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We present a mathematical model of the unidirectional solidification of a suspension
of hard-sphere colloids. Similarity solutions are obtained for the volume fraction
and temperature profiles ahead of a planar solidification front. The highly nonlinear
functional dependence of the diffusion coefficient on the volume fraction gives rise
to a range of behaviours. For small particles, Brownian diffusion dominates and
the system behaviour is reminiscent of binary-alloy solidification. Constitutional
supercooling occurs at the interface under certain conditions, leading potentially to
an instability in the shape of the interface. For larger particles, Brownian diffusion
is weak and the particles form a porous layer above the interface. In this case
constitutional supercooling reaches a maximum near the surface of the layer, and
the porous medium itself is potentially unstable. In stable systems there exists the
possibility of secondary nucleation of ice.

1. Introduction
In the material, soil, biological and food sciences it is often necessary or desirable

to solidify a suspension of particles. Examples include the fabrication of composite
materials, the freezing of soils, and the preservation of cells, tissues and perishable
foods. The problem has been studied for many years from the point of view of a
single particle interacting with an advancing solidification front. Theories have been
developed capable of predicting conditions under which an isolated particle will be
pushed ahead of and/or engulfed by the interface (Uhlmann, Chalmers & Jackson
1964; Chernov, Temkin & Mel’nikova 1976; Rempel & Worster 1999). In many
systems, a concentrated layer of particles builds up against the interface (Mashl,
Flores & Trivedi 1996; Mutou et al. 1998; Muldrew et al. 2000; Zhang et al. 2005).
This is illustrated in figure 1, which shows the results of some of our own experiments
on the freezing of clay suspensions in water. At slow freezing rates all the clay
particles are excluded from the growing ice and a concentrated layer forms above the
solidification front (figure 1a). At faster freezing rates, the ice forms a dendritic layer,
presumably in consequence of a morphological instability of the ice front (figure 1b).
This behaviour is reminiscent of the solidification of binary alloys (Mullins & Sekerka
1964; Kurz & Fisher 1986; Huppert 1990; Worster 2000). More exotic behaviour can
occur at different particle concentrations and freezing rates. One example is shown
in figure 1(c), in which a polygonal structure of pure ice lenses has formed during
solidification. The particles in the concentrated suspension interact with each other
and the system cannot be modelled on the basis of isolated-particle theories. Many
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(a)

(b)

(c) 3 mm

Figure 1. Unidirectional solidification of montmorillonite clay (5wt% suspended in water,
pH 10), performed by cooling the base of the cell to a set temperature Tb . The cooling plate
is positioned approximately 1 cm below the field of view. In (a) the solidification rate is slow
(Tb ≈ − 3 ◦C). The interface remains planar and rejects all of the particles, leaving behind a
layer of pure ice (in blue). In (b) the solidification is faster (Tb ≈ − 20 ◦C). The interface has
become unstable, forming dendritic structures. The gradations at the top of the figures are
in millimetres. In (c) the concentration has been increased to 50 wt%, and the ice forms a
polygonal pattern. The temporal development of these systems is shown in movies 1–3 available
with the online version of this paper.
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2 mm

Figure 2. Unidirectional solidification of kaolinite clay (60 wt% suspended in water, pH 9),
performed by translating the cell at 1 µms−1 through a fixed temperature gradient (3◦cm−1).
A series of planar ice lenses (dark regions) has formed in the clay, with the thickness of the
lenses depending on the initial clay concentration as well as on the translation speed.

different physical interactions occur in these systems, involving intermolecular forces
between the different phases, viscous fluid flow and possibly electro-phoretic processes,
depending on the variations in ionic concentrations within the suspension phase. In
this paper we begin the development of a continuum model of such systems that can
be used to analyse these different situations.

Yet another type of behaviour was observed by Mutou et al. (1998). They froze
a suspension of silica spheres by pulling a sample through a constant temperature
gradient. As the solidification progressed, a layer of particles accumulated ahead of the
freezing front in a process similar to the development of a filter cake (the concentrated
layer collected against a filter by pressure-driven flow of a fluid suspension) and the
situation shown in figure 1(a). Eventually a new layer of ice formed ahead of the
concentrated layer of particles. The process then repeated, creating a banded structure
in the solid (Mutou et al. 1998; Watanabe 2002). This phenomenon is illustrated in
figure 2 which shows the result of pulling a concentrated suspension of kaolinite
through a fixed temperature gradient, yielding a series of planar ice lenses. Similar
phenomena occur in tissue, concrete, soils and many other materials (Taber 1929;
Scherer 1993; Muldrew et al. 2000; Corr, Monteiro & Bastacky 2003).

