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We examine the nature of relative motion in colloidal suspensions. By distinguishing carefully
between the thermodynamic pressure of a mixture, defined by Gibbs, and the pressure measured by
Darcy in porous media, we resolve apparent contradictions between the results and interpretations
of different experiments. We show that Fick’s and Darcy’s laws, two empirical equations thought to
describe different and complementary physical phenomena, are in fact particular limits of a single,
unifying thermodynamic equation which can be used more generally to describe transport in
colloidal systems. Importantly, this equation relates macroscopically measurable quantities. We use
it to provide new interpretations of experiments in ultrafiltration. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1915027g

I. INTRODUCTION

The pressure distribution in two-component systems un-
dergoing relative motion, such as the motion occurring dur-
ing ultrafiltrationsSec. IIId, has been a fascinating subject of
debate for some time. One early work1 indicated that the
pressure distribution must be accounted for to describe the
mass flux in ultrafiltration boundary layers while later
authors2–4 claimed the pressure was constant. One
experiment5 measured a constant pressure throughout such a
layer, while another6 reports a significant pressure variation.
In the following sections, we show that this controversy can
be resolved by distinguishing carefully between the various
pressures used to describe such systems. An interesting con-
sequence of this work is a proof that several of the relations
used to model relative motion of two speciessincluding
Fick’s law, Darcy’s law, and the modified Darcy’s lawd are
equivalent.

II. FICK’S AND DARCY’S LAWS

While studying the diffusion of a dilute aqueous suspen-
sion of salt ions in a closed container, Fick proposed that the
motion could be described by a linear relation between the
flux of mass and the concentration gradient.7 The modern
form of Fick’s law is given by the expression8,9

J2
0 = − D = r2, s1d

whereJ2
0=r2sv2−v0d is the mass flux of the ions relative to

the volume average velocity,r2 is the partial mass density of
the salt ions,v2 is the local average velocity of the ions, and
D is the diffusion coefficient. The volume average velocity is

v0 = r1n1v1 + r2n2v2 = s1 − fdv1 + fv2, s2d

wheren2 is the partial specific volume andf=r2n2 the vol-
ume fraction, of component 2.

A year later, Darcy published his observations on the
movement of water through a saturated column of sand.10 In
Darcy’s experiment he first allowed a suspension of silica
particles to sediment to the bottom of his apparatussFig. 1d.
He then allowed water to permeate through the sedimented
particles and measured the fluid pressure using manometers
such as those in Fig. 1. It was found that the motion could be
correlated by a linear relation between the volume flux of
water and the drop in pressure. The modern form of Darcy’s
law is11

q = −
k

h
s=p − r fgd, s3d

where q=s1−fdsv1−v2d is the volume flux of permeating
fluid relative to the particles,k is the permeability,h is the
viscosity of the fluid,p is a pressure which we define care-
fully in Sec. IV, r f is the density of the fluid, andg is the
acceleration due to gravity. Fick’s and Darcy’s equations
were based on experimental evidence, and their range of va-
lidity is not known.

III. ULTRAFILTRATION

Ultrafiltration is a separation process in which a colloidal
solution12 is forced against a membrane or partition that al-
lows the solvent to pass through while retaining the colloids
on the high-pressure side. As the particles build up against
the membrane they form a concentrated boundary layersFig.
2d. Such boundary layers also occur in reverse osmosis,
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where the solutes being filtered are usually salt ions, and in
mechanical filtration, where the solutes are particles of much
larger size. Although the basic phenomenon occurring in all
such boundary layers is essentially the same—one compo-
nent of a binary mixture builds up against the partition while
the other passes through—very different conceptual models
have been used in the past to study reverse osmosis, ultrafil-
tration, and ordinary filtration.

In reverse osmosis the layer is treated as a region under-
going molecular diffusion;13 the constitutive relation used to
describe the flux of solute within the layer is Fick’s law.
Conversely, in mechanical filtration, where the solute par-
ticles are very largesrelative to the particle size in reverse
osmosisd, the layer is treated as a porous medium;14 the con-
stitutive relation used to describe relative motion within the
layer is Darcy’s law. In ultrafiltration, the solute particles are
intermediate in size, and there is uncertainty in the literature
concerning the appropriate constitutive relation to use in this
case. The traditional conceptual picture of ultrafiltration is
summarized by Kozinski and Lightfoot.1

