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Stability of ice-sheet grounding lines
BY RICHARD F. KATZ1,* AND M. GRAE WORSTER2
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Recent observations of the West Antarctic Ice Sheet document rapid changes in the
mass balance of its component glaciers. These observations raise the question of whether
changing climatic conditions have triggered a dynamical instability in the ice-sheet–ice-
shelf system. The dynamics of marine ice sheets are sensitive to grounding-line position
and variation, characteristics that are poorly captured by most current models. We
present a theory for grounding-line dynamics in three spatial dimensions and time. Our
theory is based on a balance of forces across the grounding line; it is expressed as a
differential equation that is analogous to the canonical Stefan condition. We apply this
theory to the question of grounding-line stability under conditions of retrograde bed slope
in a suite of calculations with different basal topography. A subset of these have basal
topography inspired by the Pine Island glacier, where basal depth varies in both the
along-flow and across-flow directions. Our results indicate that unstable retreat of the
grounding line over retrograde beds is a robust feature of models that evolve based on
force balance at the grounding line. We conclude, based on our simplified model, that
unstable grounding-line recession may already be occurring at the Pine Island glacier.

Keywords: ice sheet; grounding line; Antarctica; Pine Island; glacier; sea level

1. Introduction

The glaciers of the West Antarctic Ice Sheet comprise a volume of ice equivalent
to a rise in sea level of approximately 3.3 m (Bamber et al. 2009). This ice
sheet is, in large part, grounded on rock that is below sea level. Un-grounding
of a relatively small portion of the ice sheet, and the attendant change in
mass balance, could result in a significant change in global sea level. Indeed,
recent geological observations suggest that the sea level rose by 2–3 m on
a human time scale (approx. 100 years) during the terminal phase of the
last interglacial period (Blanchon et al. 2009). Understanding the dynamics of
Antarctic grounding lines and how they may respond to climatic perturbations
is a critical component in predictions of future environmental change. A
particularly important question regards the stability of grounding lines: can
gradual modulation in the environmental conditions of Antarctica lead to massive,
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irreversible grounding-line recession and disintegration of the West Antarctic Ice
Sheet? Novel theories of grounding-line dynamics may help us to answer this
question and to interpret observations of rapid change in West Antarctica.

Recent observations of glaciers that flow into the Amundsen Sea suggest that
they are undergoing accelerating change. Thomas et al. (2004) described altimetry
measurements that document glacial thinning, and estimated that glaciers in
this region are discharging almost 60 per cent more ice per year than they are
accumulating. More recently, Wingham et al. (2009) documented rapid changes
in ice thickness of the Pine Island glacier. Rignot (2008) used synthetic-aperture
interferometry on radar observations collected over a period from 1974 to 2007 to
determine changes in flow rates of the Pine Island and Smith glaciers. According
to this work, the two glaciers sped up by 42 and 83 per cent, respectively, between
1996 and 2007; both also experienced a significant grounding-line recession during
this period. The measurements show that acceleration of the Smith glacier was
substantially larger in 2006–2007 than in previous years. Rignot et al. (2008)
estimates that the combined flux of ice across the grounding line of the Pine
Island and Thwaites glaciers in 2006 was 85 ± 26 gigatonnes per year more than
their combined ice accumulation rate at that time; this imbalance is a factor
of two larger than that measured 10 years earlier. In Greenland, geochemical
evidence reported by Briner et al. (2009) indicates a rapid deglaciation of the
Sam Ford Fjord in the Early Holocene, with inferred topographic control of the
rate of glacial retreat.

