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We present a linear stability analysis of a planar ice interface during unidirectional
solidification of a hard-sphere colloidal suspension. We find that the interface can become
unstable due to constitutional supercooling, yielding a new mechanism for pattern
formation in colloidal systems. The interfacial stability is shown to depend strongly on the
size and concentration of the particles. Increasing the particle radius tends to stabilize the
interface, while increasing the concentration has a destabilizing effect. Additional effects
that may influence the stability and morphology of such a system are described.
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1. Introduction

Directional solidification of colloidal suspensions is of technological importance in
a growing number of applications, including the fabrication of microaligned
porous materials (Zhang et al. 2005), the cryopreservation of medical tissue and
foodstuffs (Mazur 1970; Mashl et al. 1996) and the remediation of contaminated
land (Gay & Azouni 2002; Northcott et al. 2005). An important property of
colloidal systems is that they do not freeze uniformly. Instead the ice segregates,
aligning the expelled particles into different configurations depending on the
freezing conditions (figure 1). One of the major challenges for the future
development of these technologies is to predict conditions under which the
various ice patterns are expected to occur.

Previous approaches to modelling freezing particulate systems have generally
focused on two aspects: the interaction of a particle with an advancing ice front
(Uhlmann et al. 1964; Rempel & Worster 1999) and the freezing of rigid or elastic
porous media (O’Neill &Miller 1985; Rempel et al. 2004). For example, Jackson &
Chalmers (1958) considered a system in which ice is separated from a particle by a
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Figure 1. Colloidal suspensions frozen by cooling from below. The system is open at the top to a
supply of water and there is no constraint on heave. The structure of segregated ice (dark regions)
depends strongly on the freezing conditions and particle concentration. In (a) and (d ), ice dendrites
have aligned the colloids in a process similar to the freeze-fabrication of microfibres (Zhang et al.
2005). In (c) and ( f ), ice lenses have formed, similar to those which appear in frost-heaving soils
(Taber 1929; Chamberlain & Gow 1979). Frost heave due to influx of water to feed the ice lenses
occurred in (c) and ( f ), and can be observed in the online movie associated with Peppin et al.
(2006). (b) and (e) exhibit aspects of both states shown in the other panels. Note in the case of (e)
the dendrites display sidebranching.
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thin layer of water. This layer, now called a premelted film, is caused by long-range
intermolecular interactions (e.g. van der Waals or electrostatic) between the ice
and the particle surface (Dash et al. 2006). A temperature gradient causes some of
the water to freeze, reducing the thickness of the film. Repulsive interactions
between the ice and particle then push the particle towards warmer temperatures.
Explicit calculations of the intermolecular forces between ice and various particle
surfaces have led to quantitative predictions of particle and multiparticle
dynamics (Wettlaufer & Worster 2006).

Contemporaneously with these studies have been developments of homogen-
ized continuum theories focussing on the formation of discrete layers of ice such
as those illustrated in figure 1c (O’Neill & Miller 1985; Fowler & Krantz 1994;
Watanabe et al. 2000; Rempel et al. 2004). However, less has been done to
account for the more complex ice patterns shown in figure 1.

Here, we take a different and complementary approach based on our modelling
of freezing colloidal suspensions (Peppin et al. 2006). We previously obtained
equations describing the solidification of a suspension of hard spheres and found
that under certain conditions the suspension ahead of the ice–suspension
interface can be below its freezing temperature (‘constitutionally supercooled’),
leading potentially to an instability in the shape of the interface. The aim of the
present work is to investigate the stability of the system and obtain conditions
under which an initially planar ice–suspension interface will begin to deform. We
find that increasing the particle radius tends to stabilize the interface, while
Proc. R. Soc. A (2007)
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Figure 2. Schematic of a unidirectional solidification stage.
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increasing the concentration has a destabilizing effect. We obtain a regime
diagram giving the critical wavelength at the onset of instability as a function
of concentration.
2. Formulation

Figure 2 illustrates an experimental setup commonly used to study the
solidification of colloidal suspensions (Mashl et al. 1996; Mutou et al. 1998;
Watanabe 2002). A suspension of bulk volume fraction fN is enclosed between
two long parallel plates. The plates are laid across two heat exchangers, such
that the freezing temperature of the suspension lies between TL and TH. The heat
exchangers are kept fixed in place and the suspension is pulled towards the cold
side at constant speed V. As the suspension freezes, a boundary layer of rejected
particles builds up against the solidification front. In principle, a steady state can
be reached in which the volume fraction fs of particles in the ice is equal to the
volume fraction of the bulk suspension.

