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Experimental and theoretical approaches to the problem of the solidification of a binary melt are

presented. We describe a series of experiments in which aqueous solutions of ammonium chloride of

above eutectic composition are cooled from below in a Hele–Shaw cell that is translated downwards at a

constant rate. A mushy layer of solid dendrites bathed in a salt-depleted interstitial fluid is formed. For

chimneys which result in defects in the solidified material. Our experiments demonstrate that using a

higher temperature gradient for solidification increases the range of conditions for which a mushy layer

forms that is free from both chimneys and secondary nucleation. We present a mathematical model of

the system, to which we derive an approximate analytical solution. Predictions of the height of the

mushy layer given by this approximate solution are found to be in excellent agreement with full

numerical predictions when the height is small. Both numerical and analytical predictions are a better

match to experimental data when the temperature gradient is low.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Directional solidification, in which a melt is cooled and
solidified by pulling it through a constant temperature gradient,
is a method of casting a metallic alloy that is used in the
manufacture of many different industrial products. The manu-
facture of turbine blades is a typical example, the aim being to
form a blade that is free from grain boundaries and therefore
resistant to creep [1]. During the directional solidification of a
binary melt, the interface between solid and liquid generally
becomes morphologically unstable, resulting in a mushy layer of
solid dendrites bathed in interstitial fluid. In the case of a melt
which, upon solidification, releases fluid of a lower density than
the original solution, cooling from below causes two modes of
convection to be set up: a boundary layer mode and a mushy layer
mode [2,3].

Upflow of interstitial fluid due to convection in the mushy
layer creates regions of low solid fraction. Owing to pieces of
dendrite being dissolved by the convected fluid, the porosity of
these regions is increased and thus convection is even further
encouraged here, until eventually almost all upflow occurs
through narrow, dendrite-free channels known as chimneys. In
ll rights reserved.
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terms of DC ¼ C0 � CE, where C0 is the initial concentration of the
melt and CE is the eutectic composition, the strength of
convection in the mush is governed by a Rayleigh number

Rm ¼
bDCgP0h

kn
, (1)

where h is the height of the mushy layer, P0 is a representative
value of the permeability and b, k and n are, respectively, the
solutal density coefficient, the thermal diffusivity and the
kinematic viscosity of the melt. In particular, convection occurs
only when this number is greater than some critical value [2,4].

Chimneys formed during directional solidification lead to
defects in the metal (freckles) which undesirably decrease its
strength. A great deal of research has been carried out with the
aim of understanding the conditions under which chimneys form.
Extensive use has been made of aqueous ammonium chloride
solutions [5–7] because the phase diagram and microstructure
mimic that of the metallic alloys used in turbine blade
manufacture, they are far easier to work with in the laboratory
and they are transparent, so that the structures formed during
solidification can be seen. In Section 2 we describe how we utilise
the experimental apparatus and procedure initially described in
Ref. [8] to investigate the effect of different temperature gradients
on the mode of solidification of aqueous ammonium chloride
solutions. At each temperature gradient, our main focus is to
determine the range of solidification conditions that will give a
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defect-free solid, and in Section 3 this information is clearly
presented in a series of regime diagrams.

Directional solidification is modelled mathematically by con-
sidering the conservation of heat and solute in the melt and
mushy layer. In Section 4 we present the governing equations and
describe previous numerical solutions [9]. We include our own
numerical predictions of the height of the mushy layer, and also
derive an approximate analytical solution and use it to make
predictions of h. Both sets of predictions are compared with
experimental data. We present the conditions under which our
approximate solution is valid in Appendix A.

Section 5 provides a discussion of the experimental and
theoretical results. Section 6 summarises the main conclusions
to be drawn from this work.
2. Experimental methods

