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Linear stability of a solid–vapour interface
BY ROBERT W. STYLE* AND M. GRAE WORSTER

Department of Applied Mathematics and Theoretical Physics, Institute
of Theoretical Geophysics, Centre for Mathematical Sciences, University

of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

We investigate a system consisting of a condensed phase in contact with its vapour. We
derive similarity solutions for vapour and temperature profiles and calculate the condition
for the presence of vapour supersaturation adjacent to the condensed phase. We analyse
the linear stability of a solid–vapour interface with varying atmospheric conditions. The
instability is qualitatively similar to the Mullins–Sekerka instability in binary alloys but
the results highlight the important parameters for the solid/vapour problem. We derive
the neutral stability condition and results are applied to frost flowers, which are small
hoar-frost-like crystals that grow on sea ice, and to physical vapour deposition. The
results are applicable to many problems in the wide field of condensed-phase/vapour
systems.

Keywords: vapour deposition; frost flowers; linear stability

1. Introduction

Processes involving evaporation and condensation are many and varied in both
natural and industrial situations. Among many examples of such situations,
condensation in controlled environments is important in producing precision
crystals and in coating objects with protective films (e.g. Mahan 2000), while
natural condensation is responsible for some of the beautiful patterning seen in
snow crystals and in jack frost ‘ferns’ on cold windows (Libbrecht 2005). Similarly,
evaporation is important in many processes on many scales, ranging from sea-
surface evaporation in meteorology, to coastal weathering by evaporation of
saltwater, to pattern production such as seen during evaporation of impure films
and coffee drops (Deegan et al. 2000; Style & Wettlaufer 2007). In order to fully
understand these and other related processes, we need to know the morphological
behaviour of a solid/vapour or liquid/vapour boundary based on imposed system
boundary conditions such as air temperature and vapour concentration.

In a previous paper, we considered the case of a condensed phase, such as
ice or water, in contact with its vapour (Style & Worster 2009). We outlined
the relevant equations for the system, and showed that these equations lead to
a regime diagram (figure 1) that shows the atmospheric conditions under which
different vapour-related phenomena occur (see the caption to figure 1 for further
details). In the first part of this paper, we expand upon this work by presenting the
*Author for correspondence (style@maths.ox.ac.uk).
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Figure 1. Regime diagram for an ice (water)/vapour system, from Style & Worster (2009). When
the relative humidity is above the dashed line (dark grey region), vapour condenses onto the ice
(water). Below the dashed line (light grey region), ice (water) evaporates. Above the dash-dotted
line there is supersaturation of the vapour immediately above the ice (water). Below the dash-
dotted line the air is undersaturated. The continuous horizontal line corresponds to the saturation
point of the far-field air where the relative humidity is 100%. Values used are those appropriate to
the ice/vapour system.

full equations for a system consisting of a condensed phase in contact with vapour.
For the case where there is no ambient flow in the vapour, we find similarity
solutions for the temperature and vapour density profiles. These profiles are first
used to calculate new conditions separating regimes in the regime diagram in
the case that the diffusivities of vapour and heat in the air are not equal. We
then use the temperature and vapour density profiles to demonstrate the vapour
properties in the different regimes of the regime diagram.

In the second part of this paper, we calculate the linear stability of a solid
surface in contact with vapour and its dependence on the atmospheric conditions
present in the system. We add to the regime diagram by identifying regions
where surface instability occurs. We then apply the results to examples in two
distinct regimes. Firstly, we consider the growth of frost flowers in regime VI.
These hoar-frost-like crystals grow when a warm ice surface is evaporating into a
cold atmosphere. When the atmosphere is sufficiently cold, supersaturation exists
above the interface, and the frost flowers grow into this supersaturated layer
(Style & Worster 2009). We show that the ice surface is linearly stable for typical
frost flower growth conditions and suggest that this means that frost flowers are
likely to be formed by heterogeneous nucleation when foreign ice particles land
on the surface of the ice. Secondly, we consider the growth of molecularly rough
crystals by vapour deposition in regime IV. If morphological instability of the
crystal occurs during growth, the resulting physical properties of the crystals
Proc. R. Soc. A (2010)
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Figure 2. Definition diagram for the model problem. See text for further details.

can be markedly different from the optimal crystal characteristics. Instability has
been known to result in undulations on the crystal surface as well as causing
multigrain, columnar and dendritic structures to grow (Louchev 1994). We show
that, despite the lack of supersaturation above the interface, the majority of this
regime is unstable. The analysis shows that crystals can be grown in a stable
manner only at very slow growth velocities and we derive a new expression for
the maximal stable growth velocity.

2. Temperature and vapour profiles during the evolution of a planar interface

First, we present the equations relevant to a planar system consisting of a
condensed phase in contact with its vapour. We solve these equations to obtain
the temperature profile in the condensed phase and the vapour and temperature
profiles in the air. We choose to model the system as a half plane of pure
solid or liquid in contact with a two-component vapour. This vapour comprises
a bulk inert gas (such as nitrogen), which we term ‘air’, and water vapour.
Figure 2 illustrates the model and shows variables defined in the text. The water
vapour content of the air is characterized by its partial density ρ and diffuses
through the air with diffusivity D. This means that the vapour density obeys the
advection–diffusion equation

∂ρ

∂t
+ v0

∂ρ

∂z
= D

∂2ρ

∂z2
, (2.1)

where the velocity of air and vapour v0 is assumed spatially uniform, but time-
dependent and z = 0 corresponds to the condensed-phase/air interface.

Air temperature Ta and temperature in the condensed phase Ts obey similar
advection–diffusion equations,

∂Ta

∂t
+ v0

∂Ta

∂z
= κa

∂2Ta

∂z2
(2.2)
Proc. R. Soc. A (2010)
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and
∂Ts

∂t
+ u0

∂Ts

∂z
= κs

∂2Ts

∂z2
, (2.3)

where κa and κs are the thermal diffusivities of the air and condensed phases
respectively and u0(t) is the velocity of the condensed phase. We assume that
the thermal diffusivity of the vapour–air mixture is a constant, and unaffected
by variations in vapour density. This assumption is reasonable as typical vapour
densities ρ are substantially smaller than the density of air ρa, with ρ/ρa ≈ 5 ×
10−3. Therefore, the thermal diffusivity is effectively that of pure air.