Previous approaches to the study of ice lenses have generally treated the
soil as a rigid porous medium consisting of non-colloidal particles (O’Neill &
Miller 1985; Rempel, Wettlaufer & Worster 2004). One of the assumptions of
these models is the existence of a frozen fringe, a region of partially frozen soil
beyond the warmest ice lens (Miller 1972). Recent experiments on a soil consisting
of uniform silica spheres were unable to detect a frozen fringe (Watanabe &
Mizoguchi 2000; Watanabe, Muto & Mizoguchi 2001). In the present work we begin
from an alternative point of view, and propose mechanisms for these ice formations
based on our understanding of the freezing of colloidal systems.
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In preparation for this we review and extend some classical results on the dynamics
and thermodynamics of suspensions of hard-sphere colloids. We obtain in § 2 a general
expression for the mass flux in a hard-sphere suspension. We also obtain expressions
for the osmotic pressure, diffusion coefficient and freezing temperature (§ 4.2). In § 3
we calculate the volume fraction and pressure profiles during the filtration of a hard-
sphere suspension over a range of particle sizes and flow rates. These profiles illustrate
the approach we take to modelling solidification in later sections. Two limiting types
of behaviour are seen. For small particles, Brownian diffusion is relatively strong
and the particles form a diffuse boundary layer against the filter surface; for large
particles, Brownian diffusion is negligible and the particles form a close-packed porous
medium.

In § 4 we present an extended Stefan model of the solidification of a hard-
sphere suspension, and determine similarity solutions for the volume fraction and
temperature profiles. Depending on the particle size and solidification rate, similar
limiting behaviours are found as in the case of filtration. For small particles a diffuse
boundary layer forms against the freezing front. If the flat interface advances too
rapidly, constitutional supercooling can occur in the suspension, and the interface
is potentially unstable. For larger particles, a porous medium forms ahead of
the solidification front. The suspension ahead of the porous medium can become
supercooled. The maximum in supercooling occurs at the surface of the porous
medium, allowing for the possibility of secondary nucleation of ice.

2. Mass flux in a hard-sphere suspension
When a mixture solidifies, it is typical that certain components of the mixture are

preferentially incorporated within the solid phase. The progress of solidification is
then dictated in large part by the transport of the other components away from
the solidification front. In this section we briefly review continuum descriptions of
particulate suspensions in order to determine a convenient representation of mass
transport for use in our study of solidification.

We consider a suspension of rigid spherical particles (hard spheres) with radius R
and constant density ρp . An equation describing the motion of the spheres relative
to the suspending medium (Batchelor 1976; Davis & Russel 1989; Peppin, Elliott &
Worster 2005) is

6πRµ

f
(v2 − v) = −1

n
∇Π + K . (2.1)

Here µ is the dynamic viscosity of the intervening fluid and 6πRµ is the Stokes
resistance of an isolated sphere. The dimensionless friction factor f (n) accounts for
the effect of particle–particle interactions on the viscous resistance, where

n =
φ

vp

=
ρ2

mp

(2.2)

is the number of particles per unit volume. Here φ is the local volume fraction and
ρ2 the partial mass density of the particles, vp = 4

3
πR3 is the volume of a particle, and

mp = vpρp the particle mass. The quantity

v = (1 − φ)v1 + φv2 (2.3)

in (2.1) is the volume-averaged velocity of the mixture, while v1 and v2 are respectively
the average velocities of the suspending liquid and particles relative to the laboratory



Solidification of colloidal suspensions 151

frame. The force K = vp(ρp −ρf )g is the net gravitational force acting on each particle,
where ρf is the density of the fluid (assumed constant) and g is the acceleration due
to gravity.

The quantity Π is the osmotic pressure of the suspension, defined by the equation

Π ≡ P − p, (2.4)

where P is the pressure of the mixture as a whole and p is the pervadic pressure
of the pure fluid separated from the suspension by a rigid semi-permeable partition
(Peppin et al. 2005). As noted by Batchelor and others (Batchelor 1976; Auzerais,
Jackson & Russel 1988), the osmotic pressure is equivalent to the transmitted stress
in a concentrated suspension of particles in which the pervadic pressure is equivalent
to the Darcy pressure.

Equation (2.1) expresses the balance of momentum for the components of the
mixture (the particles and fluid). Conservation of momentum for the mixture as a
whole is described by

∇P = ρg, (2.5)

where ρ = (1 − φ)ρf + φρp is the density of the mixture.
In the absence of gravity equation (2.1) can be written in the form of Fick’s law

ρ2(v2 − v) = − f

6πRµ

(
∂Π

∂n

)
∇ρ2. (2.6)

Equation (2.6) states that the mass flux of component 2 is linearly related to its
concentration gradient. One can define a diffusion coefficient D (Davis & Russel
1989) by

D ≡ f

6πRµ

∂Π

∂n
. (2.7)

Combining (2.7) with (2.1) yields

ρ2(v2 − v) = −D∇ρ2 + ρ2f U, (2.8)

where U = K/6πRµ is the Stokes velocity of an isolated sphere.
With (2.3), (2.4) and (2.5), equation (2.1) can alternatively be written in the form of