In this section, we first write down the conservation equations and boundary
conditions describing the system and solve for the steady-state configuration. We
then perturb the steady profile via normal modes, linearize the governing
equations in the perturbed quantities and solve the resulting ordinary differential
equation to determine conditions under which the interface is stable
(perturbations decay in time) or unstable (perturbations grow in time).

(a ) Governing equations

We assume constant densities and thermal properties of ice, water and
particles. Conservation of mass ahead of the interface can then be written, in a
frame of reference moving with the pulling speed V,

vf

vt
KV

vf

vz
ZV$DðfÞVf ðzOhÞ; ð2:1Þ

where h is the height of the deforming interface above the steady planar
position and D is the mutual diffusion coefficient, given by the expression (Russel
et al. 1989)

DðfÞZD0D̂ðfÞ; ð2:2Þ
where D0ZkBT=6pRm is the Stokes–Einstein diffusivity and

D̂ðfÞZ ð1KfÞ6 dðfZÞ
df

: ð2:3Þ

Here kB is Boltzmann’s constant, T is the absolute temperature, R is the particle
radius, m is the fluid dynamic viscosity and Z is the compressibility factor. For Z,
Proc. R. Soc. A (2007)
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Figure 3. Diffusion coefficient D versus volume fraction f calculated at 08C for various
particle radii.
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we use the following hard-sphere equation of state (Peppin et al. 2006)

ZðfÞZ 1Ca1fCa 2f
2Ca3f

3 Ca4f
4

1Kf=fp

; ð2:4Þ

where a1Z4K1/fp, a 2Z10K4=fp, a3Z18K10/fp, a4Z3=2f5
pK18=fp, and

fpZ0.64 is the volume fraction at random close packing. Equations (2.3) and
(2.4) are based on sedimentation experiments using polystyrene beads
and molecular dynamics simulations of hard spheres (Russel et al. 1989).
Figure 3 shows D as a function of f for several different particle radii.

Neglecting diffusion in the ice, conservation of mass at the interface is given by

ðfIKfSÞVn ZKDðfIÞVfI$n ðz Z hÞ; ð2:5Þ
where fI and fS are the volume fraction of particles on the unfrozen and

frozen sides of the interface, respectively, VnZðVChtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Ch2x

p
is the speed of

the deformed interface normal to itself, x is position along the interface and
nZðKhx ; 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Ch2x

p
is the normal to the interface at x. The interfacial

concentrations are related by the equation

fS Z k sfI; ð2:6Þ
where k s is the segregation coefficient. In general, k s depends on the interfacial
concentration and on the solidification velocity V. For example, Rempel &
Worster (1999) have shown that at small freezing velocities a spherical particle
will be rejected by a growing ice phase (k sz0), while at larger velocities the
particle will be engulfed (k sz1). Here, we consider relatively slow freezing so
that the segregation coefficient is near zero and approximately constant. Far
from the interface the boundary condition is

f/fN ðz/NÞ: ð2:7Þ
One advantage of the experimental configuration in figure 2 is that the

temperature field can be assumed constant in a frame of reference fixed with
Proc. R. Soc. A (2007)
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respect to the heat exchangers and given by the linear expression

TðzÞZTiCGTz ðzR0Þ; ð2:8Þ
where Ti is the temperature at the steady planar interface and GT is the constant
temperature gradient imposed on the system. Equation (2.8) is the ‘frozen-
temperature approximation’ (e.g. Davis 2001) and is strictly valid when the
thermal properties of ice and suspension are the same, and the growth velocity is
slow enough that the effects of latent heat can be neglected at the freezing interface.
Though these conditions are not well met in ice/water systems, we employ the
frozen-temperature approximation here for mathematical convenience to expose
the principle mechanisms for instability straightforwardly. This limitation will
change only the magnitude of the effective temperature gradient in the suspension
and not the nature of the instability in the linear regime.