These, and other observations, again raise a crucial question (e.g. Weertman
1976; Bentley 1997): do recent changes represent a mounting, catastrophic
collapse of the West Antarctic Ice Sheet associated with unstable retreat
of grounding lines (e.g. Weertman 1974) or, rather, a steady and controlled
adjustment to changing climatic forcing (e.g. Van der Veen 1985)? Since the
dominant resistance to flow in ice sheets is provided by basal drag (e.g.
Van der Veen 1999), a reduction in the grounded area of an ice sheet would
plausibly lead to more rapid flow of ice. Ice-sheet buttressing by embayed ice
shelves could also contribute a stabilizing resistance to flow; disintegration of an
ice shelf would relieve this buttressing and allow for flow acceleration (Dupont &
Alley 2005). While buttressing may be important to the overall dynamics of ice
sheets, we neglect it in the current analysis and focus instead on the dynamical
changes associated with grounding-line migration.

Although other authors had proposed the idea earlier, Weertman (1974)
published the first mathematical theory for grounding-line instability. The theory
is based on the analysis of a two-dimensional ice sheet and its junction with
a two-dimensional ice shelf; the conditions applied at the junction are the
flotation condition and continuity of ice thickness. Weertman (1974) concluded
that glaciers grounded below sea level on beds that slope upward in the flow
direction are inherently unstable to grounding-line recession (such beds are
referred to here as being retrograde). Other authors have developed ice-sheet–
ice-shelf models in which the grounding-line position is governed by the flotation
condition or its total differential (e.g. Thomas & Bentley 1978; Hindmarsh 1996;
Hindmarsh & LeMeur 2001; Vieli & Payne 2005; Pattyn et al. 2006). Comparative
analysis of these models by Vieli & Payne (2005) suggested that differences in the
predicted grounding-line motion could be attributed to issues with the numerical
methods, as well as to differences in the formulation of grounding-line motion.
Proc. R. Soc. A
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This inaccuracy should not come as a surprise: as noted by Schoof (2007a) and
Robison et al. (in press), solving for the position of the grounding line is a free-
boundary problem (like the canonical Stefan problem) and, as such, it requires
two independent conditions at the moving boundary. The flotation condition can
only be used as one of these.

Chugunov & Wilchinsky (1996) and Schoof (2007b) applied asymptotic
analyses to solve for the stress conditions in a boundary layer that connects
the ice sheet to the ice shelf. In this narrow region, shear stresses (that dominate
in the sheet) and longitudinal stresses (that dominate in the shelf) are of similar
magnitude. Both Chugunov & Wilchinsky (1996) and Schoof (2007b) showed that
by collapsing the width of this narrow transition zone to zero, the boundary layer
can be approximated with a boundary condition on the ice sheet. There are several
key difference between these two studies, however: Chugunov & Wilchinsky (1996)
applied a no-slip boundary condition at the base of a Newtonian ice sheet and
retained the vertical shear term in the horizontal momentum equation, while
Schoof (2007b) used Glen’s flow law, applied a friction condition at the base and
neglected vertical shear.

New work on a Newtonian ice-sheet model by Robison et al. (in press) began
with the simplifying assumption that the transition zone between the ice sheet and
the shelf can be collapsed to a boundary of zero thickness. The authors derived
a grounding-line equation based on the balance of forces between the ice sheet
and the ice shelf at this boundary. Steady-state solutions for the position of the
grounding line were determined for downward sloping (prograde) beds. However,
Robison et al. (in press) did not consider the existence or stability of steady
solutions for upward sloping beds. Furthermore, none of the authors who have
developed the free-boundary approach to deriving a governing equation for the
grounding-line position have considered a three-dimensional ice sheet. It is thus
the purpose of the present work to extend the theory of Robison et al. (in press)
to three dimensions and, furthermore, to model ice-sheet flow and grounding-
line position over a bed with topographic variation in both the along-flow and
cross-flow directions.

The stability of a grounding line governed by the balance of forces was studied
by Schoof (2007a). His work showed that, under the assumptions particular to his
model (i.e. rapid sliding, no internal shear), there are no steady-state solutions
for a two-dimensional ice sheet with the grounding line on an upward sloping
bed. Work by Nowicki & Wingham (2008) using numerical solutions of the two-
dimensional Stokes equation supports this result, but is inconclusive when a no-
slip condition is applied at the base of the ice sheet. Like the case investigated
by Schoof (2007a), non-slipping ice represents an end-member case that is worth
investigating. While our analysis neglects basal sliding and non-Newtonian ice
viscosity, it incorporates internal shear and three-dimensional effects that are
absent from the work of Schoof (2007a).