Darcy’s law

(1 − φ)(v1 − v2) = −1

n

f

6πRµ
(∇p − ρf g). (2.9)

Equation (2.9) states that the volume flux of component 1 relative to component 2
is a linear function of the quantity ∇p − ρf g. One can define a coefficient k (the
permeability) such that

k

µ
≡ 1

n

f

6πRµ
. (2.10)

Inserting (2.10) into (2.9) yields

(1 − φ)(v1 − v2) = − k

µ
(∇p − ρf g). (2.11)

Comparing (2.10) with (2.7) shows that

D = n
k

µ

∂Π

∂n
. (2.12)
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Equation (2.12), which has appeared several times in the literature (Auzerais et al.
1988; Davis & Russel 1989; Petsev, Starov & Ivanov 1993; Peppin et al. 2005), relates
the transport coefficients D and k to the same underlying physical variables. As we
illustrate in § 3, whether one chooses to speak in terms of a diffusion coefficient D
or a permeability k depends partly on convention and partly on the closeness of the
particular system under consideration to a solution or a porous medium, respectively.

2.1. Diffusion coefficient

Given expressions for the osmotic pressure and permeability, equation (2.12) can be
used to obtain the diffusion coefficient as a function of volume fraction (Auzerais
et al. 1988). The osmotic pressure of a suspension of hard spheres can be written as

Π(φ) =
φ

vp

kBT z(φ) (2.13)

(Russel, Saville & Schowalter 1989), where kB is Boltzmann’s constant and T is the
absolute temperature. The dimensionless compressibility factor z(φ) accounts for the
effect of particle–particle interactions on the osmotic pressure. The form of (2.13) is
based on a fundamental result from statistical mechanics which states that the osmotic
pressure of a suspension of particles and the pressure of a pure gas are the same
functions of volume fraction as long as the particle–particle interaction potential is
the same (McMillan & Mayer 1945; Russel et al. 1989; Brady 1993). At low volume
fraction the compressibility factor can be expanded in the form of a virial series in
the volume fraction as

z(φ) =

∞∑
n=0

βnφ
n. (2.14)

The first few coefficients βn in the series have been obtained via statistical mechanical
techniques (Thiele 1963; McQuarrie 1976). At higher concentrations the integrations
become intractable and the coefficients are commonly obtained via molecular
dynamics simulations (Ree & Hoover 1964; Woodcock 1981; Russel et al. 1989).
By fitting the results of these simulations, Carnahan & Starling (1969) obtained the
approximate expression

z(φ) =
1 + φ + φ2 − φ3

(1 − φ)3
(0 � φ � 0.55). (2.15)

For φ � 0.49, the most stable configuration for a hard-sphere suspension is a
crystalline phase (Russel et al. 1989; Van Megen, Pusey & Bartlett 1990). However, in
colloidal suspensions the hard-sphere crystal is difficult to nucleate and the disordered
state persists for φ > 0.49. We discuss this further with regard to the freezing-
temperature curve in § 4.2.

Considerations of the free volume available to a disordered system of hard spheres
indicate that the pressure should diverge like (φ − φp)−1 as φ approaches the random
close packing fraction φp (Woodcock 1981). Molecular dynamics simulations of hard
spheres at higher concentrations are in agreement with this prediction, giving

z(φ) =
α

(φp − φ)
(0.55 � φ < φp), (2.16)

where α ≈ 1.5 and φp ≈ 0.64 (Woodcock 1981; Rintoul & Torquato 1996). An
expression for z(φ) that is approximately valid over the entire concentration range
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Figure 3. Compressibility factor z of a hard-sphere suspension. At low concentration the
compressibility factor obeys the Carnahan–Starling equation (2.15) (dashed line). Near
close-packing, z diverges according to equation (2.16) (dotted line). The solid line is from
equation (2.17).

can be obtained using asymptotic matching to yield

z(φ) =
1 + a1φ + a2φ

2 + a3φ
3 + a4φ

4

1 − φ/φp

, (2.17)

where a1 = 4 − 1/φp, a2 = 10 − 4/φp , a3 = 18 − 10/φp, and a4 =α/φ5
p − 18/φp . The

ak in (2.17) were obtained by expanding the denominators in (2.15) and (2.16), and
ensuring that (2.17) agrees with (2.15) to order φ3 as φ → 0 and with (2.16) to order
(φp − φ)−1 as φ → φp . Expressions (2.15), (2.16) and (2.17) are plotted in figure 3.

For the permeability of a suspension of hard spheres, we use the empirical expression

k(φ) =
2R2

9φ
(1 − φ)6, (2.18)

which was obtained by Russel et al. (1989) by fitting the results of experiments on
polystyrene spheres and is shown in figure 4(a).