At the interface, there are three natural conservation equations that we use as
boundary conditions. First, from conservation of mass,

u0ρs = v0ρa, (2.4)

where ρs is the density of the condensed phase. For an evaporating system, as
the water molecules leave the condensed phase, the volume per molecule increases
substantially. Therefore, there must be a flow away from the interface in order to
avoid a build up of pressure, the strength of which is described by the conservation
of mass (i.e. both air and water vapour in the gaseous phase).

Simultaneously with conservation of mass, we must also have a second
boundary condition that describes conservation of water vapour at the interface
taking the form

D
∂ρ

∂z
(0) − v0ρ(0) = −u0ρs. (2.5)

The left-hand side of this equation describes the diffusive and advective
contributions from the vapour to the mass transport from the surface, while the
right-hand side gives the advective transport towards the surface in the condensed
phase.

The third conservation condition is that of heat at the interface. This is given by

−ρsLu0 = −ka
∂Ta

∂z
(0) + ks

∂Ts

∂z
(0), (2.6)

where L is the appropriate latent heat of condensation for either the vapour–solid
transition or the vapour–liquid transition. Thermal conductivities of air and the
condensed phase are given by ka and ks, respectively. These are related to the
thermal diffusivities by the expression ki = ρiκicpi , where i corresponds to air or
to the condensed phase and cp is the specific heat capacity. In this equation,
the left-hand side represents the latent heat of condensation corresponding to
condensation or evaporation at the interface, while terms on the right-hand side
give heat conduction through the air and condensed phase, respectively.

Two remaining boundary conditions at the interface are given by continuity of
temperature,

Ta(0) = Ts(0), (2.7)

and the Clausius–Clapeyron equation (Wood & Battino 1990), expressing vapour
saturation (equilibrium) at the phase interface,

ρ(0) = ρsat(∞)
T∞

Ta(0)
exp

(
−ML

R

[
1

Ta(0)
− 1

T∞

])
. (2.8)
Proc. R. Soc. A (2010)
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Here ρsat(∞) is the equilibrium vapour pressure at the far-field temperature T∞,
M is the molar mass of water and R is the gas constant. As with the boundary
condition for heat conservation, when we consider water or ice as the condensed
phase, we must choose the appropriate latent heat of condensation L.

We close the system by taking the temperature and vapour density in the far-
field air to be T∞ and ρ∞, respectively, while the far-field temperature in the
solid is T−∞.

In order to simplify the equations, we make two assumptions. Firstly, we
assume that the interface remains planar during growth. We shall demonstrate
later that under certain conditions the interface becomes unstable, but this model
is still useful for investigation of the vapour conditions during early stage growth.

Secondly, we assume that the vapour content of the air is very small so that
ρ/ρa � 1. As a result, we see that, by use of equation (2.4) in the boundary
condition for conservation of water vapour (2.5), the advective contribution from
the gas is much smaller than the advective contribution in the condensed phase.
Thus the equation for conservation of water can be approximated by

D
∂ρ

∂z
(0) + u0ρs = 0. (2.9)

(a) Scaling

We assume that a similarity solution exists, having a fixed interface
temperature T0. The growth rate of the interface will then be such that u0 ∝ 1/

√
t

(e.g. Worster 2000) and the system can be expressed in terms of the dimensionless
similarity variable η = z/

√
2Dt. By balancing terms in equation (2.9), we choose

to non-dimensionalize velocities as

u0 = ρsat(∞)
ρs

√
D
2t

ũ and v0 = ρsat(∞)
ρa

√
D
2t

ũ. (2.10)

The non-dimensionalized field variables are given by

θa(η) = Ta − T∞
T−∞ − T∞

, θs(η) = T−∞ − Ts

T−∞ − T∞
and ρ̃(η) = ρ − ρ∞

ρsat(∞)
, (2.11)

so that after non-dimensionalization the governing equations become

ρ̃ ′′ + ρ̃ ′(η − ε2ũ) = 0, (2.12)

θ ′′
a + θ ′

a(η − ε2ũ) = 0 (2.13)

and θ ′′
s + D

κs
θ ′
s(η − ε1ũ) = 0, (2.14)

while the boundary conditions are

ρ̃(0) = T∞
T∞ + �Tθa(0)

exp
(

−ML
R

[
1

T∞ + �Tθa(0)
− 1

T∞

])
− ρ∞

ρsat(∞)
, (2.15)

ρ̃(∞) = 0, θa(∞) = θs(−∞) = 0, (2.16)

θa(0) + θs(0) = 1, ρ̃ ′(0) = −ũ (2.17)
Proc. R. Soc. A (2010)
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Table 1. Table of typical values for water/air.

constant value units constant value units

L 2.5 × 106 J kg−1 R 8.3144 J K−1 mol−1

cpa 9.2 × 102 J K−1 kg−1 κa 2 × 10−5 m2 s−1

cps 4.4 × 103 J K−1 kg−1 κs 6 × 10−7 m2 s−1

M 1.8 × 10−2 kg mol−1 D 2.1 × 10−5 m2 s−1

ρa 1.3 kg m−3 ka 2.4 × 10−2 W m−1 K−1

ρ0 2.4 × 10−3 kg m−3 ks 2.4 W m−1 K−1

ρs 917 kg m−3

and ε2S
D
κa

ũ = θ ′
a(0) + ks

ka
θ ′
s(0). (2.18)

The non-dimensional parameters introduced are the ratio of far-field vapour
density to the density of the condensed phase

ε1 = ρsat(∞)
ρs

, ε2 = ρsat(∞)
ρa

and S = L
cpa�T

, (2.19)

and typical values from table 1 show that ε1 � 2.6 × 10−6, ε2 � 1.8 × 10−3 and the
Stefan number S takes a value of approximately 250. We have also defined �T =
T∞ − T−∞, which we have taken to be approximately 10 K in the estimates above.