In reverse osmosis, the boundary layer is treated
as an ideal dilute solution for which the pressure gra-
dient will be zero.… In mechanical filtration, the
solute is deposited… at the boundary.… The coeffi-
cient of the pressure gradient is now the hydrody-
namic resistance of this sludge layer and can be ob-
tained from conventional expressions for flow
through porous media.… In ultrafiltration, both ef-
fects can be important… in concentrated solutions
the pressure gradient cannot be neglected… .
Kozinski and Lightfoot indicated that pressure gradients

due to transmitted elastic stress in ultrafiltration boundary
layers must be accounted for in order to describe relative
motion, and proposed a modified version of Darcy’s law.
However, Wales2 later suggested that the pressure is constant
in such layers and that Fick’s law can be used. Two subse-
quent papers claimed to have proved the same result.3,4 Two
different groups have attempted to measure the pressure in
ultrafiltration boundary layers. Kimet al.5 measured the
pressure drop across a layer containing the protein bovine
serum albuminsBSAd, and concluded that the pressure was
constant. Zhang and Ethier6 studied a layer containing the
biopolymer hyaluronatesHAd and found a significant drop in
pressure.

In the following sections we show that the above dis-
agreement can be resolved by defining carefully, in terms of
experimental measurements, what was meant by the word
“pressure” in each case. In fact, several different meanings of
the word are in use in the above works. By clearly defining
these quantities, we are able to reconcile the theoretical dis-
agreements, and obtain the remarkable result that Fick’s and
Darcy’s laws are equivalent.

IV. PERVADIC PRESSURE

In this section we define the thermodynamic pressureP,
the pervadicpressurep, and the generalized osmotic pres-
sure P. Consider a two-component mixture held within a
rigid containersFig. 3d. The thermodynamic pressureP of
the mixture is defined by the relation15

P ; − S ]U

]V
D

S,Mk

sk = 1,2d, s4d

whereU, V, S, andMk are the internal energy, volume, en-
tropy, and masssof componentkd, respectively, of the mix-
ture in Fig. 3. Thus,P is a measure of the change in internal
energy associated with a change in volume. Experimentally,

FIG. 1. Device used by Darcy in his study of permeationsRef. 10d. He first
allowed a suspension of silica particles to settle to the partition. He then
allowed water to pass through the system and measured the drop in pressure
of the fluid in the manometers.

FIG. 2. Schematic of a filtration boundary layerssometimes referred to as an
unstirred layer, a concentration polarization layer, or a filter caked. The gray
region is a binary mixture. The white regions represent pure component 1,
the solvent or permeate. Component 2 can be a solution componentsreverse
osmosisd, suspended colloids or macromoleculessultrafiltrationd, or a porous
matrix smechanical filtrationd. The sides of the flow cell are assumed fric-
tionless or far enough away to have no effect on the filtration process.
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P can be obtained by measuring the force per unit area ex-
erted on the mixture in Fig. 3. As noted by Gibbs,15 Eq. s4d
applies to all mixtures at equilibrium, including fluids, solids,
and solids which absorb fluids, as long as the mixture is
under isotropic stress.

Connected to the system is a manometer. Only compo-
nent 1 is able to pass into the manometer due to a rigid,
semipermeable partition or sieve separating the manometer
from the system. The pressure measured by the manometer is
defined as the pervadic pressurep. The difference between
the pressureP of the mixture and the pervadic pressurep is
the generalized osmotic pressure of the mixture:

P ; P − p. s5d

Figure 4 shows how the pervadic pressurep can be mea-
sured in systems undergoing relative motion.sWe assume the
system in Fig. 4 is composed of mass elements that are ho-
mogeneous and, on the length and time scales of the mea-
surement, in equilibrium with the measuring device. That is,
we make the local equilibrium assumption.d In the case of
porous media,p is identical to the pressure measured by
Darcy.10,11 However, component 2 need not be silica par-

ticles used by Darcy; it could also be a solution of salt ions
or suspension of macromolecules;p is measured the same
way in each case.sNote that in theories of porous media,16

P=−s, wheres is the isotropic portion of the total stress on
the system, andP=−s8, wheres8 is the isotropic stress on
the porous matrix. The physical origin of these quantities is
different in dilute solutions and porous media; however, the
experimental definition, and hence the macroscopic nature of
these quantities, is the same.d

We have now defined the pressure of the mixtureP, the
pervadic pressurep, and the generalized osmotic pressureP
in terms of experimental measurements. Before introducing
the sedimentation-diffusion equation, we consider briefly the
effect of gravity on the system in Fig. 4. The condition for
mechanical equilibrium in the presence of slow relative mo-
tion is sSec. VId

=P = rg, s6d

wherer=r1+r2 is the densitysmass per unit volumed of the
mixture. Equations6d is assumed to apply also in theories of
flow through elastic porous media,16 where it is written, in
the case of isotropic stress considered here,=s+rg=0.