Combining (2.18), (2.17) and (2.13) with (2.12) yields

D(φ) = D0D̂(φ), (2.19)

where D0 = kBT /6πRµ is the Stokes–Einstein diffusivity and

D̂(φ) = (1 − φ)6
d(φz)

dφ
. (2.20)

The expressions above have the properties (figure 4)

D → D0 and k → ∞ (φ → 0),

D → ∞ and k → k(φp) (φ → φp).

These limits illustrate why it is more convenient to use Fick’s law (2.8) as the
constitutive relation for dilute suspensions (D remains finite as φ → 0 while k



154 S. S. L. Peppin, J. A. W. Elliott and M. G. Worster

0 0.2 0.4 0.6
10–16

10–15

10–14

10–13

10–12

10–11

(a)

φ

k

0 0.2 0.4 0.6

1

2

3

4

5
(×10–13)

φ

D

(b)

(m–2) (m2 s–1)

Figure 4. (a) Permeability k(φ) and (b) diffusion coefficient D(φ) of a hard-sphere suspension
(R =10−6 m), obtained from equations (2.17)–(2.20). The diffusion coefficient decreases
at intermediate φ owing to viscous effects and diverges near close packing owing to
particle-particle interactions (Russel et al. 1989). Conversely, the permeability remains finite
near close packing but diverges as φ → 0.

diverges) and Darcy’s law (2.11) for close-packed suspensions and porous media (k
remains finite as φ → φp while D diverges). The mutual diffusion coefficient D(φ)
should, however, be distinguished from the self-diffusivity Ds(φ) of an individual hard-
sphere particle, which approaches zero as φ → φp (Rallison 1988; Davis, Russel &
Glantschnig 1989). That is, in the close-packed limit the individual particles are not
free to diffuse, although the particle matrix as a whole responds rapidly to gradients
in volume fraction. Equations (2.19), (2.20) and (2.17) will be used in the following
sections to model relative motion in hard-sphere systems over the entire range of
volume fraction.

3. Filtration of a hard-sphere suspension
Consider the system in figure 5. Experimentally, a suspension of hard-sphere

particles with initial concentration φ0 is placed above a filter to an initial height L.
Above the suspension is pure component 1. The filter is rigid and permeable only to
component 1. At t = 0 a pressure P is applied, initiating a flow of fluid.

3.1. Conservation of mass

Conservation of mass in the suspension can be written

∂(1 − φ)

∂t
+ ∇ · (1 − φ)v1 = 0. (3.1)



Solidification of colloidal suspensions 155

0

x

q

Figure 5. Schematic of a steady-state filtration boundary layer. The grey region is a
hard-sphere suspension. The white regions signify pure component 1. The sides of the flow cell
are assumed frictionless, or far enough away to have no effect on the filtration process.

At steady state, equation (3.1) can be simplified for the one-dimensional system in
figure 5 (v1 = − v1 i) to give

−dq

dx
= 0, (3.2)

where q =(1 − φ)v1 is the specific discharge of fluid. Thus, q is constant at steady
state. Also, at steady state the particles are statistically stationary in the laboratory
frame (v2 = 0). Neglecting the effects of gravity, equations (2.8) and (2.11) become,
using (2.3),

q = −D(φ)

φ

dφ

dx
=

k(φ)

µ

dp

dx
. (3.3)

As noted in § 2, either D or k can be chosen as the relevant transport coefficient.
We shall model the system in terms of D and φ. The connection between the two
approaches will become apparent in § 3.2 when we show that p(x) can be calculated
once φ(x) is known.

Although variations in L and φ0 will change the dynamical approach to steady
state, the final configuration depends only on the volume of particles per unit area
φ0L. Introducing the dimensionless variables x̂ = x/φ0L and D̂ = D/D0, equation (3.3)
becomes

Peφ = −D̂(φ)
dφ

dx̂
(x̂ � 0), (3.4)

where Pe= qφ0L/D0 is the Péclet number and D̂ is given by equations (2.20) and
(2.17). Equation (3.4) can be solved given a boundary condition for φi , the volume
fraction at the filter. This condition can be obtained by integrating (3.4) using overall
mass conservation, which leads to∫ ∞

0

φ(x̂) dx̂ = 1 = − 1

Pe

∫ 0

φi

D̂(φ) dφ. (3.5)

Equation (3.5) ensures that the total number of hard-sphere particles present in the
system is conserved. Equation (3.5) can be solved to give an implicit expression
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Figure 6. Variation in the volume fraction φ (a–d) and dimensionless pervadic pressure p̂
(e–h) across a steady-state filtration boundary layer: (a) and (e) represent the Brownian limit,
while (d) and (h) represent the porous-medium limit. Note the different scales used for the
drop in pressure as the Peclet number increases.

for φi(Pe). Equation (3.4) can then be integrated from 0 to x̂ to yield an implicit
expression for φ(x̂).