In the next section of this paper, we provide details of the model derivation,
scaling and numerical solution procedure. The theoretical development in this
section is an extension of the ice-sheet and grounding-line model of Robison
et al. (in press) from two to three dimensions. In the two-dimensional model,
the dynamics of the ice shelf are described by the leading-order terms in
lubrication theory: the stress is hydrostatic and the strain is purely extensional.
For the general case of a three-dimensional ice shelf bounded by a curved
Proc. R. Soc. A
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grounding line, the dynamics are more complex. In the theory developed below,
we ignore this additional ice-shelf complexity and adopt the two-dimensional
theory without modification. This is a deficiency in our model and a target for
future work.

Having described the theory, we present numerical solutions for various
physical scenarios in §3. In two-dimensional model runs, we concentrate our
attention on the stability of an ice sheet resting on the basal topography proposed
by Schoof (2007a) that contains a continental shelf with an upward bulge (and
retrograde slope) near its margin. We present results on three-dimensional model
runs in §3b,c; the former considers the problem of steady-state grounding-line
profiles for flow down shallow valleys, while the latter considers the dynamics
and stability of grounding-line position over more complex basal topography.
Section 4 contains a summary of results, plus further calculations relevant to
the stability of the Pine Island glacier in West Antarctica. Conclusions are
drawn in §5.

2. Model derivation

Following Robison et al. (in press), we consider an ice sheet of density ρ and
viscosity μ flowing into sea water of density ρw and negligible viscosity. The
ice sheet is grounded on a bed given by the surface z = −b(x , y, t), where x
and y are horizontal coordinates, z is a vertical (upwards) coordinate and
t is time. The time dependence of b will represent changes in sea level; we
do not consider erosion or sedimentation processes, although these may be
important (Alley et al. 2007). Figure 1 is a schematic diagram of the domain and
coordinate system.

The surface of the ice sheet is given by z = h(x , y, t). In the present work, we
will be interested only in the dynamics of the ice sheet and hence will neglect the
ice shelf, except in considering the force it exerts on the sheet at the grounding
line. The grounding line has a position x = xG(y, t) that we require to be a single-
valued function of y.

(a) The ice sheet

Force balance in the ice sheet is governed by leading-order terms of the shallow-
ice equation (e.g. Fowler & Larson 1978; Hutter 1983; Mangeney & Califano
1998), giving a pressure within the ice sheet that is hydrostatic, p = ρg(h − z).
Horizontal pressure gradients are balanced by vertical shear according to

g
ν
∇xh = ∂2v

∂z2
, (2.1)

where ν = μ/ρ is the kinematic viscosity, v = (u, v) is the horizontal vector
flow velocity, g is the acceleration due to gravity and ∇x is the horizontal
gradient (the subscript is dropped below, but it is implied unless otherwise
noted). In writing equation (2.1), we have neglected the downslope component
of gravity, which restricts the validity of this equation to gently sloping beds
with |∇b| � 1.
Proc. R. Soc. A
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x

yz

z = –b(x, y, t)

Figure 1. Schematic of the model domain. Periodic boundary conditions are applied at the faces of
the domain with the normal in the y-direction. The surface shown in grey scale is an example of
the basal topography applied to the model. Solid black lines are depth contours; the dashed black
line shows the intersection of basal surface with the edges of the domain.