V. EQUIVALENCE OF FICK’S AND DARCY’S
LAWS

Consider a suspension of spheres of constant radiusR
and densityrp. The dimensions of the particles are much
larger than those of the intervening fluid molecules. The
sedimentation-diffusion equation is a generalization of an
equation used by Einstein to describe the motion of the
spheres relative to the fluid:17,18

6pRh

f
sv2 − v0d = −

1

n
= P + K . s7d

Here 6pRh is the viscous resistance of a single sphere mov-
ing through the fluid,fsnd is a friction factor accounting for
the effect of particle-particle interactions on the viscous re-
sistance, andn is the number of particles per unit volume;
i.e.,

n =
f

vp
=

r2

mp
, s8d

wherevp= 4
3pR3 andmp=vprp are the volume and mass, re-

spectively, of a particle. The forceK =vpsrp−r fdg is the net
gravitational force acting on the particles. Equations7d can
be written as, withs8d and neglecting the effect of gravity,

r2sv2 − v0d = −
f

6pRh
S ]P

]n
D = r2. s9d

Equations9d states that the mass flux of component 2 relative
to the volume average velocity is a linear function of the
concentration gradient, and is therefore equivalent to Fick’s
empirical laws1d. Comparing these equations yields

D =
f

6pRh

]P

]n
. s10d

Equation s10d is usually referred to as the generalized
Stokes–Einstein relation, and was obtained by Onsager and

FIG. 3. Device used to measure the generalized osmotic pressureP of a
binary mixture at pressureP. The mixtureswhich can be a fluid solution, a
gel, a porous medium, or a particulate suspensiond is held within a rigid
container at pressureP. Connected to the container by a partition is a ma-
nometer containing pure solvent or permeate at pressurep. The partition is
held rigidly in place and is permeable only to the solvent. The osmotic
pressure is defined as the difference between the pressure of the mixtureP
and the pervadic pressurep measured by the manometer.

FIG. 4. Schematic showing measurements of the pervadic pressurep in a
binary system experiencing relative motion. The measurement is meaningful
if the region in front of the partition is homogeneous and in equilibrium with
the measuring device. That is, the region is uniform and unchanging on the
time and length scales of the measurement.
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Fuoss.19 In a dilute suspension particle-particle interactions
can be neglected and the friction factor is equal to 1. The
osmotic pressure of a dilute suspension isnkBT, wherekB is
Boltzmann constant andT is the absolute temperature. Equa-
tion s10d reduces, in this case, to the Stokes–Einstein relation
of a dilute suspension,

D =
kBT

6pRh
. s11d

Equations7d has found use in the study of the sedimen-
tation and diffusion of suspended particles. For example,
Davis and Russel18 used this equation to study a suspension
of silica particles. They first combined the sedimentation-
diffusion equation with conservation of mass to model the
volume fraction profile as silica spheres sedimented to the
bottom of a closed container. Then they allowed fluid to
permeate through the sedimented layer. As the particle radius
R increased, the effect of Brownian diffusion became negli-
gible, and the sedimentation and filtration process formed a
close-packed layer of uniform concentration. The system
studied by Davis and Russel, in the limit of large particles
experiencing negligible Brownian diffusion, is identical to
the system studied by Darcy.sRecall that Darcy first allowed
a suspension of silica particles to sediment to the bottom of
his container and then he allowed water to permeate through
the system.d If Darcy’s experimental system is a limiting
case of the system studied by Davis and Russel, though,
there must be a relation between Darcy’s law and the
sedimentation-diffusion equation.