3.2. Filtration profiles

Figure 6(a–d) shows plots of φ(x̂) obtained for increasing Péclet number. In figure 6(a)
the Stokes–Einstein diffusion velocity D0/φ0L is larger than the specific discharge q

of the fluid, and the concentration profile is influenced mainly by Brownian diffusion.
In this case, the concentration decays exponentially away from the filter surface.
However, as the flow rate increases or equivalently the particle size increases (so
that the diffusivity decreases) Brownian diffusion becomes less important relative to
advection, and the particles begin to pile up against the filter surface. Eventually,
for Pe � 1 (figure 6d), Brownian diffusion is almost absent and the particles form a
close-packed layer of uniform concentration.

Figures 6(a)–6(d) are similar to volume-fraction profiles obtained by Davis &
Russel (1989) in their study of sedimentation and filtration. However, we have used a
more general expression (2.17) for the compressibility factor. More importantly, our
results from § 2 allow us to calculate the drop in pressure across the particulate layer.
Combining equations (2.4), (2.13) and (2.17) yields

p̂(x̂) = P̂ − φz(φ), (3.6)

where p̂ = (vp/kBT )p and P̂ =(vp/kBT )P . Figure 6(e–h) shows plots of the drop in
pervadic pressure corresponding to conditions in (a–d). In the Brownian limit (plots a

and e) the pressure varies nonlinearly over the boundary layer, and the total drop in
pressure experienced by the fluid is small. In the close-packed limit (plots d and h),
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Figure 7. Unidirectional solidification of a hard-sphere suspension at initial temperature T∞
and volume fraction φ∞. The temperature at x = 0 is reduced below the freezing temperature
of the suspension. The ice rejects the particles, forming a concentrated boundary layer above
the solidification front. The boundary layer is similar to the layer which forms during the
filtration of a suspension of hard spheres in § 3.

dp/dx is constant (as expected from the Darcy limit of a rigid porous medium) and
the pressure drop is relatively large.

3.3. Discussion

The filtration of a suspension of hard spheres involves two distinct limits,
corresponding to Pe ∼ 1 (Brownian limit) and Pe � 1 (porous-medium limit). In
the Brownian limit the system behaviour is similar to molecular diffusion in liquids:
increasing the Péclet number causes the volume fraction at x̂ =0 to increase but does
not significantly affect the shape of the φ(x̂) curve (figures 6a and 6b). However,
as Pe continues to increase the particles near the filter approach the close-packing
concentration φp . A layer of constant φ ≈ φp begins to form against the filter surface.
For Pe � 1 the system behaviour is similar to flow through a porous medium.

In § 4.4 we find similar regimes during unidirectional solidification of a hard-
sphere suspension. For small particles the system behaviour is similar to binary alloy
solidification. However, for large particles a porous medium forms above the interface,
and the behaviour is quite different.

4. Solidification of a hard-sphere suspension
Consider the system in figure 7. A hard-sphere suspension at initial volume fraction

φ∞ and temperature T∞ is placed within a closed container. The temperature at the
base is then reduced below freezing, and a layer of ice begins to grow upward from
the boundary. We assume that the ice rejects all of the particles; i.e. the segregation
coefficient ks ≡ φs/φi = 0, where φs is the volume fraction of particles in the solid and
φi is the volume fraction at the interface. We also neglect the effects of gravity and
the expansion of ice on freezing. This is a model of the experimental system shown
in figure 1(a).

4.1. Extended Stefan equations

In a closed system, conservation of mass of particles in the unfrozen suspension can
be written

∂φ

∂t
=

∂

∂x
D(φ)

∂φ

∂x
. (4.1)
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We choose here to describe transport in terms of the diffusivity D, to make compar-
isons with alloy solidification, though, as discussed earlier, the problem could be
reformulated in terms of the permeability k. The boundary conditions are

φ → φ∞ (x → ∞), (4.2)

φḣ = −D(φ)
∂φ

∂x
(x = h), (4.3)

where h(t) is the position of the solidification front and the dot denotes differentiation
with respect to time.

We consider simple Fourier diffusion of heat with constant thermal properties of
ice, water and particles, independent of phase, in which case the energy balance can
be written

∂T

∂t
= κ

∂2T

∂x2
, (4.4)

where κ = kT /ρcp is the thermal diffusivity, kT is the thermal conductivity and cp is
the specific heat capacity. The boundary conditions on the temperature field are

T = Tb (x = 0), and T → T∞ (x → ∞). (4.5)

At the boundary x =h(t) there is a Stefan condition expressing conservation of energy
across the interface:

T = Tf (φ), ρLf ḣ = kT

(
∂T

∂x

∣∣∣∣∣
x=h−

− ∂T

∂x

∣∣∣∣∣
x=h+

)
(x = h), (4.6)

where Lf is the latent heat of fusion, Tf (φ) is the thermodynamic freezing temperature,
and the dot denotes differentiation with respect to time. To complete the description,
an equation for the freezing temperature of a hard-sphere suspension is required.