(b) Results

We can solve equations (2.12)–(2.14) to give

ρ̃(η) =
[

T∞
T∞ + �Tθa(0)

e− ML
R

(
1

T∞+�Tθa(0) − 1
T∞

)
− ρ∞

ρsat(∞)

]

×
erfc

(
(η − ε2ũ)/

√
2
)

erfc
(
−ε2ũ/

√
2
) , (2.20)

θa(η) = θa(0)
erfc

(√
(D/2κa)(η − ε2ũ)

)
erfc

(
−√

(D/2κa)ε2ũ
) (2.21)

and θs(η) = (1 − θa(0))
erfc

(√
(D/2κs)(ε1ũ − η)

)
erfc

(√
(D/2κs)ε1ũ

) . (2.22)

Applying the remaining boundary conditions (2.17)2 and (2.18), we find

ε2

[
T∞

T∞ + �Tθa(0)
e− ML

R

(
1

T∞+�Tθa(0) − 1
T∞

)
− ρ∞

ρsat(∞)

]
= −G

(
−ε2ũ√

2

)
(2.23)
Proc. R. Soc. A (2010)
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and

S = θa(0)

G
(
−√

(D/2κa)ε2ũ
) + cps

cpa

1 − θa(0)

G
(√

(D/2κs)ε1ũ
) , (2.24)

where
G(y) = √

πyey2
erfc(y). (2.25)

As ε1, ε2 are both small, the arguments of the functions G(y) are small, and so
we can make the approximation G(y) ≈ √

πy. Equation (2.24) then becomes√
π

2
Sε1ũ = cps

cpa

√
κs

D
[1 − θa(0)] −

√
κa

D
ε1

ε2
θa(0). (2.26)

The coefficients of the left-hand side and the second term on the right-hand side
of this expression are both small, while the first term on the right-hand side has
a coefficient of O(1). Thus, we surmise that 1 − θa(0) � 1, and so we can expand
equation (2.23) to give

T∞
T−∞

e−(ML/R)(1/T−∞−1/T∞)[1 + �T (θa(0) − 1)f (T−∞)
] − ρ∞

ρsat(∞)
=

√
π

2
ũ, (2.27)

where

f (T ) = 1
ρsat(T )

∂ρsat(T )
∂T

= ML
RT 2

− 1
T

. (2.28)

The function f (T ) is the local decay rate of the saturation vapour density curve
as a function of temperature T .

For a typical ice–vapour system (see table 1) with ρ∞ = ρsat(T∞) = 2.4 ×
10−2 kg m−3, T∞ = 283 K and T−∞ = 273 K the linear equations (2.26) and (2.27)
are easily solved to find that, to two decimal places, θa(0) = 0.99 and ũ = 1.03.
Comparison with solutions to the full equations show that the values obtained
from the linearized equations are accurate to four decimal places, justifying the
linearizing approximations made. As these two values are O(1), these results
also justify the earlier scalings and importantly show that the advection terms
proportional to u0 are insignificant because u0 ∼ ε2ũ

√
D/2t. For example, in the

ice–vapour system u0 ∼ 6 × 10−6/
√

t, so u0 can be ignored for all but the smallest
timescales. We shall use this result in comparing vapour density profiles for
varying ρ∞ at fixed T∞ − T0.

(c) Discussion

In our previous analysis (Style & Worster 2009), we used the assumption that
the diffusivity of vapour in air D and the thermal diffusivity of air κa were equal
in order to derive the regime diagram shown in figure 1. Using the thermal and
vapour profiles derived above, it is now possible to derive the regime diagram for
the case that D 
= κa.

Condensation will occur at the interface when ρ∞ > ρ0, where subscript 0
indicates values of variables at the phase interface. Then equation (2.8) shows
that condensation will occur when
Proc. R. Soc. A (2010)
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ρ∞
ρsat(∞)

>
T∞
T0

e−(ML/R)(1/T0−1/T∞). (2.29)

In the limit that the reduced temperature τ = (T∞ − T0)/T∞ � 1, this reduces
to the equation

ρ∞
ρsat

(∞) > e−mτ , (2.30)

which is the same condition as previously found for the occurrence of condensation
(Style & Worster 2009).

Supersaturation above the interface will occur when

∂ρ

∂z
>

∂ρsat

∂T
∂T
∂z

(2.31)

at the interface (Style & Worster 2009). Using the Clausius–Clapeyron equation
(2.8) and the expressions for the vapour and temperature profiles in the air
(2.20) and (2.21), we find that the condition for supersaturation to occur at
the interface is

ρ∞
ρsat(∞)

>
T∞
T0

e−(ML/R)(1/T0−1/T∞)

[
1 −

√
D
κa

f (T0)(T0 − T∞)

]
, (2.32)

where we have also made the assumption that ε2ũ and
√

(D/κa)ε2ũ are small.
When the reduced temperature τ is small, the condition for supersaturation
becomes

ρ∞
ρsat(∞)

> e−mτ

[
1 + τ

(
1 + m

√
D
κa

−
√

D
κa

)]
. (2.33)