In order to show that the two equations are equivalent
we use the experimental definition of osmotic pressureP
=P−p and the condition for mechanical equilibriums6d.
Combining these two equations withs7d and s2d yields

q = −
1

n

f

6pRh
s=p − r fgd. s12d

In obtaining s12d we also used the relationr=s1−fdr f

+frp, which is valid in the present casesconstantrp andr fd.
Equation s12d states that the volume flux of component 1
relative to component 2 is a linear function of the quantity
=p−r fg, and is therefore equivalent to Darcy’s empirical
law s3d. Sinces12d is also equivalent tos7d, it follows that in
the absence of gravity Fick’s and Darcy’s laws are equiva-
lent. Comparings12d with s3d yields a relation between the
permeability and the friction coefficient

k

h
=

1

n

f

6pRm
. s13d

Combinings13d ands10d yields an alternative version of the
Stokes–Einstein relation

D = n
k

h

]P

]n
. s14d

Therefore, the transport coefficientsD andk are not indepen-
dent but are related via Eq.s14d to the same underlying
physical variables. Whether one chooses to speak in terms of
a diffusion coefficient or a permeability depends partly on
convention and partly, for convenience perhaps, on the close-

ness of the particular system under consideration to a solu-
tion or a porous medium, respectively.

Before concluding this section we note that Hubbert
published the first generally accepted derivation of Darcy’s
law in 1956.11,20 Hubbert derived Darcy’s law by averaging
the Navier–Stokes equations over a network of interconnect-
ing pores. The success of Hubbert’s theory of flow through
porous mediasand later theories based upon his method21,22d
has led to the view that Darcy’s law should only be applied
to systems experiencing slow viscous flow through a net-
work of pores. Recently, however, Darcy’s law has been ap-
plied to systems involving diffusion in colloidal and macro-
molecular solutions.23–25Our result lends theoretical support
to such studies.

VI. IRREVERSIBLE THERMODYNAMICS

In this section we place the previous results within the
basic framework of irreversible thermodynamics.9,26,27 We
consider a two-component mixture under isotropic stress, ex-
periencing the irreversible processes of heat flow and slow
relative motion of the components. Conservation of mass,
momentum, and energy is expressed by the equations9

r
dc2

dt
= − = ·J2,

dr

dt
= − r = ·v, s15d

r
dv

dt
= = ·T + rg, s16d

r
du

dt
= T: = v − = ·Jq. s17d

In Eqs.s15d–s17d c2=r2/r is the mass fraction of component
2, d/dt=] /]t+v ·= is the material derivative,J2=r2sv2−vd
is the mass flux of component 2 relative to the barycentric
smass-averaged velocity v=c1v1+c2v2, r=r1+r2 is the den-
sity of the mixture,T is the stress tensor,g is the acceleration
due to gravity,u is the internal energy per unit mass, andJq
is a flux of heat defined by Eq.s17d.

For a mixture under isotropic stresssT =−PI d with slow
relative motion of the componentssdv /dt=0d conservation
of momentum and energy can be written as

=P = rg, s18d

r
du

dt
= − P = ·v − = ·Jq, s19d

where P is the thermodynamic pressure andI is the unit
tensor.

As noted by Lhuillier,27 a suspension of particles is dif-
ferent from a solution in that, one can often define and mea-
sure the volume and true density of an individual suspended
particleswhereas the volume of a particle in a solution is not
well definedd. The partial mass densities of the suspension
can then be written asr1=r fs1−fd and r2=rpf, wherer f

andrp are the true densities of the fluid and particles, respec-
tively, and f is the local volume fraction of particles. In
some suspensions, however, the true densities will not re-
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main constant, but will be functions of temperature, pressure,
and concentrationsclay colloids, for exampled. In this case it
is advisable to use the more general relations28 r1n1=1−f
andr2n2=f, wherenk is the partial specific volume of com-
ponentk.29

According to the local equilibrium assumption,9,26 a
mass element of the mixture moving at the barycentric ve-
locity is in equilibrium on the time scaledt, so that the Gibbs
relation can be applied to the element followed along its
center of mass motion:

T
ds

dt
=

du

dt
+ P

dn

dt
− m1

dc1

dt
− m2

dc2

dt
. s20d

In Eq. s20d T is the temperature,s is the entropy per unit
mass,n=1/r is the specific volume, andmk is the chemical
potential per unit mass of componentk. With the relation
c1+c2=1, Eq.s20d can be written in the form

r
ds

dt
=

r

T

du

dt
−

P

rT

dr

dt
−

sm2 − m1d
T

r
dc2

dt
. s21d

Insertings15d and s19d into s21d yields a balance equa-
tion for the entropy9

r
ds

dt
= − = ·Js + s, s22d

whereJs is the flux of entropy,

Js =
1

T
fJq − sm2 − m1dJ2g, s23d

ands is the rate of production of entropy per unit volume,

Ts = − Js · = T − J2 · = sm2 − m1d. s24d

In an isothermal system Eq.s24d reduces to

Ts = − J2 · f=sm2 − m1dgT, s25d

where the subscriptT indicates that the temperature is uni-
form. Near equilibrium, the fluxJ2 appearing in the expres-
sion s25d for production of entropy is assumed to be a linear
function of the driving forcef=sm2−m1dgT yielding the
equation9