Aqueous solutions of ammonium chloride, with concentrations
ranging from 21% to 27% (by weight) were solidified in a
Hele–Shaw cell of internal dimensions 38� 12� 0:5 cm. A
schematic of the experimental system is shown in Fig. 1(a). In
each experiment, the cell was pulled at constant speed V between
two heat exchangers, the lower of which was at a temperature
below the eutectic temperature. Motion of the cell was achieved
using a geared stepper motor which turned a screw driving the
cell. The paper by Peppin et al. [8] gives a thorough description,
with photographs, of the apparatus used.
Fig. 1. (a) A schematic showing the experimental cell and heat exchangers. During th

constant speed V by a screw mechanism driven by a stepper motor. Temperature sensors

the solidification experiment. The region between the heat exchangers, surrounded by

computational domain as viewed from the side, showing the heat flux qh into the cell fro

the top heat exchanger is heated above room temperature, qh will be negative for the up

the eutectic. Because the eutectic does not grow very high above the bottom heat excha

the top of the mushy layer is at z ¼ h.
Coolant was pumped into the heat exchangers at the same
time as the downwards motion of the cell began. Pulling speeds in
the range 0.1–10mm s�1 were used. During the initial part of the
experiment, a solid eutectic and mushy layer grew upwards from
the bottom heat exchanger. The mushy layer eventually reached a
steady-state height, which was measured and recorded. After
several hours, the solution became depleted of ammonium
chloride and the height of the mushy layer decreased. Thermistors
embedded in the sides of the cell measured the temperature
profile throughout the course of the experiment. In some
experiments, an additional thermistor was used to measure the
temperature profile in the centre of the cell, which was less
affected by heat transfer through the sides of the cell.

Experiments with ammonium chloride were carried out using
two different temperature gradients: 1:52 �C=mm (achieved by
maintaining the lower heat exchanger at TB ¼ �35 �C and the
upper at TL ¼ þ40 �C, with a separation of L ¼ 4:95 cm) and
0:69 �C=mm (TB ¼ �35 �C, TL ¼ 0 �C, L ¼ 8:00 cm). The error in
each measurement of L is �0:05 cm.

3. Results

Figs. 2(a) and (c) summarise the results from temperature
gradients 1:52 and 0:69 �C=mm, respectively. Four different modes
of solidification were observed, depending on the initial concen-
tration and pulling speed used. The results obtained by Peppin
et al. [9] using a temperature gradient of 0:92 �C=mm have been
reproduced in Fig. 2(b) for comparison.
e experiment, the cell is translated downwards between the heat exchangers at

attached to the inside edge of the cell measure the temperature profile throughout

a dashed line, is the computational domain, shown in (b). (b) A schematic of the

m the air outside it. In the experiments at the high temperature gradient, in which

per part of the computational domain. We take z ¼ 0 to be the position of the top of

nger, the position of the top heat exchanger is approximately z ¼ L. In steady-state,
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Fig. 2. Regime diagrams representing the different modes of solidification of

ammonium chloride: (a) at high temperature gradient: 1:52 �C=mm, (b) at medium

temperature gradient: 0:92 �C=mm and (c) at low temperature gradient:

0:69 �C=mm. The points labelled 3(a) and (b) correspond to conditions at which

the photographs in Figs. 3(a) and (b) were taken. The dashed curves have been

hand-drawn to separate the different regimes.

Fig. 3. (a) A steady-state mushy layer with chimneys, which was formed from

24 wt% aqueous NH4Cl solution translated at 1:1mm s�1 through a temperature

gradient of 1:52 �C=mm; (b) 21% aqueous NH4Cl solution forms a solid eutectic but

no mushy layer when translated at 1mm s�1 through a gradient of 0:69 �C=mm. The

thermistor used to measure the temperature in the centre of the cell is also visible.
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At low pulling speeds and high initial concentrations, convec-
tion in the mushy layer causes chimneys to form. During growth
of the mushy layer, vigorous convection is observed, with plumes
rising from the mush. Some of these plumes quickly die out,
whilst others become stronger and chimneys can be seen forming
beneath them. A steady-state mushy layer with chimneys is
shown in Fig. 3(a). Mushy layers with fewer, weaker chimneys are
formed under conditions close to the chimney/no-chimney and
chimney/equiaxed boundaries on the regime diagram.

As the mushy layer grows, solute is taken up in the dendrites,
causing a decrease in concentration of the liquid just ahead of the
solidification front and hence a depression of the local freezing
temperature. The difference between the measured temperature
at the mush–liquid interface and the freezing temperature of the
original solution (the undercooling) is plotted in Fig. 4. At high
pulling speeds, the undercooling is sufficient for crystals of
ammonium chloride to nucleate in the region just above the
interface. These secondary crystals, along with pieces of dendrite
ejected from the mushy layer by convection currents, fall back into
the mush, causing it to collapse and give way to a layer of
equiaxed crystals. If the velocity is increased still further, the
mush disappears altogether, leaving behind only the solid
eutectic, as observed in Fig. 3(b).