It can be seen that this condition reduces to the previously determined condition
of Style & Worster (2009) when the diffusivities D and κa are equal. This
condition demonstrates that the amount of supersaturation above the interface
is controlled by two separate factors. Firstly, the nonlinearity of the saturation
vapour density curve controls the degree of supersaturation above the interface
via the temperature dependence of the ∂ρsat/∂T factor in equation (2.31). It is
the only cause of supersaturation in the situation when the diffusivities D and κa
are equal, such as in the case of an ice/water–vapour system (Style & Worster
2009). However, when the diffusivities D and κa are allowed to differ from each
other, the resulting difference in the thickness of the thermal and solutal boundary
layers above the interface also affects the amount of supersaturation. This is
analogous to constitutional supercooling in alloy solidification, where supercooling
ahead of a freezing solid can occur owing to a high thermal diffusivity in the
liquid relative to the solutal diffusivity (Worster 2000). From equation (2.32) it
can be seen that the effect of changing the values of the diffusivities depends upon
the temperature difference �T = T0 − T∞. When �T is positive, increasing the
vapour diffusivity D relative to the thermal diffusivity κa makes supersaturation
more likely above the interface. When �T is negative, decreasing the vapour
diffusivity relative to the thermal diffusivity makes supersaturation more likely
above the interface. The case �T > 0 can be thought of as being analogous to a
melting binary alloy in the unlikely situation that the thermal diffusivity is small
Proc. R. Soc. A (2010)
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Figure 3. Vapour partial density profiles as a function of the similarity variable η for constant
temperature difference �T = T∞ − T0. ũ is set to zero. In both (a) and (b), the thick solid
curves show the saturated vapour density corresponding to the air temperature profile. (a)
�T = −10 K. Thin solid: regime V, ρ∞/ρsat(∞) = 0.2. Dashed: regime VI, ρ∞/ρsat(∞) = 0.9. Dash-
dotted: regime I, ρ∞/ρsat(∞) = 1.5. Dotted: regime II, ρ∞/ρsat(∞) = 2.5. (b) �T = 10 K. Thin
solid: regime V, ρ∞/ρsat(∞) = 0.2. Dashed: regime IV, ρ∞/ρsat(∞) = 0.5. Dash-dotted: regime III,
ρ∞/ρsat(∞) = 0.95. Dotted: regime II, ρ∞/ρsat(∞) = 1.2.

relative to the solutal diffusivity, while the second case is analogous to the typical
freezing binary alloy case where the solutal diffusivity is smaller than the thermal
diffusivity.

For simplicity, we now return to the case where the thermal and vapour
diffusivities in the air are the same so that the vapour conditions above the
interface are described by the regime diagram in figure 1. Now, using the error
function profiles calculated above, we can illustrate the difference in vapour
properties above the condensed phase interface for each regime in figure 1.
Figure 3a,b shows vapour density profiles at fixed T∞ − T0 = 10 K and −10 K,
respectively. These demonstrate examples of vapour profiles from each of regimes
I–VI. By making the assumption that advection in the air is negligible (which
we have noted to be appropriate in §2b), the temperature profile becomes
independent of the relative humidity of the far field. This means that the
saturation vapour density profile with respect to ice is invariant for fixed interface
and far field temperatures and it is plotted as the thick continuous curve in
figure 3a,b. In figure 3a,b, each profile is plotted as a function of the similarity
variable η (vertical axis) and humidity relative to the far-field saturated vapour
density (horizontal axis).

In figure 3a,b, supersaturation in the vapour occurs when the vapour density
is greater than the saturation vapour density (the thick continuous curve).
Also condensation onto the interface occurs when the far-field vapour density
is greater than the vapour density directly above the interface. Figure 3a shows
vapour conditions for several different situations with varying far-field densities
in the case of a cold, condensed phase in contact with warm air. In this figure,
Proc. R. Soc. A (2010)
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the thin continuous curve corresponds to regime V where ρ∞/ρsat(∞) = 0.2, as
the vapour density at the phase interface is greater than the vapour density
in the far field so evaporation occurs, while no supersaturation occurs at any
point above the interface. The dashed line corresponds to vapour conditions
in regime IV where ρ∞/ρsat(∞) = 0.5. Here no supersaturation occurs in the
vapour, but the far-field vapour density is greater than the interface density so
that condensation occurs. A typical profile for vapour conditions in regime III is
given by the dash-dotted line where ρ∞/ρsat(∞) = 0.95. This regime shows the
interesting property that vapour is condensing from an unsaturated far field, but
directly above the interface there is a region of vapour supersaturation. Finally
in figure 3a, the dotted line corresponds to vapour conditions in regime II where
ρ∞/ρsat(∞) = 1.2.

Similar to figure 3a, figure 3b shows several curves corresponding to different
far-field vapour densities, but for the case of a warm condensed phase in contact
with cold air. In figure 3b, the continuous line corresponds to vapour conditions
in regime V where ρ∞/ρsat(∞) = 0.2. In this case it can be seen that evaporation
is occurring from the condensed phase, while there is no supersaturation at any
point in the vapour. The dashed line shows the interesting case of vapour growth
in regime VI with ρ∞/ρsat(∞) = 0.9. In this case, there is evaporation from the
phase interface into a subsaturated far-field vapour, but there is a region of
supersaturation directly above the interface. The dash-dotted line corresponds
to vapour conditions in regime I, with ρ∞/ρsat(∞) = 1.55 where evaporation
occurs into a vapour such that the vapour is everywhere supersaturated, and
finally the dotted line corresponds to vapour conditions in regime II with
ρ∞/ρsat(∞) = 2.5, where condensation occurs from the vapour and the vapour
is entirely supersaturated. It is interesting to note the form of the dashed curve
in figure 3b. This represents evaporation in regime VI, the regime where we expect
frost flowers to grow (Style & Worster 2009). The curve suggests that for a fixed
temperature difference between the condensed phase and the air, T∞ − T0, there
is a maximum level of supersaturation that can occur above the interface if the
far-field vapour is restricted to being undersaturated (as is found, for instance,
in polar regions). If this level of supersaturation is small, growth of crystals in
the supersaturated vapour will be possible, but the level of supersaturation may
not allow nucleation of crystals. We shall discuss this issue with regards to the
nucleation of frost flowers in §4a.