J2 = − Lf=sm2 − m1dgT s26d

whereL=LsT,P,c2d is a phenomenological coefficient.
Equation s26d is a purely thermodynamic relation ex-

pressing that a gradient in chemical potential will drive a flux
of mass. It can be made more practical by writing it in terms
of quantities that are actually measured. For example, using
the Gibbs–Duhem equation

r1s=m1dT + r2s=m2dT = = P s27d

and the relations=m2dT=n2= P+s]m2/]c2dT,P=c2 yields

J2 = − L
r

r1
FS ]m2

]c2
D

T,P
= c2 + Sn2 −

1

r
D = PG . s28d

Equations28d is an improvement ons26d as c2 and P can
usually be measured. Equations28d suggests the definition of
a diffusion coefficient9

D =
L

r1
S ]m2

]c2
D

T,P
, s29d

which yields, withs18d and the relationr1n1+r2n2=1,

J2 = − rD = c2 + rLsn1 − n2dg. s30d

The flux in s30d includes two terms involving=c2 sconcen-
tration diffusiond and g ssedimentationd. In the absence of
gravitational effects Eq.s30d reduces to Fick’s law of
diffusion:9

J2 = − rD = c2. s31d

In experiments in closed containers it can be more con-
venient to write the fluxes in terms of the volume average
velocity v0=r1n1v1+r2n2v2 instead of the mass average ve-
locity v. Using the relationsJ2

0=r2sv2−v0d=rn1J2 and
s]r2/]c2dT,P=r2n1, Eq. s30d can be written in terms of the
volume average velocity to yield

J2
0 = − D = r2 + r2sdg, s32d

where sd=Lr2n1sn1−n2d /r2 is the sedimentation
coefficient.9,30

In some experiments, particularly those involving filtra-
tion, it is more convenient to measure the pervadic pressure
p sFig. 4d than the concentration. The pervadic pressure can
be related to the chemical potential of component 1 by con-
sidering an experiment at constant temperature in which the
thermodynamic pressureP and concentrationc2 of the mix-
ture in Fig. 3 are varied. IfP, c2, and the pressurep of the
pure fluid in the manometer are changed in such a manner
that equilibrium between the mixture and the manometer is
maintained we must have, throughout the process,

sdm1dT = sdm1
0dT, s33d

wherem1
0 is the chemical potential of pure component 1 in

the measuring device. For an isothermal process,

sdm1
0dT = n1

0dp, s34d

wheren1
0=1/r f is the specific volume of pure component 1.

With the local equilibrium assumption Eqs.s33d ands34d can
be combined to yield

s=m1dT =
1

r f
= p. s35d

Combining s35d, s27d, and s18d, and the relationq
=r1n1sv1−v2d=−rn1J2/r2 with s26d yields Darcy’s law,

q = −
k

h
s=p − r fgd, s36d

whereh is the viscosity of pure component 1 andk is the
permeability,

k

h
= LS r

r2
D2Sn1

r f
D . s37d

Equationss36d and s32d are each equivalent tos26d, but
are more practical in that they are written in terms of mea-
surable quantities. Which equation is used in a particular
situation depends upon the particular experimental setup and
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upon whether it is found more convenient to measure
changes in concentration or changes in pervadic pressure.

Combining s37d and s29d yields a relation between the
diffusion coefficient and the permeability,

D =
k

h

r2
2r f

r1
S ]m2

]r2
D

T,P
, s38d

where the relations]r2/]c2dT,P=r2n1 has been used. The
chemical potential is related to the osmotic pressure via
equation28 s]m2/]r2dT,P=sr1n1/r2ds]P /]r2dT,m1

, so thats38d
can be written as

D = r2
k

h
sr fn1dS ]P

]r2
D

T,m1

. s39d

In a suspension of hard-sphere particlesn1=1/r f and r2

=nmp, wheremp is the constant mass of a particle, in which
case Eq.s39d reduces tos14d. This provides a connection
between the thermodynamic theory developed here and the
hard-sphere theory presented in Sec. V.

