition changes there is a further contribution to the entropy. To deduce this we first

divide (2.10) by Ca. If the resulting equation is summed over a, and added to the same expression with

the labels interchanged, we find that
d

dt

X
a

ma lnCa ¼
X
a

X
b

mamb
4DaDb

ðDa þ DbÞ
1

Ca
� 1

Cb

� �
ðCa � CbÞ

qaqb
F ab P 0; ð2:18Þ
which is the increase of entropy resulting from composition changes.

2.3.2. Boundary and interface conditions

We assume that the heat content of the system only changes because the particles lose or gain heat

through a boundary, although it would be possible to include sources of heat. For the problems considered

here the boundaries are maintained at fixed temperatures or adiabatic, or periodic conditions are used.

There is no need to place a special condition on the gradient of the temperature at the boundary to sat-

isfy these conditions if SPH is used. If all the boundaries are adiabatic then the particles interact amongst

themselves and the symmetry of the SPH conduction equation ensures that the system conserves its thermal
energy as shown above. If one or more boundary curves have fixed temperatures, the SPH particles on the

boundaries are included in the heat conduction equation so that the heat transferred to the boundary dur-

ing a time step can be calculated. After this is done the temperatures of the boundary particles are set back

to the specified boundary temperatures for the next time step. The heat transferred to the boundary particle

can be calculated from the temperature change. Cleary and Monaghan [7] noted that near boundaries the

SPH interpolation can give errors of a few percent and they made corrections to the density near the bound-

ary to compensate for this. In the present tests no such correction is made. The equation for the concen-

tration of solute C is integrated assuming that no solute escapes from the domain. This, like the
adiabatic condition, does not require any special boundary condition. Periodic boundaries are implemented

using ghost particles.

As noted earlier, SPH calculations do not need special interface conditions. The SPH particles exchange

heat and material with neighbouring particles whether they are of the same or different phase. In the tech-

nique of Juric and Tryggvason [14] the interface conditions are included as special source terms arising from

the interface giving more complicated equations than with the SPH method.
2.3.3. Time stepping

For simplicity, the problems considered in this study were integrated using an explicit Euler time step-

ping scheme, which for (2.2) takes the form
T nþ1
a ¼ T n

a þ
Dt
cpa

X
b

mb

qaqb

4jajb

ðja þ jbÞ
ðT n

a � T n
bÞF ab; ð2:19Þ
where Tn denotes the temperature at the nth time step. We use an analogous time stepping procedure for the

equation for C. Other, more efficient, time stepping schemes could be used, but they are not necessary for

the problems we consider in this paper because computational demands are light.

Cleary and Monaghan [7] found that for an improved Euler scheme the stability condition for the time

step Dt for systems in two dimensions was
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Dt ¼ 0:15cpqh
2=j; ð2:20Þ
where h is the resolution length of the kernel. The same time-step condition is used here. Since typically

h = 1.2Dp where Dp is the particle spacing, this time step limit is close to that for explicit Euler integration

in two dimensions which is
Dt ¼ 0:25cpqðDpÞ2=j: ð2:21Þ
3. The Stefan problem

The first example to be considered here is the Stefan problem in which a pure substance is cooled suf-

ficiently for it to freeze. In the standard treatment of this problem the following condition is required at

the interface
j1

dT
dy

� �
1

� j2

dT
dy

� �
2

¼ qL
dY
dt

; ð3:1Þ
where L is the latent heat/mass and dY/dt is the rate of change of the position of the interface [6]. The con-

dition expresses the fact that the difference in the heat flux on each side of the interface supplies the heat to

change the phase. In this formulation the position of the interface is one of the unknowns.

The SPH treatment of the freezing is very simple. Initially the SPH particles are placed on a grid which

includes the boundary. They are assumed to be initially liquid and tagged with an integer to denote liquid

particles and given the material properties of the liquid. As heat is conducted from the liquid some particles
reach the solidification temperature Tm. The heat per unit mass q lost by these particles after this time is

then stored and their temperatures are kept at Tm. If particle a is in this condition then, when qa reaches

L, the integer tag is changed to that for the solid phase, and the properties of this phase (thermal conduc-

tivity and heat capacity) are assigned to this particle. Between the solid particles and the liquid particles

there is a region where the particles have reached the solidification temperature but have not yet had their

latent heat fully extracted.