3. Linear stability analysis

In the regime diagram, there are two regimes of particular interest. The first
of these is regime VI. Here, although the condensed phase is evaporating and
the far-field vapour is not supersaturated there is still supersaturation directly
above the interface. In this regime, warm vapour evaporating from the condensed
phase encounters the cold air above to yield a supersaturated layer lying directly
above the surface of the condensed phase. An example of crystal growth in this
regime is the appearance of frost flowers on sea ice. Frost flowers are small,
hoar-frost-like ice crystals that are commonly found on young sea ice and that
have important impacts upon sea-ice albedo (Martin et al. 1996) and sea-salt
aerosol (Rankin et al. 2002) and may be a major factor in tropospheric ozone
Proc. R. Soc. A (2010)

http://rspa.royalsocietypublishing.org/


Stability of a solid–vapour interface 1015

 on April 29, 2010rspa.royalsocietypublishing.orgDownloaded from 
depletion (Kaleschke et al. 2004). The later stage growth of the frost flowers
into the supersaturated vapour can be understood as the growth of a crystal
into a supersaturated vapour. However, there remains the important question of
whether frost flowers can nucleate from perturbations to the underlying ice, or
whether they require a seed crystal to be dropped into the supersaturated layer.
We shall address this question in this section by considering the linear stability
analysis of the evaporating surface in regime VI. The second regime of interest
is given by regime IV in figure 1. In this regime there is condensation from the
vapour onto a cold surface, but there is no supersaturation directly above the
interface. An example of this regime is the creation of a molecularly rough film
by physical vapour deposition, where a substance is vaporized and then condensed
onto a cold substrate in order to create crystals with enhanced properties such as
hardness and resistance to wear or oxidation (Mahan 2000). A crucial element of
creating regular crystals by vapour deposition is ensuring that the surface does
not undergo a morphological instability during growth so that irregular, dendritic
or cellular crystal growth can be avoided. Reed & LaFleur (1964) argued that
the instability will coincide with the presence of supersaturation at the interface,
implying that the whole of region IV will be stable. However, we show here that a
linear stability analysis of the system implies that the interface is actually stable
only in a small region of regime IV.

(a) Model

In order to consider the linear stability of solid underlying a vapour, we need
to move into a different frame of reference so that we can calculate the stability
of a perturbation imposed upon a steadily propagating interface. Therefore, we
shall consider the system of a pure solid underlying a vapour/air mix shown
in figure 4. In order to focus on the instability caused by changes in vapour
conditions at the surface, we shall ignore effects such as dislocations, lattice
effects and attachment kinetics and concentrate on the case of the growth or
evaporation of a molecularly rough crystal (Louchev 1994). We take the solid as
being of initial thickness ds, with the base of the solid being held isothermal at
temperature T2. In the case of frost flower growth on young sea ice, the base
of the solid corresponds to the ice–water interface. In the case of crystal growth
by vapour deposition the base of the solid corresponds to the interface between
the growing crystal and an underlying substrate of high thermal conductivity.
The air above the interface is assumed to be in a layer of constant thickness da,
and the temperature T1 and vapour density ρ1 at the top of the layer are taken
as constant. During crystal growth by vapour deposition this can correspond
either to the vapour release point above the substrate or to the top of a stagnant
boundary layer above the crystal such as that observed experimentally to be
present by Eversteijn et al. (1970). During frost flower growth, buoyancy-driven
convection in the air caused by the temperature difference between the ice and the
air leads to thermal turbulence above the warm ice. Owing to the viscosity of the
air adjacent to the ice, there exists a thin laminar boundary layer that underlies
the turbulent, mixed region (Howard 1964). The ‘lid’ of the system corresponds
to the top of the laminar region. During steady-state growth, the planar interface
has a fixed temperature T0, while the vapour density immediately above the
interface is ρ0.
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air + vapour

ρ1, Τ1z = da

z = −ds Τ2

ρ0, Τ0z = 0

solid (ice)

Figure 4. Schematic showing the model used in the stability analysis at a condensing/evaporating
interface. Constant temperature and water vapour boundary conditions, respectively, T = T1 and
ρ = ρ1, are applied at z = da and a constant temperature boundary condition T = T2 is applied
at z = −ds . Vapour density ρ0 and temperature T0 at z = 0 correspond to the vapour density and
temperature system with an unperturbed interface.

The temperature and vapour fields satisfy the two-dimensional forms of
the advection–diffusion equations (2.1)–(2.3) with the velocities u0, v0 being
replaced by v and u, which are the velocity fields in the air and solid relative to
the unperturbed ice–air interface. If we scale lengths by the vapour layer thickness
da, velocities by Dρ0/daρs from consideration of the condition for conservation
of water vapour at the interface (2.9), and times by d2

aρs/Dρ0, then, with tildes
denoting dimensionless variables, these advection–diffusion equations become

Peρ

[
∂ρ

∂ t̃
+ ṽ · ∇̃ρ

]
= ∇̃2ρ, (3.1)

Pea
th

[
∂Ta

∂ t̃
+ ṽ · ∇̃Ta

]
= ∇̃2Ta (3.2)

and Pes
th

[
∂Ts

∂ t̃
+ ũ · ∇̃Ts

]
= ∇̃2Ts. (3.3)

The solutal and thermal Péclet numbers are defined by

Peρ = ρ0

ρs
, Pea

th = ρ0D
ρsκa

and Pes
th = ρ0D

ρsκs
. (3.4)

These Péclet numbers represent the ratio of advection to diffusion in each phase
and are equivalent to the grouping u0L0/D0 where u0, L0 and D0 are representative
velocities, length scales and diffusivities, respectively, for each phase.

The boundary conditions comprise the two-dimensional forms of equations (2.6),
(2.7) and (2.9) in addition to the condition for water–vapour equilibrium at
the interface (2.8), which is modified to include the saturation vapour density
dependence upon curvature as given by the Kelvin equation so that

ρ = ρsat(Ta, Ksa) = ρ0
T0

Ta
e−(ML/R)(1/Ta−1/T0)eγsaMKsa/ρsRTa , (3.5)
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where γsa is the solid–air surface tension, and Ksa is the curvature of the solid–air
interface. On linearization this becomes

ρ − ρ0

ρ0
= f (T0)(T − T0) + Γ Ksa, (3.6)

where f (T0) is given by equation (2.28) and the surface tension coefficient is

Γ = ρ0Mγsa

ρsRT0
. (3.7)

This linearization is commonly used in vapour stability calculations (Louchev
1994; Libbrecht 2005) and is equivalent to taking a linear approximation to the
saturation curve. As we are concerned only with growth immediately adjacent to
the steady-state interface and so over the small temperature range in that region,
this is a reasonable approximation.