When local equilibrium prevails, the temperature at the planar interface is
equal to the thermodynamic freezing temperature Tf(f), which for a hard-sphere
suspension is given by (Peppin et al. 2006)

Ti ZTfðfiÞZTm½1CmfiZðfiÞ�K1 ðz Z 0Þ: ð2:9Þ
Here, fiZfN/k s is the volume fraction at the steady planar interface, Tm is the
freezing temperature of the pure fluid and mhkBTm=vprLf , where vpZð4=3ÞpR3

is the volume of a particle, r is the density (assumed constant) and Lf is the
latent heat of fusion of ice. The temperature at the deforming interface is

TI ZTfðfIÞC
gTm

rLf

K ðz Z hÞ; ð2:10Þ

where fI is the volume fraction at the deforming interface, KZhxxð1Ch2xÞK3=2 is
twice the mean curvature of the interface and g is the interfacial surface energy.
The surface energy term on the right-hand side of equation (2.10) represents the
Gibbs–Thomson effect, i.e. the change in temperature at the interface due to the
curvature there. For equation (2.10) to apply macroscopically, the radius of
curvature of the interface must be much larger than the radius of a particle:
j1/Kj[R. Here, we assume that the surface energy does not depend on the
particle concentration or the local orientation of the interface, and treat g as an
averaged constant. We return to this issue later in the paper.

By neglecting the slight temperature dependence of D0, we can introduce the
dimensionless variables ðx̂; ẑ; ĥÞZðx; z; hÞ=dL, t̂Z t=dt, K̂ZdLK , T̂ZT=dLGT

and ĈZf=dLGf where dLZD0/V, dtZD0/V
2, GT is the temperature gradient

and Gf is the concentration gradient at the planar interface obtained from
equation (2.5) as

Gfh
df

dz

����
zZ0

ZK
fið1KksÞV

DðfiÞ
: ð2:11Þ

Equations (2.1)–(2.8) become, upon dropping the carets,

CtKCz ZV$DðCÞVC ðzRhÞ; ð2:12Þ
CIð1KksÞð1ChtÞZKDðCIÞðCzKCxhxÞ ðz Z hÞ; ð2:13Þ

C/CN ðz/NÞ; ð2:14Þ
TI ZTfðC IÞCMGK ðz Z hÞ; ð2:15Þ
TðzÞZTfðCiÞCz ðzR0Þ; ð2:16Þ
Proc. R. Soc. A (2007)
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where M is the morphological number,

M Z
GTf

GT

: ð2:17Þ

G is a surface energy parameter,

GZ
gTm

d2LGTf
rLf

; ð2:18Þ

and GTf
is the gradient in the freezing temperature at the planar interface,

GTf
h

dTf

dz

����
zZ0

Z
dTf

df

����
fi

Gf: ð2:19Þ

(b ) Basic state

In the steady planar case, hZ0 and equations (2.12) and (2.13) become

K
dC

dz
Z

d

dz
DðCÞ dC

dz
ðzR0Þ; ð2:20Þ

DðCiÞ
dC

dz
ZKCið1Kk sÞ ðz Z 0Þ; ð2:21Þ

where CiZCN/k s. Equation (2.20) can be integrated from zZ0 to zZN using
equation (2.21) as a boundary condition to yield

dC

dz
ZK

ðCKk sCiÞ
DðCÞ ðzR0Þ: ð2:22Þ

Equation (2.22) can be solved using the boundary condition CZCi at zZ0 to
yield an implicit expression for C(z). In the basic state, T(z) is given by equation
(2.16). Figure 4 shows steady-state temperature and concentration profiles for
three different interfacial concentrations. In figure 4a,d, the concentration
gradient, and hence the freezing temperature gradient, at the interface is small
and the temperature ahead of the interface is always warmer than the freezing
temperature. In figure 4c,f, the temperature ahead of the interface is below the
freezing temperature and the suspension is constitutionally supercooled and
potentially unstable.