VII. “MODIFIED” DARCY’S LAW

It is a common objective in the study of macromolecular
solutions and gels to separate the effects of elastic stresssdue
to the forces the macromolecules exert on each otherd from
the effects of the particles’ random, or Brownian,
motion.31–35 One way to obtain such a separation is to as-
sume that the generalized osmotic pressureP can be decom-
posed into an elastic contribution −s8 and a mixing contri-
bution p:36–39

P = p + s− s8d. s40d

Much work in polymer physics is directed toward obtaining
theories and measurements ofs8 andp.31,40,41

Combining s40d with s39d yields D=Dm+Del, where
Dm=r2sk/hds]p /]r2d is the Brownian portion of the diffu-
sion coefficient andDel=r2sk/hdf]s−s8d /]r2g is the elastic
portion sthe approximationn1<1/r f is a good one in many
systemsd. A dimensionless numberN=Del/Dm governs the
relative magnitude of the two effects. For dilute suspensions
and solutions,N=0, and relative motionsin the absence of
gravityd is driven solely by Brownian diffusion. For a close-
packed matrix of hard spheressa porous mediumd 1/N=0
and relative motion is driven by the presence of a gradient in
elastic stress. For concentrated suspensions and gelsN will
take on some finite value. The magnitude ofN could be used
to indicate whether it will be more convenient to use Fick’s
law sN!1d or Darcy’s lawsN@1d in a particular system. In
Sec. VIII we approximateDel, Dm, andN within a macromo-
lecular solution.

Given the above separation of elastic and Brownian ef-
fects, one can define

pm ; P − pel, s41d

where pel;−s8. Thus, pm is equal to the pressure of the
mixture as a whole less the pressure due to the isotropic
elastic stress supported by component 2. Let us discuss the
nature of this quantity,pm. In the limit of a saturated close-
packed matrix of hard spheres, i.e., a porous medium,

Brownian diffusion is absent andp=0. In this case Eqs.s41d,
s5d, ands40d can be combined to yield

pm = p. s42d

Thus, for porous media,pm is equal to the pervadic pressure
measured by Darcy. In a dilute suspension, however, the par-
ticles exert no forces on each other ands8=0. Equations41d
yields

pm = P. s43d

Therefore, during Brownian diffusion in dilute suspensions
pm is equal to the pressure of the mixture as a whole and is
therefore constantsneglecting the effects of gravityd. During
relative motion in concentrated solutions and suspensions,
pm will not remain constant, as was pointed out by Kozinski
and Lightfoot1 sSec. IIId.

Combinings41d, s5d, ands40d with s36d yields

s1 − fdsv1 − v2d = −
k

h
s=pm − = p − r fgd. s44d

Or, if v2=0 and gravity is neglected,

s1 − fdv1 = −
k

h
s=pm − = pd. s45d

Equations45d has been referred to as the “modified” Darcy’s
law,4,42,43although, as we have shown, it is in fact equivalent
to Darcy’s law. Combinings44d with s13d and the Stokes–
Einstein relation forDm yields

J2
0 = − Dm = r2 + r2

k

h
s=pm − r fgd. s46d

The first term on the right-hand side ofs46d describes the
mass flux due to Brownian motion of the particles and the
second term describes the flux due to a gradient in elastic
stress. This equation was used to obtain predictions ofpm in
a system containing the biopolymer hyaluronate, which were
consistent with the results of later experiments.6

VIII. IMPLICATIONS FOR ULTRAFILTRATION

The conceptual difficulty surrounding pressure in ultra-
filtration processes can be resolved by distinguishing be-
tween the thermodynamic pressureP of the mixture and the
pervadic pressurep that was measured by Darcy. The per-
vadic pressure will not remain constant during relative mo-
tion, even in ideal dilute solutions undergoing Brownian dif-
fusion. sThis can be tested by measuring the pervadic
pressure during Brownian diffusion using the apparatus in
Fig. 4.d The pressureP of the mixture as a whole, however,
is determined by the condition for mechanical equilibrium
s18d sassuming isotropic stress and slow relative motiond.
Neglecting the effects of gravity,P remains constant. The
pressurepm will remain constant in dilute solutions, but not
in concentrated systems or porous media. If the mutual dif-
fusion coefficientD is known and gravity is absent, it is not
necessary to calculate or measure any of the above pressures.
However, it may be more convenient in some systems to use
Darcy’s law sor a version of the “modified” Darcy’s lawd,
and hence predict the pressure profile.sThe dimensionless
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numberN introduced in Sec. VII can be used to indicate
which of Fick’s and Darcy’s laws will be more convenient in
a particular system.d Also, measuring or calculatingp sand/or
pmd can yield useful information about the system, as we
show below.