4.2. Freezing temperature

An expression for the freezing temperature can be obtained by utilizing the conditions
for local thermodynamic equilibrium between the suspension phase and the ice
phase. Assuming the interface is planar and the phases are isotropically stressed, the
temperature T, pressure P and chemical potentials µ1 and µ2 must be equal in both
phases (Gibbs 1875, 1878). The condition for equality of µ1 in both phases is

µA
1 = µB

1 , (4.7)

where the superscripts A and B refer to the suspension and ice phases, respectively.
The chemical potential of component 1 in the suspension phase can be written

(Prigogine & Defay 1954)

µA
1 = µf (T , P ) − Π(T , φ)/ρf , (4.8)

where µf is the chemical potential of pure fluid, Π is the osmotic pressure and ρf is
the density of the pure fluid (assumed constant). A similar expression exists for the
chemical potential of component 1 in the ice phase. If the ice phase is pure, however,
the chemical potential is simply

µB
1 = µi(T , P ), (4.9)
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Figure 8. Freezing temperature of a suspension of hard spheres (R = 2 nm). When the
temperature is above Tf (φ), the sample exists as a suspension. Below Tf (φ), ice and suspension
can coexist, with the composition of the suspension determined by the freezing-temperature
curve. Similar diagrams have been determined experimentally in food colloid systems (Roos
1995).

where µi is the chemical potential of pure ice. Inserting (4.8) and (4.9) into (4.7)
yields, with (2.13),

Π

T
=

φ

vp

kBz(φ) = ρf

µf − µi

T
. (4.10)

Differentiating (4.10) with respect to T at constant P gives(
∂φz

∂T

)
P

= −ρf vpLf

kBT 2
, (4.11)

where Lf (T , P ) = hf − hi is the latent heat and hf = µf + T (∂µf /∂T )P the enthalpy
per unit mass of fluid. For the relatively small temperature range of interest here, Lf

can be taken as a constant and equation (4.11) integrated to yield

Tf = Tm(1 + mφz)−1, (4.12)

where Tm is the freezing temperature of the pure fluid and m = kBTm/vpρf Lf . Equa-
tion (4.12) is plotted in figure 8. The slope of the freezing-temperature curve
approaches −mTm as φ → 0 and diverges near close packing. Note that m is inversely
proportional to the particle volume vp . That is, larger particles cause less depression
of the freezing temperature for the same value of volume fraction.

In monodisperse hard-sphere suspensions another type of phase change, from
suspension to colloidal crystal, can occur at high concentrations. At volume fractions
higher than 0.49, hard-sphere colloids can arrange themselves into a crystalline
structure (Russel et al. 1989; Van Megen et al. 1990). However, in many systems
the colloidal crystal does not readily form (particularly if there is polydispersity in
particle size) and the disordered suspension tends to persist as φ → φp (Russel et al.
1989; Auer & Frenkel 2001). In the present paper we study systems in which
the colloidal crystal does not appear. Experimental freezing-temperature curves in
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Figure 9. (a) Pore-scale view of the interface between ice and a close-packed suspension
of hard spheres. (b) Plan view showing a pore throat through which ice can migrate if the
temperature is sufficiently low.

colloidal systems show behaviour similar to the freezing-temperature curve in figure 8
(Simatos et al. 1975; Roos 1995).

Equation (4.12) gives the temperature at which ice is in local equilibrium with
unfrozen suspension on the macroscopic scale. On this scale the ice–suspension
interface is planar (figure 7). On the much smaller scale of a pore, however, the ice
interface has a curvature (figure 9a) that depends on temperature. As the temperature
decreases, the curvature will increase, eventually allowing ice to invade the pore
space between particles (Kuhn, Peterli & Majer 1955; Scherer 1993). The freezing
temperature curve will terminate at this ‘ice-entry’ temperature. In order to obtain
an expression for the ice-entry temperature, we can apply thermodynamic conditions
for equilibrium at the pore scale, following the approach of Kuhn et al. (1955) and
Jackson & Chalmers (1958). The Gibbs–Thomson equation describing the freezing-
point depression due to curvature of the ice in the space between the particles in
figure 9 is (Liu et al. 2003; Rempel et al. 2004)

T − Tm = − Tmγ

ρiLf

K, (4.13)

where ρi is the density of ice, γ is the ice–water interfacial tension, and K is the
mean curvature of the ice in the pore regions. The ice will enter the particle matrix
when the curvature is greater than 2/rp where rp is the characteristic radius of a pore
throat (figure 9b).

For a pore diameter of 1 µm equation (4.13) yields an ice-entry temperature of
TI = −0.1 ◦C, while for a 1 nm pore, TI = − 100 ◦C. Thus, for micron-sized particles,
ice can enter the pores even at relatively warm temperatures, while for nanometre
particles the ice is unlikely to enter the space between particles except at very low
temperatures. For nanometre and smaller particles a glass transition may instead
occur, terminating the freezing-temperature curve before the ice-entry temperature is
reached (Simatos et al. 1975; Roos 1995).