(c ) Linear stability

The variables describing the steady state are now perturbed (except forTwhich is
assumed steady because of the disparity between thermal and particle diffusivities)

h Z �hCh 0; C Z �C CC 0; ð2:23Þ
where �hZ0 and �C are the solutions to the steady planar case obtained in §2b.
The perturbations C 0 and h0 have the form of normal modes (Chandrasekhar 1961;
Davis 2001)

½C 0; h 0�Z ½c1ðzÞ; h1�estCiax ; ð2:24Þ
where s is the growth rate of the disturbance and a is the wavenumber of the normal
modes along the interface. The growth rate s determines whether or not a particular
disturbance will grow in time. Assuming exchange of stabilities, the condition
Re(s)Z0 defines a locus of parameter values separating stable (Re(s)!0) from
Proc. R. Soc. A (2007)
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Figure 4. Volume fraction and dimensionless temperature profiles during steady-state
unidirectional solidification of a hard-sphere suspension (k sZ10K6, VZ5 mm sK1, RZ0.1 mm,
GtZ0.28C cmK1). The solid curves in (d–f ) represent the actual temperature while the dotted
curves represent the freezing temperature Tf(f). In ( f ), the temperature ahead of the interface is
below the freezing temperature and the suspension is constitutionally supercooled.
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unstable (Re(s)O0) states. In the absence of exchange of stabilities, there exists the
possibility that the imaginary part of s is non-zero, in which case the interface will
oscillate in time.

Inserting equations (2.23) and (2.24) into equations (2.12)–(2.16) and
linearizing in the perturbed quantities leads to the following nonlinear ordinary
differential equation for the disturbance amplitude:

Dð �CÞ d
2c1
dz2

Cð1C2DC
�CzÞ

dc1
dz

C DC
�Czz CDCC

�C
2
zKsKDa2

� �
c1 Z 0; ð2:25Þ

where DC is the derivative of the diffusion coefficient with respect to
concentration. The boundary conditions on (2.25) are

c1/0 ðz/NÞ; ð2:26Þ
and

dc1
dz

ZK
DC Cð1Kk sÞ

D
c1C sC

k s

D

� �
h1 ðz Z 0Þ; ð2:27Þ

where

h1 Z ðMK1K1Ca2GÞK1c1: ð2:28Þ
Equations (2.25)–(2.28) represent an eigenvalue problem that can be solved

numerically using the shooting method (Press et al. 1992).
Proc. R. Soc. A (2007)



0.01 0.10.001
a

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
R = 2nm

R = 5nm

R = 10nm

unstable

stable
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3. Results and discussion

Before solving the full equations (2.25)–(2.27), it is instructive to consider the
dilute limit �C/0 so that D/1. In this case, equations (2.25)–(2.27) can be
solved analytically to yield the characteristic equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C4ðsCa2Þ
q

Z 1K2k sK2ðsCk sÞðMK1K1Ca2GÞK1: ð3:1Þ
Equation (3.1) is similar in form to the equation derived in the case of dilute
alloys (Mullins & Sekerka 1964; Davis 2001), with the important distinction that
here the coefficients depend on the particle radius. We first concentrate on the
case in which s is zero. Equation (3.1) can then be solved for the morphological
number M to yield

MK1 Z 1Ka2GC
2k s

1K2k sK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4a2

p : ð3:2Þ

Figure 5 shows plots of M versus the wavenumber a for k sZ1!10K6 and various
particle radii. Below the curve the interface is stable, while above the curve it is
unstable. The minimum in the curve gives the critical morphological number at
which instability first sets in. The physical origin of this instability is analogous
to the alloy case (Tiller et al. 1953; Mullins & Sekerka 1964). A perturbation of
the interface causes a portion of the ice phase to be further into the suspension.
In the absence of supercooling, such a perturbation would melt back. If the
suspension is supercooled, however, the perturbation will tend to grow into the
supercooled region and the interface is unstable.