For low concentrations, it was possible to grow a mushy layer
without the presence of either chimneys or equiaxed growth. This
is of interest because the result is a solid which is free from both
freckles and grain boundaries. As is clear from the regime
diagrams in Fig. 2, raising the temperature gradient increases
the range of conditions that give rise to this mode of solidification.
Whilst the boundary between the no-chimney and equiaxed
regions appears to be relatively unmoved by an increase in
temperature gradient, the chimney/no-chimney boundary is
significantly shifted to lower velocity. Lowering the temperature
gradient has the opposite effect, narrowing the width of the no-
chimney region to the extent that it could not be observed at all at
C0 ¼ 23 wt%.

When solidifying 24 wt% NH4Cl at the lower temperature
gradient we observed another regime in which chimneys and
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Fig. 4. Undercooling as measured at the mush–liquid interface using various

pulling speeds at the high and low temperature gradients, with second-order

polynomial fits of the form V ¼ G1½TLðC0Þ � Th� þ G2½TLðC0Þ � Th�
2. At the high

temperature gradient G1 ¼ 4:2� 10�7 m s�1=�C and G2 ¼ 5:4� 10�9 m s�1=�C2,

whilst at the low temperature gradient G1 ¼ �4:2� 10�8 m s�1=�C and

G2 ¼ 4:1� 10�8 m s�1=�C2.
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equiaxed growth co-exist in steady-state. This is in contrast to
experiments performed at the higher temperature gradients, in
which the steady-state mode of solidification could always be
clearly identified as being in either the chimney or the equiaxed
regime. The low temperature gradient produces this mixed regime
at 24 wt% because the temperature profile is such that the whole
of the liquid region between the heat exchangers is below the
liquidus temperature, which promotes secondary nucleation
above the mush–liquid interface. In fact many of the experiments
performed at the low temperature gradient showed some
secondary nucleation during growth.

The measured heights of the mushy layers at each concentra-
tion and velocity were compared with two sets of predictions of
the heights, one of which was obtained by using the shooting
method to solve the governing equations numerically, and the
other by solving analytically the approximate model developed in
Section 4. The matching of the predictions to the experimental
data is discussed in Section 5. In general, the steady-state height
of the mushy layer is decreased by increasing the temperature
gradient.
4. Mathematical modelling

In this section we consider the equations governing tempera-
ture in the mush and melt regions and discuss how to solve them,
first numerically and then by making approximations that allow
us to find a useful analytical solution. We assume that there is no
convection in the mush, so that this analysis applies to mushy
layers without chimneys. A schematic diagram of the computa-
tional region is shown in Fig. 1(b).

Heat transfer through the walls of the cell is modelled using
Newton’s law of cooling [10]:

dqh

dz
¼ bðT � T1Þ, (2)

where qh is the heat flux through the sides of the cell, T1 is the
temperature of the air outside the cell and the heat transfer
coefficient b ¼ 1600 J m�3 s�1 K�1 has been determined experi-
mentally by Peppin et al. [8]. Balancing this term against heat
transfer by motion of the fluid and by diffusion gives

clV
dT

dz
þ

d

dz
kl

dT

dz
¼ bðT � T1Þ (3)

as the expression for conservation of energy in the liquid, where cl

and kl are the effective volumetric heat capacity and thermal
conductivity of the cell plus solution [8]. Eq. (3) is a linear, second-
order, ordinary differential equation with constant coefficients,
which has solutions proportional to exponential functions of z.
Specifically we solve this equation subject to the boundary
conditions TðhÞ ¼ Th and TðLÞ ¼ TL, where Th and TL are the
temperatures of the mush–liquid interface and upper heat
exchanger, respectively, to find

TðzÞ ¼ T1 þ ðTh � T1Þf 1ðzÞ þ ðTL � T1Þf 2ðzÞ, (4)

as the steady-state temperature profile in the liquid, where

f 1ðzÞ ¼
er1ðz�LÞ � er2ðz�LÞ

er1ðh�LÞ � er2ðh�LÞ
, (5)

f 2ðzÞ ¼
er1ðz�hÞ � er2ðz�hÞ

er1ðL�hÞ � er2ðL�hÞ
(6)

and r1;2 ¼ �clV=2kl �
1
2 ðc

2
l V2=k2

l þ 4b=klÞ
1=2.