We make two further approximations. Firstly, we shall consider perturbations
to the interface where the wavelength of the perturbation is much smaller than
the thickness of the solid or vapour layers. For a perturbation of the form

h = εeiαx+σ t , (3.8)

this means that daα � 1 and daα � 1.
Secondly, we note that, as ρ0 � ρs for all typical substances, each of the Péclet

numbers are small. For the case of the ice/water–vapour system this can be
seen by consideration of typical values of the parameters as shown in table 1,
giving Peρ = 2.6 × 10−6, Pea

th = 2.3 × 10−6 and Pes
th = 9.1 × 10−5. Therefore, we

shall assume that Pe � 1 for each field so that the advection–diffusion equations
each reduce to Laplace’s equation. From the form of equation (3.6) we choose
to scale vapour densities with ρ0 and temperatures with f (T0)−1 so that
ρ̃ = (ρ − ρ0)ρ0 and t̃ = f (T0)(T − T0).

The system of governing equations then becomes (dropping tildes)

∇2ρ = 0, ∇2Ta = 0 and ∇2Ts = 0, (3.9)

with boundary conditions at the interface

Ta = Ts, ρ = Ta + Γ̃ K (3.10)

and

β
∂ρ

∂n
= ∂Ts

∂n
− k

∂Ta

∂n
and

∂ρ

∂n
= un . (3.11)

The externally imposed boundary conditions become

ρ(1) = ρ1 − ρ0

ρ0
≡ F , (3.12)

Ta(1) = [T1 − T0]f (T0) ≡ Ga (3.13)

and Ts(−d) = [T2 − T0]f (T0) = −Gs, (3.14)
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and the dimensionless parameters are

β = f (T0)LDρ0

ks
, Γ̃ = Γ

da
, d = ds

da
and k = ka

ks
, (3.15)

where β is a type of Stefan number, Γ̃ is the dimensionless surface tension, d
is the ratio of the thickness of the solid and air layers and k is the ratio of
thermal conductivities. Note that F = (ρ1 − ρ0)/da, Ga = (T1 − T0)/da and Gs =
(T0 − T2)/ds are the non-dimensional vapour and temperature gradients F0, Ga

0
and Gs

0 , respectively.
Steady-state planar growth is given by linear vapour and temperature profiles

ρ = F z , Ta = Gaz and Ts = Gsz , (3.16)

and, from the boundary conditions for conservation of water vapour and heat,
we find that the steady-state growth velocity is given by

u0 = F (3.17)

and

βF = Gs − kGa. (3.18)

We can now proceed to perform a linear stability analysis upon this system
by adding a small sinusoidal perturbation to the solid–air interface such that the
new interface position is given by

h = εeiαx+σ t . (3.19)

We can assume forms for the vapour and temperature fields such that they satisfy
Laplace’s equation,

ρ = F z + Aεeiαx+σ t sinh α(z − 1), (3.20)

Ta = Gaz + Bεeiαx+σ t sinh α(z − 1) (3.21)

and Ts = Gsz + C εeiαx+σ t sinh α(z + d). (3.22)

Then applying the remaining boundary conditions (3.10) and (3.11) and solving
for σ , we obtain the dispersion relation

σ = (1 + k)
(1 + k + β)

(
F − (Gs + Ga)

(1 + k)
− Γ̃ α2

)
α, (3.23)

where we have used the previously mentioned assumption that the wavelength of
the instability is much smaller than the thickness of either solid or vapour layers,
so that α � 1 and αd � 1. This dispersion relation takes a similar form to the
dispersion relation for the Mullins–Sekerka instability in binary alloys (Mullins &
Sekerka 1964), but importantly contains different parameters that take account
of the difference between vapour systems and the solidification problem. These
parameters are important to know in understanding the characteristics of
instability at a solid–vapour interface.
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(b) Results

Equation (3.23) gives a dispersion relation for small perturbations of the
system. From this we can calculate the neutral stability curve that separates
parts of the regime diagram where unstable wavelengths exist, from parts where
all wavelengths are linearly stable. By use of equation (3.18) we find that the
neutral stability curve is given by

F = 2k
1 + k − β

Ga. (3.24)

This corresponds to the vapour gradient above which the interface will be
morphologically unstable.

At this point, we note that Louchev (1994) has previously performed a linear
stability analysis for physical vapour deposition of films. However, in that analysis
it was assumed that the conduction of heat in the air was negligible compared with
that in the solid, and so was ignored in the condition for conservation of heat at
the interface (3.11). From equation (3.23) it can be seen that this approximation
leads to system stability when F < Gs/(1 + k) ≈ Gs as the ratio of conductivities
k is small for typical materials. However, by eliminating Gs from equation (3.24)
by use of equation (3.18), we find that the system is actually stable when

F <
2

1 + k + β
Gs ≈ 2Gs. (3.25)

We can see that, despite the small conductivity ratio k, the large temperature
gradients in the air relative to those in the solid mean that heat conduction in
the air is still large enough to influence the stability of the interface significantly.