We consider the implications of the above results for the
pressure measurements of Kimet al.5 and Zhang and Ethier6

mentioned in Sec. III. Both of these groups were attempting
to measure the pressurepm, and thereby determine if any
elastic stress was present in their system. However, there is
at present no unambiguous method for the measurement of
pm. In both of the experiments, the measurements were per-
formed by inserting a pressure transducer into the layer and
taking readings at different positions. The pressure trans-
ducer used in the experiments consisted of a tip connected to
a base held at a constant reference pressure. As the pressure
in the mixture changes, the position of the tip changes rela-
tive to the base, allowing measurements to be made. The
radius of the tip was<1 mm, whereas the size of the mac-
romolecules was on the order of 0.1mm.4 Since the size of
the sensing tip was much larger than the size of the particles,
it would seem both Kimet al. and Zhang and Ethier actually
measured the pressure of the mixtureP. If they did indeed
measureP, the pressure should have remained constant, or
perhaps increased slightly due to the effects of gravity. Kim
et al.5 took measurements within a layer containing the pro-
tein bovine serum albuminsBSA; molecular weight
65 000 Dad and found that the pressure remained constantsto
within experimental errord.

However, this explanation does not account for the ex-
periment of Zhang and Ethier,6 who measured adrop in pres-
sure across a layer containing the biopolymer hyaluronate

sHA, molecular weight 106 Dad. Figure 2 represents the sys-
tem studied by Zhang and Ethier. Above the partitionsa
polycarbonate membraned was placed a small amount of hy-
aluronate solution, above which was placed pure solvent
s0.01M NaCld. At t=0 a pressureP was applied to the sys-
tem above the membrane, generating a flux of mass. Even-
tually a steady state was reached. Two experiments were then
performed on the system. In the first, the concentration of
hyaluronate at different points within the steady state layer
was measured using a light refraction techniquefFig. 5sadg.
In the second, the steady state pressure profile was measured
fFig. 5sbdg.

At steady state, the velocityv2 of the hyaluronate is zero
everywhere and Fick’s laws1d can be written as

D = r2v
0Y dr2

dx
. s47d

All of the quantities on the right-hand side ofs47d were
measured by Ethieret al.Therefore, they were able to predict
the diffusion coefficient as a function ofr2. The results are
plotted in Fig. 6sad.

It was suggested that the nonlinearities in Fig. 6sad may
have been due to a transition from a relatively dilute concen-
tration regime to a regime in which the hyaluronate particles
begin to entangle.44 This transition is known to occur some-
where in the range 0.004ør2ø0.01 g/cm3.44,45 Thus, there
is the possibility that the entangled HA molecules were pro-
hibited from contributing to Zhang and Ethier’s pressure
measurement.sBSA is a compact globular protein and is
much less prone to entanglement.d One may now reasonably
ask if Zhang and Ethier measured the pressurepm. We cannot

FIG. 5. Steady statesad concentration andsbd pressure
measurements of Ethieret al. sRefs. 6 and 42d in a
filtration boundary layer containing the biopolymer hy-
aluronate.fThe concentration measurements of Zhang
and EthiersRef. 6d were actually ofc2, the mass frac-
tion of hyaluronate. They did not measurer2. However,
as noted by Gowman and EthiersRef. 42d, the densityr
of the mixture remained very near 1 g/cm3 during the
experiment, so thatr2 can be used in place ofc2.g The
two sets of symbols insbd represent two separate
traverses of the layer with a pressure transducer. The
diamonds and squares represent an average of the data
taken during the first and second traverses, respectively.
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be certain that they measured this pressure. In all likelihood
they measured some combination ofpm and P. However,
given that such a measurement was their intention, and given
the potential of such measurements to distinguish between
the effects of Brownian motion and elastic stress, we feel it is
worthwhile exploring the consequences of assuming they did
indeed measurepm.

Neglecting the effects of gravity within the layer, the
equationpel=P−pm can be used to obtain a prediction of the
elastic pressurepel=−s8 due to the stresssassumed isotropicd
supported by the entangled HA moleculesfFig. 6sbdg. At low
concentration, there is no elastic stress; hyaluronate diffuses
like a dilute suspension andpel is zero. However, at a con-
centration corresponding to entanglements,0.006 g/cm3d,
the elastic pressure starts to increase from zero and continues
to increase with increasing concentration. These predictions
could in future be tested by measuring the elastic stresss8
directly sfor example, via quasielastic light scattering40,41d.