In the mushy layer, the heat of solidification must also be
considered, so that the expression for the conservation of energy
in the mush is

�clV
dT

dz
¼

d

dz
ke

dT

dz
� zLsV

df
dz
� bðT � T1Þ, (7)

where z is the fraction of the cross-sectional area of the
Hele–Shaw cell occupied by solution, ke is the effective thermal
conductivity of the mush, Ls is the latent heat of solidification
and f is the solid fraction of the mush. The terms in Eq. (7)
represent, from left to right, advection of heat by downwards
motion of the cell, thermal diffusion, the heat of solidification and
the heat transfer through the sides of the cell.

By coupling this equation with an expression for the local
conservation of solute in the mush,

ð1� fÞ
dC

dz
¼ ðC � CsÞ

df
dz
; 0pzph, (8)

where Cs is the concentration of solute in the solid dendrites and
diffusion of solute has been neglected, and using the liquidus
relation

CLðTÞ ¼ ½TðzÞ � TE�=Gþ CE, (9)

where TE is the eutectic temperature and G is the slope of the
liquidus, Peppin et al. [9] derived a nonlinear equation for
temperature in the mush:

d

dz
ke

dT

dz
¼ � clV þ

zLsVGC0

T2

� �
dT

dz
þ bðT � T1Þ. (10)

This was solved numerically using the shooting method, in which
initial values of dT=dzj0 and h are guessed and Eq. (10) is solved
numerically for TðhÞ and dT=dzjh�. New values of dT=dzj0 and h are
then estimated using Newton’s method, and the procedure is
repeated until the values of T and dT=dz at z ¼ h match those
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Fig. 5. Steady-state heights of the mushy layers grown using ammonium chloride

along with numerical and analytical predictions: (a) at high temperature gradient:

1:52 �C=mm; (b) at medium temperature gradient: 0:92 �C=mm; (c) at low

temperature gradient: 0:69 �C=mm. The smooth solid and dashed lines represent

numerical and analytical solutions, respectively, for each concentration. The

experimental data are plotted using the symbols defined in Fig. 2, with solid lines

connecting points of the same concentration.
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given by the solution for the liquid region (4). Using this method,
Peppin et al. made predictions of the heights of the mushy layers
which were a reasonably good match to experimental data,
particularly at high pulling speeds, as reproduced in Fig. 5(b). We
have applied the same numerical method to predict the values of
h at the high and low temperature gradients, with better matching
to experimental data when the temperature gradient is lower
(Figs. 5(a) and (c)).

Here we obtain an approximate analytical solution for the
temperature profile, which will be used to predict values of h to
compare directly with numerical and experimental data. An
analytic, albeit approximate, solution is extremely valuable
because it makes the dependence of T and h on each parameter
explicit, and so we can predict how they will respond to changes
in the parameters without having to run a numerical simulation
for each new value. Also, although the approximate solutions will
not hold under all conditions, they may still provide valuable
physical insight into the process of solidification.

The first approximation we make is to assume that the solid
fraction f decreases linearly with z, such that

f ¼ fEð1� z=hÞ. (11)

The actual relation between f and z is unknown. This approach of
prescribing a functional form to a dependent field variable can
lead to good predictions of integral properties of the system, such
as the depth of the mushy layer and its mean solid fraction.
Indeed, the authors of Ref. [11] make the assumption that f is
constant throughout the mushy layer to derive a model which
gives good agreement with experimental results. Better agree-
ment is achieved in Ref. [12], which discusses numerical
modelling of the mushy layer in which f is allowed to vary with
z, but the improvement is small. We make the first-order
approximation of linear fðzÞ to satisfy the condition for marginal
equilibrium, fðhÞ ¼ 0, and match the result found in Ref. [12] that
f is small throughout the layer and decreases with increasing z.