We can relate the neutral stability curve to the regime diagram in figure 1
by expressing equation (3.24) in terms of ρ1/ρsat(T1), T0 and T1, and replacing
T∞ by T1 in the regime diagram. This gives

ρ1

ρsat(T1)
= T1

T0

(
1 + 2kf (T0)

T1 − T0

1 + k − β

)
e−(ML/R)(1/T0−1/T1), (3.26)

and in the common case that the reduced temperature τ = (T1 − T0)/T1 � 1, this
reduces to

ρ1

ρsat(T1)
=

[
1 +

(
1 − β − k + 2km

1 + k − β

)
τ

]
e−mτ . (3.27)

Figure 5 shows the results of the linear stability analysis as given by
equation (3.26) when added to the regime diagram (figure 1). Both figures use
typical parameters for the ice/water–vapour system as shown in table 1 and a
range of values of the dimensionless parameter k. Figure 5a shows the results
when T1 < T0, while figure 5b shows the results when T1 > T0. It can be seen that,
for realistic values of k (approx. 0.01), the neutral stability curve is very close to
the curve separating condensation and evaporation. Interestingly, it can be seen
in figure 5a that the surface can be stable despite the presence of supersaturation
above the interface during evaporation. Conversely, figure 5b shows that during
condensation it is possible for instability of the surface to occur despite the air
above the surface being unsaturated.
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Figure 5. The dimensional neutral stability curves included in figure 1. Regime boundaries are given
by the dashed and dash-dotted curves and the continuous line (corresponding to 100% relative
humidity of the far-field vapour). (a) Continuous curves from top to bottom correspond to neutral
curves for k = 0.01, k = 0.2, k = 0.5 when T1 < T0. (b) Curves for the same values of k when
T1 > T0. The order is reversed so that the lowest curve corresponds to k = 0.01. As k → 0, the
neutral stability curve approaches the curve delineating between evaporation and condensation
regimes. In each case, the interface is linearly stable below the neutral curve, and linearly unstable
(over at least a range of wavenumbers) above the neutral curve.

4. Discussion

(a) Regime VI: frost flowers

On dimensionalization of the neutral stability condition (3.24), and using
equation (3.18) we find that

F0 <
∂ρsat

∂T

(
ksGs

0 + kaGa
0

ks + ka

)
, (4.1)

where F0 is the dimensional vapour-density gradient (ρ1 − ρ0)/da. This physically
expresses the fact that perturbations to the interface will experience a
conductivity-weighted temperature gradient during growth given by

Gm = ksGs
0 + kaGa

0

ks + ka
(4.2)

(cf. the Mullins–Sekerka instability (Mullins & Sekerka 1964)). This ‘apparent’
temperature gradient can be modified substantially from the temperature
gradient in the air by conduction of heat in the solid. Because of this effect, it
can be seen from figure 5a that, in typical frost flower growth conditions (regime
VI), the surface is linearly stable despite the presence of supersaturation directly
above the interface.

Although the surface is linearly stable to perturbations, perturbations of
sufficiently high aspect ratio will grow by condensation from the supersaturated
layer. This can be demonstrated by consideration of a tall, thin needle-like
perturbation to the interface which we take to be a cylinder of height h and
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radius r , where h � r . Heat conduction from the underlying ice will be through
the base of the cylinder and take the form

Hh = ks
∂T
∂z

πr2 ∼ πksr2 �T
h

, (4.3)

where �T is the temperature difference between the ice and the air. Cooling of the
cylinder will occur owing to heat conduction in the air and assuming a boundary
layer of thickness r around the cylinder; the cooling can be estimated by

Hc = ka
(T − Ta)

r
2πrh ∼ 2πkarh

�T
r

. (4.4)

In order for the tip of the cylinder to be at the surrounding air temperature as it
grows into the supersaturated vapour, the heating from underlying ice must be
small in comparison with cooling from the air so that Hc � Hh , which gives that

h
r

�
√

ks

2ka
. (4.5)

In the case of the ice/water–vapour system (with parameters given in table 1),
this means that, for a perturbation to grow into the supersaturated vapour above
an evaporating surface such as found in regime VI, the perturbation must have
an aspect ratio greater than about 7.

On sea ice, where frost flowers grow naturally, the surface of the ice is covered
in a brine film which will tend to engulf such high aspect ratio perturbations.
This means that nucleation of frost flowers from the underlying sea ice is unlikely
to be caused by an instability of the surface into the adjacent supersaturated
vapour. However, if a foreign particle were to land on the ice surface in a
manner so that the particle was in poor thermal contact with the ice (or
if the particle were sufficiently ramified so that heat was poorly conducted
to the exposed tips of the particle), ice can then condense onto the particle
from the supersaturated layer. In polar regions, there is a plentiful supply of
atmospheric particles that could drop onto the sea-ice surface to nucleate frost
flowers. Snowflakes, for example, are ramified structures and so would serve as
an ideal nucleus for a frost flower. Diamond dust and clearsky ice crystals are
also commonly observed in polar regions, originating in regions with abundant
sources of vapour (such as the open leads commonly associated with frost flower
growth; Ohtake et al. 1982). According to Girard & Blanchet (2001), diamond
dust has been shown to fall between 20 and 50 per cent of the time in the
arctic wintertime, though these frequencies may be underestimated owing to the
difficulties of observation in the winter darkness. Data are also given showing
typical particle sizes varying between a few microns and several hundred microns,
with number concentrations of between 1 and 1000 particles per litre of air.
Therefore, these particles are sufficiently large and abundant to act as possible
frost flower nuclei and we suggest that a possible method of nucleation of frost
flowers other than surface instability is that of heterogeneously nucleated growth
from atmospheric ice crystals landing on the evaporating ice surface. Importantly,
this also explains the observation of frost flower ‘patches’ whereby frost flowers
appear initially in isolated sites which grow laterally across the surface (Martin
et al. 1995). In experimental growth of frost flowers, we have observed turbulence
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from the cooling fans blowing hoar frost from the tank sides onto the ice surface,
nucleating frost flower patches, and this observation would appear to substantiate
this idea.

(b) Regime IV: crystal growth by vapour deposition

Figure 5b shows when instability occurs for the ice/water–vapour system where
the ice is colder than the surrounding air. It can be seen that, for k = 0.01, the
curve separating stable and unstable conditions is close to the boundary between
condensation and evaporation. This means that in regime IV, despite the fact
that there is no supersaturation above the surface, there is only a narrow range of
parameters for which condensation occurs without surface instability. The cause
of the instability is the fact that perturbations to the ice surface growing up
into the warm air are cooled by the high thermal conductivity of the underlying
solid. The warm, moist air directly surrounding the peaks of the perturbations
is then cooled, becoming supersaturated, and leading to further growth of the
perturbation.