3.1. The semi-infinite domain

The analytical solution [6] for a semi-infinite domain involves a parameter k which is determined by the

physical properties of the material and by the boundary conditions. If TB is the fixed boundary temperature

at y = 0, and T0 is the initial (uniform) temperature of the liquid, the analytical solution when the properties

of the solid and liquid phases are equal gives the solid phase temperature profile
T ðyÞ ¼ T B þ ðTm � T BÞ
erfðkÞ erfðgÞ; ð3:2Þ
and the liquid phase temperature profile
T ðyÞ ¼ T 0 þ
ðTm � T 0Þ
erfcðkÞ erfcðgÞ; ð3:3Þ
where erf(x) denotes the error function, erfc(x) = 1 � erf(x) and g is given by
g ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qCp=ð4jtÞ

q
: ð3:4Þ
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The interface is at
Fig. 1.

the x-d

interfa
y ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jt=ðqCpÞ

q
; ð3:5Þ
and the parameter k is given by
Tm � T B ¼ erfðkÞek2 kL
ffiffiffi
p

p

C
þ ðT 0 � TmÞe�k2

erfcðkÞ

 !
: ð3:6Þ
For test calculations it is convenient to specify k, Tm and T0 then use (3.6) to calculate TB.

The system was assumed to be liquid in a unit square periodic in the x direction and with fixed temper-

atures at y = 0 and y = 1. Although the y domain is finite the solution is close to the semi-infinite solution

for the time we integrate the heat equation. The physical parameters were normalised so that cp = 1, L = 1
and j = 1 for both the solid and liquid phases. The initial temperature was T0 = 1.2, the melting tempera-

ture Tm = 1.0, and k = 0.5. With these parameters TB = 0.1906. The SPH equations with 40 particle spac-

ings in each direction were integrated for 400 time steps when the time is 0.0568. The variation of

temperature with y is shown in Fig. 1. The continuous curve shows the exact solution and the solid dia-

monds the SPH results. A sharp change in slope occurs at the interface between the ice and the liquid par-

ticles at y � 0.23.

There is good agreement between the exact and the SPH results. At any time some particles have reached

the solidification temperature and then lost sufficient heat to become ice, and some have lost a negligible
amount of heat and remain as liquid. The heat lost relative to the latent heat is shown in Fig. 2 where

the particles which have not yet reached the melting temperature have been given the value zero. One line

of particles has reached the solidification temperature but has only lost a fraction � 0.6 of the latent heat.

This figure shows that the interface occurs at y � 0.23 which can be compared with the exact position

y = 0.238. In Fig. 3 we shown the positions of the ice SPH particles and the liquid SPH particles.
The temperature against distance from the cooling boundary for a two dimensional Stefan problem. The system is periodic in

irection. The exact results are shown by the solid line and the SPH results by the solid diamonds. The change of slope shows the

ce between solid and liquid.



Fig. 2. The heat loss of particles relative to the latent heat L after reaching the melting temperature. The particles (liquid) which have

not yet reached the melting temperature are assigned a zero value. The particles which have been cooled enough to change to ice have

the value 1.0. One line of particles (a single point in this diagram) is at Tm but has not yet lost all its latent heat.

Fig. 3. The positions of the ice SPH particles (shown by open squares) and liquid SPH particles (shown by filled squares).
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3.2. Conduction with heat sinks

We now consider the case of a liquid in two dimensions cooled by a point heat sink of strength Q (to

conform with the theoretical solution we use a positive Q in the equations below, but in the SPH equations

it is negative). The theoretical solution for this case is given by Carslaw and Jaeger [6]. If R ¼ 2k
ffiffiffiffiffiffiffiffiffiffi
ðĵstÞ

p
de-

notes the radial coordinate of the interface between the solid (ice) and the liquid at any time t. The melting

(or freezing temperature) is denoted by Tmelt and T1 denotes the temperature far from the heat sink. The

temperature of the solid in r < R is given by
T s ¼ Tmelt þ
Q

4pjs

E1ðk2Þ � E1

r2

4pĵst

� �� �
; ð3:7Þ
where ĵ ¼ j=ðqcpÞ and E1(z) is the exponential integral defined by
E1ðzÞ ¼
Z 1

z

exp�u
u

du: ð3:8Þ
The temperature of the liquid in r > R is given by
T ‘ ¼ T1 � ðT1 � TmeltÞ
E1ðk2ĵs=j‘Þ

E1

r2

4pĵst

� �
; ð3:9Þ
and k is the root of the equation
Q
4p

e�k2 � j‘ðT1 � TmeltÞ
E1ðk2ĵs=ĵ‘Þ

e�k2ĵs=ĵ‘ ¼ ĵsLqk
2: ð3:10Þ
In practice, we specify T1, Tmelt and k and use the previous equation to fix Q.