The constant fE is found by substituting for f in the global
conservation of solute

Z h

0
fCs þ ð1� fÞCLðTÞdz ¼ C0h, (12)

where Cs is the concentration of solute in the solid dendrites and
CLðTÞ is the concentration in the liquid. The solution is assumed to
be in local equilibrium, so that the liquidus relation (9) always
holds. In order to obtain an expression for fE which has a simple
linear dependence on h, we assume a linear temperature profile in
the mush,

T ¼ TE þ ðTh � TEÞz=h, (13)

where Th is the temperature at the mush–liquid interface as given
by the undercooling relation

V ¼ G1½TLðC0Þ � Th� þ G2½TLðC0Þ � Th�
2, (14)

with constants G1 and G2 determined by fitting a second-order
polynomial to empirical data (Fig. 4). Experimental measurements
of the temperature profile show that this is a reasonable
approximation. After substituting Eq. (13) into Eq. (12), we
evaluate the integral and rearrange to find

fE ¼
6GðC0 � CEÞ � 3ðTh � TEÞ

3GðCs � CEÞ � ðTh � TEÞ
. (15)

Now that fE is known, we make further approximations to Eq. (7)
by neglecting the term describing the translation of the cell,
clV dT=dz, because it is significantly smaller than the other terms.
We also make the assumption that no heat is lost through the
sides of the cell from the mush, so that b ¼ 0 in Eq. (7), although
we will account for heat losses in the melt. By comparing the
relative sizes of the neglected terms with those that are retained,
which we do in Appendix A, we can justify making these
approximations when the Péclet number

Pe ¼
clVh

ke
(16)
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Fig. 6. Temperature and density profiles during steady-state solidification of

22 wt% NH4Cl ½TLðC0Þ ¼ �4:63 �C� at V ¼ 1mm s�1: (a) at high temperature

gradient, 1:52 �C=mm, where the roughness of the experimental curve close to

the top of the cell is due to penetration from convection driven by an unstable
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is small and the Stefan number

S ¼
Ls

clðTLðC0Þ � TEÞ
(17)

is large.
The resulting equation

ke
d2T

dz2
¼ �

zLsVfE

h
(18)

can be readily solved for T, subject to the boundary conditions [13]

Tð0Þ ¼ TE;
dT

dz

����
h�

¼
dT

dz

����
hþ

, (19)

where dT=dzjhþ is found by differentiating Eq. (4). The approx-
imate solution is

TðzÞ ¼ TE þ ½ðTh � T1Þf
0

1ðhÞ þ ðTL � T1Þf
0

2ðhÞ�z

þ
zLsVfE

ke
z�

zLsVfE

2keh
z2, (20)

where we evaluate f 01ðhÞ and f 02ðhÞ using the assumption h5L, such
that they are both independent of h and given by

f 01ðhÞ �
r1e�r1L � r2e�r2L

e�r1L � e�r2L
and (21)

f 02ðhÞ �
r1 � r2

er1L � er2L
. (22)

In our experiments, L was usually at least five times h.
We now use this expression for T to make predictions of the

heights of the mushy layers produced using various initial
concentrations and pulling speeds. We set TðhÞ ¼ Th, and
rearrange the result into the analytical expression for the height
of the mushy layer

h ¼
Th � TE

zLsVfE

2ke
þ ðTh � T1Þf

0

1ðhÞ þ ðTL � T1Þf
0

2ðhÞ
, (23)

into which we can substitute for fE using Eq. (15).
Predictions of h made using this expression are compared with

numerical and experimental data at each temperature gradient in
Fig. 5. The approximate analytical model gives predictions of h

that are in very good agreement with the numerical predictions,
particularly for small h or large V.
thermal distribution in the fluid above the top heat exchanger and (b) at low

temperature gradient, 0:69 �C=mm. Density has been calculated from temperature

using a relation derived from data from Ref. [14]. The horizontal lines represent the

measured and predicted values of h.

5. Discussion

Convection in the mushy layer is responsible for the formation
of chimneys. As the Rayleigh number governing convection in the
mush is linearly dependent on C0, high initial concentrations of
solute in the solidifying fluid usually give rise to chimneys. If the
pulling velocity is increased sufficiently, however, then the
undercooling just above the mush–liquid interface becomes
sufficiently large to cause secondary nucleation and the chimney
regime gives way to a regime of equiaxed growth (Fig. 2). For
aqueous ammonium chloride solutions of initial concentration
of or above 24 wt% at high temperature gradient, or 23 wt% at
low temperature gradient, it was impossible to grow a defect-free
solid.