From the linear stability analysis, we can calculate the maximum stable growth
rate for a vapour-grown crystal. By dimensionalization of equation (3.24), we find
that the system is stable when

F0 >
2ρ0f (T0)k
1 + k − β

Ga
0 , (4.6)

and by using the dimensional form of equation (3.11)2, we find that the maximum
velocity of stable growth is given by

u = 2Dρ0f (T0)k
ρs(1 + k − β)

Ga
0 . (4.7)

For a typical ice/water–vapour system, k, β � 1 and so the maximum stable
growth velocity can be approximated by

umax = 2
ρ0

ρs
Df (T0)kGa

0 . (4.8)

Equation (4.8) demonstrates the key importance of the system temperature
gradient in maintaining stability of growth, as the maximum stable growth
velocity can be seen to be limited only by the temperature gradient across the
layer of air above the crystal. It also shows the strong dependence of stability
upon vapour diffusivity D, vapour density at the interface ρ0 and the ratio of
thermal conductivities k = ka/ks.

This result is different from the result of Reed & LaFleur (1964), who assumed
that instability occurred as soon as the vapour above the solid crystal was
supersaturated. This would imply that the maximum stable growth rate is

umax = Dρf (T0)
ρs

Ga
0 . (4.9)

This velocity is larger than the predicted velocity arising from the stability
analysis by a factor of 1/2k. This means that for the ice–vapour system the
maximum growth value according to Reed & LaFleur (1964) is approximately a
factor of 50 times larger.
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In this analysis, we have ignored factors such as attachment kinetics,
dislocations and lattice effects in order to concentrate on the instability
mechanism. Therefore, this maximum growth velocity is appropriate for a
molecularly rough crystal growing into its vapour, and may differ when these
other effects occur. However, even in the presence of these effects, this model
provides valuable insight into the process controlling the instability. It also
demonstrates the leading role played by the temperature gradients in both the
solid and vapour phases. It shows that, despite the small temperature gradient
in the solid and the small thermal conductivity of the air, both temperature
gradients have a leading order effect upon the stability of the surface and so
neither can be neglected.

5. Conclusions

In this paper, we have solved a planar model for a condensed phase in contact with
its vapour and analysed the stability of a solid crystal in contact with its vapour.
First, we presented the equations relevant to condensation onto, or sublimation
(evaporation) from, a condensed phase in contact with its vapour. We have solved
these equations and shown that there exist similarity solutions for the evolution of
the temperature and vapour profiles. We have used these profiles to demonstrate
a new condition for supersaturation when the vapour and solutal diffusivities in
the air are not equal. In the case that the reduced temperature τ = (T∞ − T0)/T∞
is small, this condition is given by

ρ∞
ρsat(∞)

> e−mτ

[
1 + τ

(
1 + m

√
D
κa

−
√

D
κa

)]
.

In addition, we have calculated profiles to illustrate vapour characteristics in the
different regimes of the regime diagram shown in figure 1. Eight profiles were
calculated for a typical ice–vapour system, with four profiles being calculated
in the case of a cold condensed phase underlying warm air for varying far-field
densities, and four profiles calculated in the case of a warm condensed phase
underlying cold air for varying far-field densities. These profiles, shown in figure 3,
show typical characteristics found in each of the regimes in the regime diagram.

The results of the linear stability analysis of the solid/vapour system show
that there is surface instability when the gradient of vapour density above the
interface satisfies

F0 <
∂ρsat

∂T

(
ksGs

0 + kaGa
0

ks + ka

)
.

In the case of frost flower growth in regime VI, we have shown that for typical
frost flower growth conditions the sea-ice surface will be linearly stable to
perturbations, despite the presence of a supersaturated layer of vapour directly
above it. We have demonstrated that it is possible for instabilities of sufficiently
high aspect ratio (greater than approx. 7) to nucleate frost flower growth from
the vapour. However, formation of such crystals is unlikely as the brine film in
the interstices of sea ice will tend to engulf such crystals. We suggest that a
source of frost flower nucleation is the falling of atmospheric ice crystals onto
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young sea ice as these ice crystals are common in polar regions (especially near
leads). Heterogeneous nucleation also explains observations that frost flowers are
initially dry but become wetted by capillarity when they come into contact with
brine in the underlying sea ice (Domine et al. 2005), as instabilities growing
directly from the sea ice would be likely to be brine covered throughout the growth
process. Understanding this growth process raises the possibility of producing an
equation describing the areal coverage of frost flowers based on nucleation rate
and atmospheric conditions.

In the case of crystal growth by vapour deposition, we have shown that
instability of the crystal surface will occur during condensation growth despite the
lack of a supersaturated layer of vapour directly above the crystal if the growth
velocity of the crystal exceeds the maximum stable growth velocity

umax = 2Dρ0f (T0)k
ρs(1 + k − β)

Ga
0 .

In order to grow crystals without instability, the crystals must be grown in the
narrow parameter regime shown in figure 5b beneath the neutral stability curve
(the lowermost, thin, continuous line) and in the region of condensational growth
(dark grey shaded). The expression for the maximum crystal growth velocity
demonstrates that this figure is limited by the temperature gradient in the vapour
above the interface and strongly influenced by the vapour diffusivity, vapour
density and the ratio of the thermal conductivities. The analysis also shows that
the temperature gradients in both solid and vapour phases play a leading order
role in determining the stability of the interface and so neither can be neglected,
as has been previously assumed.

This work is applicable to many phenomena involving condensation or
evaporation of a solid phase, in particular to the many instances of ice crystal
growth such as rime, hoar frost, depth hoar and jack frost. The extension of the
regime diagram to general solid–vapour systems means that this analysis should
help in understanding the wide variety of situations that arise in solid–vapour
interactions.

This work was supported by a Case studentship from the Natural Environment Research Council
in collaboration with the British Antarctic Survey.
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