We apply the SPH equation to simulate water placed in a square domain of side 1 m with a source at the
centre of the square. We take the thermal conductivity and heat capacity of the water in SI units to be 0.591

and 4190, respectively. The corresponding values for ice were taken as 2.20 and 4190. The latent heat of

fusion is 3.335 · 105 J/kg and we take the density of both phases to be 103 kg/m3. We take T1 = 10 and

Tmelt = 0. We write Q for the exact solutions in the form q0Lqĵs and calculate q 0 from (3.10).

In the first simulation we take k = 0.15 and find q 0 = 0.03365 because we have a sink the value of Q in

(2.9) is negative with magnitude q0Lqĵ. We place the SPH particles on a square grid using a total of 1600

particles and take h = 1.3Dp where Dp is the particle spacing. The particles are shown in Fig. 4 after 3000

time steps (equal to a time elapse of 132 h). The ice particles are shown by open circles. The boundary of the
ice is irregular but, as is clear from the figures, the variation of the physical properties is very close to radial.

For example, Fig. 6 shows the temperature of all particles. If there was a non radial variation it would show

up in a spread of the SPH results around the theoretical curve.

Fig. 5 shows the heat loss factor defined as the heat loss after the temperature of the liquid particle first

reaches Tmelt. It is scaled to L and is set to 1 after the SPH particle changes from water to ice. The exact value

of R is 0.212, which is in satisfactory agreement with the position of the interface in the simulation given by

approximately 0.22. This figure shows that, in front of the ice, there is a thin region consisting of those liquid

particles which have reached the melting temperature, but which have not yet lost their latent heat. Fig. 6
shows the temperature profile. The agreement is very satisfactory with the largest errors occurring in the

ice. Just beyond the interface between the ice and the liquid at a radius �0.22 there is a thin layer (approxi-

mately 2 particle spacings thick) of liquid particles which have reached the melting temperature but have not

yet lost their latent heat. The presence of such a narrow interface region is also found in enthalpymethods [8].

Fig. 7 shows the temperature in a simulation with 2500 (50 · 50) particles. The improvement in accuracy

compared with Fig. 6 in the ice region 0 < r < 0.21 is clear.



Fig. 4. The coordinates of SPH particles for the case k = 0.15 with a delta function heat sink at the origin. The ice particles are shown

as open circles and the liquid particles and solid squares. Although the interface between the ice and the liquid looks irregular the

variation of the properties is very close to radial.

Fig. 5. The heat loss factor against radius for the case of a heat sink at the origin. Note the thin layer of liquid particles which have not

yet lost all their latent heat but have in fact reached Tmelt. The exact interface distance is at R = 0.212.
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Fig. 7. The temperature against radius for the case k = 0.15 but with 2500 particles (50 · 50). The exact results are shown by a

continuous line and the SPH results by symbols. Compared to Fig. 6 there is a clear improvement in accuracy in the ice region

0 < r < 0.21.

Fig. 6. The temperature against radius for the case k = 0.15 with 1600 particles (40 · 40). The exact results are shown by the

continuous line and the SPH results by symbols. Despite the particles being on a rectangular grid the variation of the temperature is

close to radial. Note the small group of particles which have reached the freezing temperature but have not yet become ice particles.