At low C0, however, a regime exists where neither the
convection in the mushy layer nor the undercooling above it are
sufficiently large to cause defects to form in the solid. This regime
can be enlarged by increasing the temperature gradient, because
this has the effect of decreasing the height of the mushy layer,
thus decreasing the Rayleigh number and inhibiting convection.

Predictions of h made using the approximate solution match
numerical predictions very closely when h is small and V is large,
as expected for the reasons given in Appendix A. Both predictions
match the experimental data very closely at low temperature
gradient, although they are much less accurate when the gradient
is high (Fig. 5). At high temperature gradient, moreover, the
temperature profile across the cell (Fig. 6(a)), whilst having a
similar shape to the measured profile, is predicted to be up to
10 �C lower than the measured values. This suggests that the
theoretical model is not a good description of the system when
the temperature gradient is high.

At low temperature gradient the temperature across the
middle part of the cell is almost constant, which is very different
from the predicted profile (Fig. 6(b)). This is because the model
treats convection in the melt as negligible, whereas in fact in the
upper part of the cell the static density profile in the fluid
increases with height. The convection resulting from this unstable
distribution penetrates into the rest of the fluid (as discussed in
Ref. [15]), causing a significant redistribution of heat. In the lower,
non-convecting part of the cell, however, the matching between
predicted and measured profiles is good, suggesting that our
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theory is a good model for solidification in the absence of
convection.
6. Conclusion

There are two important conclusions to be drawn from this
work.

Firstly, experiments with ammonium chloride have shown that
the range of conditions which give rise to defect-free solidification of a
binary alloy can be expanded by an increase in temperature gradient.

Secondly, we have succeeded in approximating the governing
equations of heat transfer in the mushy layer in such a way as to
allow an analytical solution to be found. We have demonstrated
that this approximate solution gives predictions of the height of
the mushy layer which tend to the numerical solutions as the
height of the mush becomes small, and which are also a close
match to the experimental results at low temperature gradient.
Consideration of the relative sizes of the terms in the original
equations has allowed us to give an indication of the range of
parameters for which our approximate model is valid.
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Appendix A. Justification of approximations

In order to quantify the range of conditions under which the
analytical approximation applies, it is necessary to re-examine Eq.
(7) and consider the relative size of each term. We use
characteristic scales of length and temperature to approximate
each term such that

clV
dT

dz
� clV

ðTLðC0Þ � TEÞ

h
, (A.1)

d

dz
ke

dT

dz
� ke

TLðC0Þ � TEÞ

h2
, (A.2)

zLsV
df
dz
� zLsV

fE

h
, (A.3)

bðT � T1Þ � bðTLðC0Þ � T1Þ (A.4)

and set fE ¼ 1 for convenience. A term can be neglected if its
characteristic size is much smaller than the terms to be retained.
Thus the term clV dT=dz can be neglected provided that it is
small compared to the diffusion term, which occurs if the Péclet
number

Pe ¼
clVh

ke
51. (A.5)

We also require that this term is small compared to the
solidification term, i.e. that the Stefan number

S ¼
Ls

clðTLðC0Þ � TEÞ
b1. (A.6)

These two conditions are related in that, in the limiting case of
very large Stefan number considered in Ref. [13], h / lnð1þ 1=SÞ,
which reduces via a Taylor approximation to h /S�1. Thus,
satisfaction of condition (A.6) implies that h is small so that
condition (A.5) is also satisfied. In the case of solidification of
NH4Cl in the Hele–Shaw cell, condition (A.6) is satisfied for
C0537 wt%, which is true for all the experiments carried out.

Comparing the heat loss term bðT � T1Þ to the diffusion term
and making the approximation that, within one order of
magnitude, TLðC0Þ � T1�TLðC0Þ � TE, we derive the condition that
h2

5ke=b, which is easily met in all of our experiments. We thus
compare the heat loss term to the solidification term to derive the
condition

h5
zLsV

b½TE � T1 þ GðC0 � CEÞ�
, (A.7)

which is the limiting condition on the validity of the approxima-
tion, with the analytical model fitting the numerical data better at
large V and small h.
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