Figure 6a shows the solution of equations (2.25)–(2.27) for increasing particle
concentrations. As the concentration increases, the interface becomes more
unstable. Also shown is the dilute result (dashed line) and for fi!0.01 there is
good agreement. At higher concentrations, the full numerical solution must be
used. Figure 6b is a regime diagram giving the critical wavelength at the onset of
Proc. R. Soc. A (2007)
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instability as a function of concentration for several particle radii. This diagram
estimates dendrite spacings as a function of parameters, such as concentration
and particle size, yielding valuable insight into the ice morphologies expected in
freezing hard-sphere suspensions.

As noted by Mullins & Sekerka (1964) and others (Kurz & Fisher 1998; Davis
2001), the surface energy term in equation (3.1) tends to stabilize the interface.
In the present case of a hard-sphere suspension G is proportional to R5, so that
increasing the particle radius tends to quickly stabilize the interface. Increasing
R, however, reduces D0 and hence the particles are less able to diffuse relative to
the moving interface. It is likely that increases in R will eventually lead to loss of
local equilibrium at the interface. That is, as the particle radius increases at a
given freezing velocity, non-equilibrium effects such as viscous flow at the
interface become more important, leading eventually to particle engulfment
(Uhlmann et al. 1964; Chernov et al. 1976; Rempel & Worster 1999). In the
future, it may be possible to model this behaviour by allowing the segregation
coefficient k s to depend on R and V. It has been shown by Coriell & Sekerka
(1983) that if k sZk s(V ), the interface can oscillate in time (Im(s)s0), thereby
trapping impurities (particles) during the rapid part of the cycle and rejecting
them during the slow part. This type of oscillatory motion of the interface has
been observed during the solidification of corn starch suspensions (Mashl et al.
1996) and silica microspheres (Watanabe 2002).

Before concluding, we briefly discuss some limitations of the theory and
potential directions for future research. First of all, we note that salt ions were
likely present in the systems illustrated in figure 1. Such impurities can
themselves cause a morphological instability of the ice interface (Mullins &
Sekerka 1964). The effect of this instability on concentrated colloidal suspensions
remains to be determined. We note that, due to the presence of a Debye layer, a
likely influence of solutes is to induce electromigration of the particles and hence
change the effective diffusion coefficient. Our purpose here was to show that
the colloidal suspension can become unstable even in the absence of electrolytes.
Proc. R. Soc. A (2007)
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This basic result can then serve as a benchmark for more complex systems.
Experiments on monodisperse silica or polystyrene microspheres dispersed in an
ultrapure liquid would provide the most rigorous test of the theory.

Another factor complicating the application of the theory to ice systems is the
highly anisotropic crystal growth of ice, with much slower growth perpendicular
than parallel to the basal plane (Wettlaufer 2001). This effect could, in principle,
be modelled via a surface energy that depends on orientation (Koo et al. 1991;
Davis 2001). We believe that anisotropy is a crucial aspect of a quantitative
explanation of the features in figure 1. Other directions for future research
include accounting for the different thermal properties of ice and suspension, the
temperature dependence of the diffusion coefficient, diffusion and thermal
diffusion (regelation) in the ice phase, a velocity-dependent segregation
coefficient, nonlinear effects in the stability analysis and hydrodynamic effects
in the suspension.
4. Conclusion

The freezing interface in a hard-sphere suspension can become unstable due to
constitutional supercooling. This is an important new mechanism for ice
segregation and pattern formation in freezing colloidal suspensions. Increasing
the particle radius appears to have a stabilizing effect, while increasing the
concentration is destabilizing. We have obtained a regime diagram indicating the
critical wavelength at the onset of instability as a function of concentration and
particle radius. Finally, we have laid bare a number of outstanding issues and
opportunities for future work, including inter alia, nonlinear effects, the influence
of electrolytes and crystallographic anisotropy.
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