These form a small horizontal line at a radius of approximately 0.22.
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Table 1

Table showing the mean square error in the interface radius for various nx

Error-1 Error-2 N

0.01063 0.0167 20

0.00544 0.00840 30

0.00370 0.00548 40

0.00275 0.00407 50

Error-1 is based on the maximum radius of the ice particles +0.5 h, and Error-2 denotes the maximum radius of particles with heat loss

factor >0.25L.
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The improvement in accuracy with increased particle number can also be seen from Table 1 where the
values of the mean square deviation of the interfacial radius are given for various N where N denotes the

number of particles along the side of the square domain. This error is based on at least 50 interface esti-

mates for each resolution. The error in the radius is due to intrinsic numerical errors, for example the fact

that initial delta function source has been smoothed over 2h. In addition the interface is only defined

approximately because liquid particles close to the interface have nearly, but not entirely, lost their latent

heat. The interface radius was therefore calculated in two ways. First by adding 0.5h to the maximum ra-

dius of ice particles (denoted Error-1) and by taking the maximum radius for particles with heat loss factor

>0.25 (denoted by Error-2). This latter radius is roughly between the fully ice and fully liquid particles.
The resulting error varies with h approximately as h1.7. In Fig. 8, we show the radius against time for

three resolutions. The improvement in accuracy with resolution is clear.

Qualitatively similar results occur for a stronger sink. We take k = 0.20 and find q 0 = 0.055928. We use

1600 particles and integrate for 2000 steps (equivalent to a time lapse of 88 h). At this time the exact

R = 0.2309 which is in satisfactory agreement with the mid point of the smoothed interface shown in
Fig. 8. The interface radius against time (in seconds) for the case k = 0.15 with 400 particles (filled diamonds), 900 particles (open

squares) and 1600 particles (filled circles). The exact result is shown by the continuous line.
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Fig. 9. In Fig. 10, we show the temperature profile at the same time as for Fig. 9. As with the weaker sink,

the accuracy is better in the liquid region and is comparable to that with the weaker sink for the same num-

ber of particles.
Fig. 10. The temperature against radius for the case k = 0.20 with1600 particles (40 · 40). The exact results are shown by a continuous

line and the SPH results by symbols.

Fig. 9. The heat loss factor against radius for the case k = 0.20 with1600 particles (40 · 40).



Fig. 11. The coordinates of SPH particles for the case of two heat sinks with coordinates x = ±0.25 and y = �0.1 in an irregular

enclosure. The ice particles are denoted by open circles and the liquid particles by filled squares.
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We now consider the freezing of water in an irregular, adiabatic enclosure roughly modelling a cavity

with nearly bilateral symmetry. We take the strengths of the sinks to be equal and the parameter

q 0 = 0.03665. With many numerical methods the imposition of an irregular enclosure requires careful, time

consuming, differencing near the boundary. The advantage of SPH is that we can use the same program as
before but with a different particle placement. In this case we place two heat sinks with q = 0.033651 at

x = ±0.25 and y = �0.1. The particle placement is approximately symmetric about the y-axis.

The positions of the particles at an early stage of the freezing are shown in Fig. 11. At this time the liquid

has frozen around the sinks down to the bottom boundary. At a later time (not shown) the liquid is con-

fined to a small region near the upper boundary.

These results show that our SPH formulation of solidification is easy to use and gives very satisfactory

results for both configurations in rectangular boundaries, where analytical results are available, and for

irregular boundaries where the immediate issue is the ease with which boundaries can be incorporated to
give results that are physically reasonable.
4. The freezing of a salt solution

We now consider the more complicated problem of the freezing of an aqueous salt solution. In this case,

when an element of the liquid solution reaches the liquidus temperature TL, further loss of heat results in

some ice being formed and the concentration of salt in the solution increases. This problem was considered
by Wollhöver et al. [27] assuming the interface between ice and solution was sharp. However, the conditions

they assumed rapidly produce an unstable interface which then produces a mush comprising a mixture of

dendritic ice crystals and solution (see for example [15]). The same problem was used as a test case by Uda-

ykumar and Mao [24] again assuming the interface was sharp. The SPH method, as mentioned earlier, does
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not assume the interface is sharp, but instead approximates the formation of the mush between the ice and

the solution. In this respect, like most enthalpy methods, our technique does not allow disequilibrium (con-

stitutional supercooling) in the system.