If the temperature at the interface reaches the ice-entry temperature, the ice will
engulf the particles. Alternatively, if local equilibrium fails at the interface due to
rapid freezing, the particles may be engulfed at warmer temperatures via the effect of
interfacial viscous forces (Uhlmann et al. 1964; Worster & Wettlaufer 1999). In the
present work we consider sufficiently slow freezing and relatively warm temperatures
such that local equilibrium prevails and the temperature at the interface is given by
equation (4.12).
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4.3. Similarity solution

Equations (4.1) to (4.6) admit a similarity solution (Rubinstein 1971; Huppert &
Worster 1985; Worster 2000) with variable

η =
x

(4D0t)1/2
(4.14)

and interface position

h(t) = 2λ(D0t)
1/2, (4.15)

where λ is a constant. Introducing the above similarity variables, along with the Stefan
number

St =
Lf

ρcp(T∞ − Tf (φ∞))
, (4.16)

the Lewis number

Le =
κ

D0

, (4.17)

and the dimensionless temperature

θ =
T − T∞

Tf (φ∞) − T∞
, (4.18)

yields the system of ordinary differential equations

dφ

dη
= − 1

2η

d

dη
D(φ)

dφ

dη
, (4.19)

dθ

dη
= −Le

2η

d2θ

dη2
, (4.20)

with boundary conditions

φ → φ∞, θ → 0 (η → ∞), (4.21)

φ = 0, θ = θb (η = 0), (4.22)

φ = φh, φλ =
1

2
D(φ)

dφ

dη

∣∣∣∣∣
η=λ+

(η = λ), (4.23)

θ = θh, λ = − Le

2St

(
dθ

dη

∣∣∣∣∣
η=λ−

− dθ

dη

∣∣∣∣∣
η=λ+

)
(η = λ), (4.24)

θh = θm + Γ

(
φhz(φh)

1 + mφhz(φh)

)
, (4.25)

where Γ = mTm/(T∞ − Tf (φ∞)).
For 0 � η < λ the equations above yield the analytical solution (Carslaw & Jaeger

1959; Worster 1986)

φ = 0, (4.26)

θ = θb +

(
Th − Tb

Tf (φ∞) − T∞

)
erf

(
Le−1/2η

)
erf

(
Le−1/2λ

) . (4.27)

For η > λ the equations can be solved numerically using the shooting method.



162 S. S. L. Peppin, J. A. W. Elliott and M. G. Worster

0 1 2 3 0 1 2 3 0 2 4

0

0.05

0.10
φ

 0.15

0.20

0.25

0

0.05

0.10

 0.15

0.20

0.25

0

0.05

0.10

 0.15

0.20

0.25

0 1 2
η η η

3 0 1 2 3
–8

 –6

 –4

 –2

0

–8

–6

–4

–2

0

–8

–6

–4

–2

0

0 2 4

(a) (b) (c)

( f )(e)(d)

Tb = –5 °C

Tb = –5 °C Tb = –6 °C Tb = –8 °C

Tb = –6 °C Tb = –8 °C

T

Figure 10. Volume fraction and temperature profiles during the unidirectional solidification of
a hard-sphere suspension (Le = 250, mTm = 30 ◦C, T∞ =6 ◦C, and φ∞ = 0.1). Similar profiles
are seen during the solidification of binary alloys (Worster 2000; Davis 2001). The actual
temperature (solid line) in (e) and (f ) is lower than the freezing temperature (dashed line) and
the suspension is constitutionally supercooled.

4.4. Solidification profiles

Equations (4.19)–(4.25) were integrated using the MATLAB ODE Suite (Shampine &
Reichelt 1997). Figures 10 and 11 show solutions of the equations for different values
of the Lewis number Le, the temperature Tb at the base, and the freezing-temperature
parameter m. The Lewis number Le = κ/D0 plays a similar role to the Péclet number
Pe= qLφ0/D0 of § 3. At relatively small values of the Lewis number, the velocity of
the interface (controlled by the rate of heat transfer) tends to be small compared
to the velocity at which the particles can migrate by Brownian diffusion. For large
enough values of Le, however, Brownian motion is weak, and the particles tend to
form a close-packed layer (porous medium) above the interface.