A fit of pelsr2d, along with Ethier’s46 estimatesfrom sedi-
mentation studiesd of the permeability, k=2.92
310−16r2

−1.47scm2d, yields the elastic portion of the diffusiv-
ity Del=r2sk/hds]pel/]r2d and hence the mixing portion
Dm=D−Del. These quantities are plotted on Fig. 6sad along
with measurements ofD by Ethier et al. Apparently en-
tanglement significantly hinders the effect of Brownian dif-
fusion on relative motion, with only moderate compensation
from elastic stress. These predictions could also be tested
using quasielastic light scattering measurements ofDm.

We can now approximate the dimensionless numberN
=Del/Dm introduced in Sec. VII. From Fig. 6sad it is evident
that N,0.1 over the entire concentration range used in the
experiment of Ethieret al. As this value is less than 1, we
anticipate that it will be more convenient to use Fick’s law as
the constitutive relation. This does not, however, rule out the

use of Darcy’s law. There may be other reasons to character-
ize the system using Darcy’s law.

It would, first of all, be interesting to measurep using an
apparatus like that in Fig. 4. Such measurements could be
used experimentally to determine permeabilitysas well as to
provide an experimental test of the equivalence of Fick’s and
Darcy’s lawsd. Alternatively, predictingp sgiven an indepen-
dent determination of the permeabilityd can yield an estimate
of the amount of fouling. That is, in the experiments of
Ethier et al., it was suspected that the hyaluronate tended to
become adsorbed or lodged within the pores of the mem-
brane. Following Gowman and Ethier,42 we can gain an es-
timate of the effect of the fouling on the pressure required to
pass solvent through the system by predicting the drop in
pervadic pressure across the layer, and comparing this value
with the measured drop in pressure of the pure solvent across
the entire system. Using Gowman and Ethier’s measurement
of the concentration profile and the volume flux at steady
state, along with Ethier’s46 estimate of the permeability, Dar-
cy’s law can be integrated across the layer to yieldDplayer

=17 kPa. sThis prediction could be tested by measuring
Dplayer using an apparatus like that in Fig. 4.d The total pres-
sure drop experienced by the solvent across the entire system
was measured asDptot=56 kPa.42 And the drop in pressure
required to pass pure solvent across the membraneswith no
HA presentd was measured asDpmem=6 kPa. Therefore, the
drop in pervadic pressure attributable to fouling of the mem-
brane was

Dpfoul = Dptot − Dplayer− Dpmem= 33 kPa. s48d

This estimation, more than half of the total pressure drop, is
consistent with Gowman and Ethier’s expectation of signifi-
cant blockage of the membrane pores in their system.

FIG. 6. sad Measurements of the diffusion coefficientD
of the biopolymer hyaluronate obtained by Ethieret al.
sRefs. 42 and 44d. sbd Prediction of the elastic pressure
pel=−s8 obtained using Eq.s41d and Zhang and Ethi-
er’s sRef. 6d measurements ofpm. The solid line is a
polynomial fit. Also shown insad are the mixing and
elastic portions of the diffusion coefficient predicted us-
ing the Stokes–Einstein relation and the data forD and
pel.
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IX. CONCLUSION

In summary, the thermodynamic pressureP of the mix-
ture remains constant during relative motion, as long as the
effects of gravity are negligible and the condition for me-
chanical equilibrium s18d is satisfied. The pressurepm

introduced by Kozinski and Lightfoot1 is constant in dilute
systems, but varies if elastic stress is present. Kimet al.5 and
Zhang and Ethier6 attempted to measurepm. Kim et al. ac-
tually measuredP and found that it was constant. Zhang and
Ethier may have measuredpm. Neither group attempted to
determine the pervadic pressurep which was measured origi-
nally by Darcy.10 If a group were to measure the concentra-
tion and pervadic pressure simultaneously, it would provide a
direct experimental test of the equivalence of Fick’s and Dar-
cy’s laws.

In this paper we have defined the pressure measured by
Darcy on a thermodynamic and experimental basis. As a
consequence, we have shown that Fick’s and Darcy’s laws
are equivalent. The range of applicability of both equations is
therefore increased. We used this result to reconcile apparent
contradictions in theoretical claims and to provide a new
interpretation of experiments in ultrafiltration.
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