At any time the freezing solution will be a mixture of ice SPH particles with different masses, and liquid

(solution) SPH particles with different masses. As a consequence, the density of the liquid or solid will not
be the intrinsic density q of the phase but a lower density q̂ related by the volume fraction h according to

q̂ ¼ hq. Correspondingly, the thermal conductivity for each phase is replaced by ĵ ¼ hj. The heat conduc-
tion equation for any particle, ice or liquid, then takes the form
Cp
dT
dt

¼ 1

q̂
rðĵrT Þ; ð4:1Þ
with the SPH equation
cp;a
dT a

dt
¼
X
b

mb

q̂aq̂b

4ĵaĵb

ðĵa þ ĵbÞ
ðT a � T bÞF ab: ð4:2Þ
From (4.2) we can easily show that the SPH equation conserves the total heat of an isolated set of par-

ticles because
X
a

macp;a
dT a

dt
¼
X
a

X
b

mamb

q̂aq̂b

4ĵaĵb

ðĵa þ ĵbÞ
ðT a � T bÞF ab ð4:3Þ
is zero. If a denotes an ice or liquid SPH particle then it can exchange heat with all other neighbouring par-

ticles ice or liquid. The summation in (4.2) therefore is over all neighbouring particles b with their appro-

priate ĵb and q̂b.

The salt diffusion equation has the same form as before except that q is replaced by q̂ and the diffusion

coefficient D is replaced by hD. It is straightforward to show that this equation conserves the total amount
of salt. In the problems considered in this paper the diffusion equation only applies to the liquid SPH par-

ticles since the ice is assumed to be salt free. This assumption is not essential. The argument leading to the

increase of entropy from heat conduction and compositional change still applies.

This formulation has some of the features of the mushy layer formulation. However, instead of treating

the mushy layer as a continuum with properties which depend on the volume fraction, we treat the solid

SPH particles as one fluid, and the liquid SPH particles as another fluid, but allow for the fact that they

can be interspersed within each other.

4.1. Thermodynamics

Consider a liquid SPH particle of mass m with salt concentration C. Suppose it was at the liquidus tem-

perature and in the next time step it loses an amount of heat q per unit mass. A mass mice of ice will be

formed and the temperature will decrease by jDTj. Since the thermal energy must be conserved the heat lost

qm must equal the heat extracted to form the ice plus the heat associated with the thermal change of the

remaining salty liquid. This takes the form
qm ¼ miceLþ miceC
ice
p jDT j þ ðm� miceÞCliq

p jDT j: ð4:4Þ
The liquidus equation allows us to relate the change in concentration (and therefore mice) to the change in

temperature. The mass of salt is Cm (we assume this stays in the liquid) so that the salt concentration in the

liquid particle becomes
C þ DC ¼ Cm
m� mice

; ð4:5Þ
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and then
DC ¼ Cmice

m� mice

: ð4:6Þ
From the liquidus equation (which we assume to be linear for simplicity but arbitrary forms can easily be

included) we have
DT ¼ �CDC; ð4:7Þ

and combining (4.6) and (4.7) we get
mice ¼
jDT jðm� miceÞ

CC
; ð4:8Þ
or
mice ¼
mjDT j

CC þ jDT j : ð4:9Þ
We could solve for jDTj by substituting the previous expression for mice into (4.4) which gives a quadratic

equation for jDTj. However, in more complicated problems this is not possible. We therefore chose to solve

for jDTj using the following iterative method.
Making use of the previous equation we can write (4.4) in the form
jDT j ¼ q Lþ ðCice
p � CliqÞjDT j 1� mice

m

�� .
ðCCÞ þ Cliq

p

� �.
: ð4:10Þ
This equation (together with (4.9)) can be solved by iteration using the initial values jDTj = 0 and mice = 0.

The iterations were stopped when the absolute value of the change in mice between two iterations, relative to

the average value of mice for the two iterations, was <0.001.

4.2. Mapping the new ice to the ice particles

After the amount of new ice formed has been determined it must be mapped to neighbouring ice SPH

particles. In the following the subscripts a and b will be reserved for the liquid particles and i and j for the

ice particles.

First we note that q̂a is given by
q̂a ¼
X
b

mbW ab; ð4:11Þ
and in the present problem q̂ only changes because the mass of the liquid particles can change.

The change in mass of the ice particle j is due to the ice formed from neighbouring liquid particles cooled

along the liquidus. If the ice formed by particle a is denoted by Dma then the change in mass of ice particle j

can be obtained from the approximate interpolation formula
Dmj ¼
X
a

DmafaW aj; ð4:12Þ
where the factor fa normalises the interpolation formula so that the total new mass of ice is equal to the

decrease in mass of the liquid. Thus, from (4.11)
X
j

Dmj ¼
X
a

Dmafa
X
j

W aj: ð4:13Þ
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We therefore choose
fa ¼
1P
jW aj

; ð4:14Þ
so that mass will be conserved. In our calculations the mass is conserved to within round off error.