The parameters used in figure 10 (Le = 250, mTm = 30 ◦C, T∞ = 6 ◦C, φ∞ = 0.1,

St = 20, Γ = 5) were chosen to illustrate the analogy with alloy solidification (Worster
2000; Davis 2001). For a Lewis number of 250, Brownian diffusion is quite strong (for
1 nm particles in water equation (4.17) yields a Lewis number of approximately 250).
The driving force for solidification is the undercooling at the base, �T = Tb − Tf (φ∞).
At relatively slow solidification rates (figure 10(a), where �T = −0.5 ◦C) the particles
easily diffuse away from the interface. The temperature of the suspension ahead of
the interface (represented by the solid line in figure 10(d)) is always warmer than
the freezing temperature (the dashed line). However, at faster solidification rates the
concentration and concentration gradient increase at the interface. In figure 10(e) the
concentration gradient at the interface is steep enough that the gradient in the freezing
temperature is larger than the temperature gradient, and the suspension ahead of
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Figure 11. Volume fraction and temperature profiles during the unidirectional solidification
of a hard-sphere suspension (Le = 104, mTm = 10−4 ◦C, T∞ = 1 ◦C, and φ∞ = 0.1). In this case
the particles experience less Brownian diffusion, and can form a porous medium against the
ice–suspension interface (c). The actual temperature (solid line) in (e) and (f ) is lower than
the freezing temperature (dashed line) and the suspension is constitutionally supercooled. If
the porous medium is stable, ice could nucleate in the supercooled region ahead of the porous
layer.

the interface is below its freezing temperature (constitutionally supercooled). In the
case of binary alloys, constitutional supercooling is closely related to morphological
instability (Mullins & Sekerka 1964; Davis 2001), and the interface will tend to
deform into the supercooled region.

In figure 11, Le = 104, and mTm = 10−4 ◦C. In this case the particles are larger
(R = 15 nm), and experience less Brownian motion. The smaller value for m has been
estimated based on equation (4.12): it reflects the expectation that large particles cause
less depression of the freezing temperature. If the solidification rate is sufficiently
slow (�T = − 0.001 ◦C in figure 11(a)), the particles can still diffuse away from the
interface. At higher solidification rates (figure 11(b)), the particles build up against
the interface forming a layer of nearly constant volume fraction (figure 11(c)). The
freezing temperature varies approximately linearly over the porous medium, with
the maximum in supercooling occurring near the surface of the layer. If the porous
medium remains stable during the buildup, secondary nucleation of ice could occur
at the position of maximum supercooling.

4.5. Discussion

As in the case of filtration (§ 3), the solidification of a suspension of hard spheres
involves two distinct limits, corresponding to small particles (Brownian limit) and
large particles (porous-medium limit). In the Brownian limit, the system’s behaviour
is similar to alloy solidification. A diffuse boundary layer builds up against the
solidification front and can cause the suspension ahead of the ice front to become
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supercooled. In this case the interface can become unstable, forming cellular structures
which preferentially grow into the supercooled region.

In the porous-medium limit, a compact layer of nearly uniform concentration
forms against the freezing front. The porous medium is then supercooled, allowing
for the possibility of a morphological instability. Experiments in our laboratory have
revealed such an instability, as well as the subsequent growth of ice dendrites, during
the unidirectional solidification of montmorillonite clay (figure 1). In other systems
(for example a rigid, connected porous medium) the porous matrix may remain stable.
In this case there exists the possibility that ice could nucleate in the supercooled region
ahead of the porous layer. This type of behaviour is thought to have occurred during
the freezing of a microporous filter (Ozawa & Kinosita 1989), articular cartilage
(Muldrew et al. 2000) and Portland cement paste (Corr et al. 2003), and may explain
the behaviour illustrated in figure 2.

In the experiments of Mutou et al. (1998), during which a suspension of silica
particles was unidirectionally frozen, the freezing interface remained planar while a
compact layer of particles formed ahead of the freezing front. The interface then
appeared to undergo a series of instabilities, involving first the capture of particles
along grain boundaries, and finally the engulfment of the entire layer by the ice (K.
Watanabe 2004, personal communication). Similar observations were made by Mashl
et al. (1996), who studied the unidirectional solidification of a suspension of starch
particles. One potential explanation for the engulfment of the particles is that the
ice-entry temperature was reached, as discussed in § 4.2. Another possibility is that
the segregation coefficient ks =φs/φi is not always zero (as assumed in this section)
but depends on the interface velocity, with ks(ḣ) → 1 as ḣ approaches the critical
engulfment velocity (Uhlmann et al. 1964; Worster & Wettlaufer 1999). This could
lead to an oscillatory instability (Coriell & Sekerka 1983) and particle engulfment at
high velocities.

Although we have not undertaken a stability analysis here, it is hoped that the
present theory provides a basic framework for modelling freezing phenomena in
colloidal systems. In future, linear and nonlinear stability analyses may be found
useful in providing a deeper understanding of these systems.

5. Conclusion
We have developed equations describing the unidirectional solidification of a

suspension of hard-sphere particles. For very small particles Brownian diffusion is
important and the concentration and temperature profiles resemble those observed
during alloy solidification. In certain cases, the interface can become unstable owing
to constitutional supercooling. For larger particles Brownian diffusion is weak or
absent and a porous medium forms against the freezing front. The porous medium
is supercooled, allowing for the possibility of a morphological instability. If the
porous medium is stable ice could nucleate in the supercooled suspension ahead of
the porous layer. The interplay between these mechanisms could explain some of the
great variety of freezing patterns observed in soils, tissue, and other colloidal materials.
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