In addition to conserving mass we need to consider the effect of the mapping on the temperature. The ice

SPH particle receives ice from liquid particles which may be at slightly different temperatures. The heat in

ice particle j is
ðmj þ DmjÞCp;jT 0
j ¼ mjCp;jT j þ

X
a

DmaCp;aT afaW aj; ð4:15Þ
where T 0
j is the temperature of ice particle j after the mass is transferred. In this expression, we use the same

normalizing factor f we used for the mass normalization. With this factor included, the total thermal energy

after this transfer
X
j

ðmj þ DmjÞCp;jT 0
j ð4:16Þ
is equal to the thermal energy before the transfer plus the transferred thermal energy
X
j

mjCp;jT j þ
X
a

DmaCp;aT a: ð4:17Þ
4.3. Density and volume fraction

The average density q̂j of ice particle j is given by
q̂j ¼
X
k

mkW jk; ð4:18Þ
where the summation is over the neighbouring ice particles.

The rate of change of this density, in the general case where the particles can move, is
dq̂j

dt
¼
X
k

mkðvj � vkÞ � rW jk þ
X
k

dmk

dt
W jk: ð4:19Þ
The first term on the right hand side is the SPH expression of
�q̂r � v; ð4:20Þ

evaluated at the position of particle j. Together with the term on the left hand side it gives the usual con-

tinuity equation when the particles have fixed mass. The second term on the right hand side is the change in

density associated with the change in the masses of the particles. For the problems considered here the

velocity is zero and only the change in q̂ due to the mass change is required. A similar equation applies

to the liquid particles. The change in the initial values computed to first order using (4.18) is
Dq̂j ¼
X
k

DmkW jk: ð4:21Þ
The new volume fraction hj of ice particle j is then given by
hj ¼
q̂þ Dq̂j

qice

; ð4:22Þ
where qice is the fixed density of ice. The intrinsic density qa of liquid particle a in general changes during the
evolution of the system because the concentration of salt in the solution increases when ice is formed. While
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we could take this into account we prefer to calculate the volume fraction of the liquid in the following way.

At the position of a liquid particle we can estimate the average density of the ice and thus determine h of the
ice at the position of an SPH liquid particle. This is, in fact, an estimate of the ice h in the neighbourhood of

the liquid particle. We denote it by ha(ice). The volume fraction of the liquid at the position of a is then
ha ¼ 1� haðiceÞ; ð4:23Þ

where, following the previous remarks
haðiceÞ ¼
P

kmkW ka

qice

; ð4:24Þ
and the summation is over ice particles.
5. Application to a freezing sodium nitrate solution

The equations described above were tested by applying them to the freezing of a solution of sodium ni-

trate in water [12]. The particular case we consider is with initial salt concentration 0.14, bottom cold

boundary at �16.5 �C, and the fluid at 14.7 �C. The sides are assumed to be perfectly insulated. We use
SI units for which L = 334.4 · 103 J/kg, the heat capacity of water is 4180 J/(kg K), and the heat capacity

of ice is 2006 J/(kg K). The thermal conductivity of ice is 2.408 and that of water is 0.498 with units J/(ms).

The diffusion coefficient of the salt is 6.8 · 10�7 kg/(ms). The initial density of the solution is estimated form

the contours in Fig. 1 of the paper by Huppert and Worster [12]. The value of the parameter C for the liq-

uidus was estimated from the CRC tables as 42.28 (K/kg). The solution is assumed to be in a square con-

tainer of side 0.5 m.

The SPH particle configuration was set up on a grid with virtual ice particles in the same position as the

liquid particles except at the cold boundary. Because it is convenient to use particles to fix the boundary it is
necessary to decide what sort of particles will be on the cold boundary. If we choose them to be liquid par-

ticles then we cannot consistently keep them at the cold boundary temperature because at this temperature

they should be ice particles. We therefore assume that a layer of ice quickly forms on the cold boundary and

we represent this by a line of ice particles with a temperature which is fixed at the boundary temperature. In

the calculations presented here h = 1.3Dp and the number of particles used was 30 · 30.

In Fig. 12, the temperature is shown as a function of distance measured from the cold boundary. The

lower curve is after 3 h and 40 min and the upper curve is at 25 h and 35 min. The SPH results are shown

by X, the experimental values are shown by diamonds, and the results from mushy layer theory [4] are
shown by the continuous curve. The agreement between the SPH, the mushy layer theory, and the exper-

imental results at the time 3 h and 40 min is very good. The results from both SPH and the mushy layer

theory for the time 25 h and 35 min are, however, shifted from the experimental so that, at any height,

the SPH temperature is lower than in the experiment. A possible explanation of the errors over �24 h is

a transfer of heat from the laboratory with a temperature of 20 �C to the nitrate solution with a typical

average temperature of around 0 �C.
Fig. 13 shows the volume fraction for the ice (shown as a diamond), the liquid particles (shown by open

circles), and the mushy layer theory (shown by a continuous curve) after 25.5 h. The mushy layer theory
agrees satisfactorily with the SPH solution for high ice volume fractions but decreases more rapidly to zero

than the SPH results. The difference may be due to the fact that there are differences in the temperature

between the two calculations at this time. However, it may also be partly due to the smoothing inherent

in the SPH calculations. To illustrate this we smoothed the mushy layer volume fraction using the same

kernels as for the SPH calculations. The results are shown by the solid stars. It is clear that the smoothed

mushy layer results vary in a way which is similar to the SPH though the magnitude is different as is to be



Fig. 12. Temperature against distance from the cooling boundary. The experimental results are shown by filled circles, the SPH results

by open circles, and the mushy layer theory by the continuous curve. The lower curves and data points are after 3 h and 40 min. The

upper curves and data points are after 25 h and 30 min.

Fig. 13. The volume fraction of ice and liquid as a function of distance y from the cooling boundary at the time 25.5 h. Values for ice

shown by solid circles, values for the solution are shown by O and the result of the mushy layer theory is shown by a continuous curve.

The solid stars denote the smoothed mushy layer curve.
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Fig. 14. The salt concentration as a function of distance y from the cooling boundary. The mushy layer results are shown by solid

stars. The SPH results are shown by open circles.
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expected from the temperature differences between the two calculations at this time. Finally, in Fig. 14, we

show the salt concentration at the same times as a function of depth. The results are very close to the mushy

layer results which are shown by 3 points (solid stars).

These results show that the SPH formulation of the freezing problem for a binary solution is satisfactory
and is in good agreement with the mushy layer results.
6. Discussion and conclusions

In this paper, we have shown that it is possible to devise an extension of the SPH method which gives a

robust algorithm for solidification problems. The SPH equations for both heat conduction and salt diffu-

sion can be solved without reference to the interface between the solid and liquid phases. The method is
simple to use and guarantees both energy conservation and the increase of entropy from both thermal con-

duction and from salt diffusion in the absence of sources. The method can be trivially extended to handle

the solidification of ternary and higher order alloy systems, which are common in both industrial and nat-

ural contexts, but where investigation has only just begun [1,20].

The results for solidification of a homogeneous liquid are very satisfactory both for freezing in a regular

domain, where analytical results are available, and in irregular domains. In the latter case no changes to the

code are required to deal with boundary conditions on the irregular boundary.

A comparison of the temperature from experiment and mushy layer theory for an aqueous nitrate solu-
tion at sub-eutectic concentration gives good agreement for times �4 h. For later times �24 h the agree-

ment is less satisfactory. We suggest, in the latter case, that slow conduction of heat from the laboratory

to the experimental apparatus is the explanation of the differences between SPH and experimental results.

Our results for the volume fraction of the ice and liquid have been compared against the mushy layer
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theory. We find reasonable agreement, which is improved if the mushy layer results are smoothed so as to

be consistent with the SPH results.

The experimental results for the salt concentration have significant errors for samples drawn from deep

within the solution. As a result neither the SPH results nor the results from mushy layer theory agree with

experiment for the layers close to the ice-liquid interface. The agreement elsewhere is good.
There are numerous extensions to the present algorithm which we are now considering. These include the

important problem of simulating bulk motion driven by the density differences due to the salt in the liquid,

and the density difference between the solid and liquid phases.
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