We apply no-slip and no-shear-stress boundary conditions at the bottom and
top of the ice sheet, respectively,

v = 0 (z = −b) (2.2)

and
∂v
∂z

= 0 (z = h). (2.3)

Integrating equation (2.1) in z twice, subject to these boundary conditions gives

v = − g
2ν

(∇h)(z + b)[2H − (z + b)], (2.4)

where H = h + b is the thickness of the ice sheet. A third integration in z gives
the ice flux,

q = −gH 3

3ν
∇h. (2.5)

Using equation (2.5), the mass-balance equation can be written as

∂H
∂t

= −∇x · q = g
3ν

∇x · (H 3∇h), (2.6)

where ∇x · is the horizontal divergence operator (again, the subscript is dropped
below). This equation states that a change in the thickness of the ice sheet at a
point in (x , y) is due to the divergence of the horizontal volume flux at that point.
In writing equation (2.6), we have neglected the accumulation and ablation of
ice, which are clearly important in large-scale models of ice sheets (e.g. Pollard &
Deconto 2009).

We consider domains that are periodic in the y-direction, so equation (2.6)
requires two boundary conditions. The first of these specifies a fixed flux at the
inflow boundary,

−gH 3

3ν

∂h
∂x

= q0 (x = 0), (2.7)

while the second is the standard flotation condition at the grounding line,

ρH = ρwb (x = xG). (2.8)

As discussed in the introduction, the equations above do not provide enough
information to determine the position of the grounding line xG. To do so, we
require another condition at xG; this will take the form of a force balance between
Proc. R. Soc. A
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the ice sheet and the shelf. To obtain the force exerted by the ice sheet at the
grounding line, we begin by considering stresses within the ice. Using the same
arguments as Robison et al. (in press), we obtain the horizontal stresses as

σxx ≡ −p + 2μ
∂u
∂x

= −ρg(h − z) + 4μ
∂u
∂x

+ 2μ
∂v

∂y
, (2.9)

σyy ≡ −p + 2μ
∂v

∂y
= −ρg(h − z) + 4μ

∂v

∂y
+ 2μ

∂u
∂x

(2.10)

and σxy ≡ μ

(
∂u
∂y

+ ∂v

∂x

)
. (2.11)

Integrating these stresses over the thickness of the ice sheet and using equation
(2.4), we obtain the components of the vertically integrated horizontal stress
tensor Nsheet as

N sheet
xx = −1

2
ρgH 2 + 2μ

[
∂qx

∂x
+ ∇ · q + gH 2

2ν

(
2
∂h
∂x

2

+ ∂h
∂y

2
)]

, (2.12)

N sheet
yy = −1

2
ρgH 2 + 2μ

[
∂qy

∂y
+ ∇ · q + gH 2

2ν

(
2
∂h
∂y

2

+ ∂h
∂x

2
)]

(2.13)

and N sheet
xy = μ

[
∂qx

∂y
+ ∂qy

∂x
+ gH 2

ν

∂h
∂x

∂h
∂y

]
. (2.14)

(b) The ice shelf

Although the ice sheet described above has variations in both the x- and y-
directions, for simplicity we adopt the same two-dimensional model of the ice
shelf that was proposed by Robison et al. (in press). In this model, the ice shelf is
floating in local hydrostatic equilibrium; the air above and water below impose no
tangential stresses. The horizontal velocity of the ice is taken to be independent
of depth. The depth-integrated longitudinal stress (viscous plus cryostatic) in the
shelf is balanced by the hydrostatic pressure from the ocean underneath, acting
on the sloped lower surface of the shelf. This depth-integrated stress is given by
combining eqns (2.7) and (2.10) of Robison et al. (in press) as

N shelf
xx = −1

2
ρ2g
ρw

H 2, (2.15)

and is equal to the depth-integrated hydrostatic pressure of the ocean at the
grounding line. We adapt the model by assuming that the calculated stresses are
aligned in the direction normal to the edge of the ice shelf, at the grounding line;
i.e. we take N shelf

nn ≈ N shelf
xx . The direction normal to the grounding line is defined

below in equation (2.16).
It is important to note here that the use of a two-dimensional model for the ice

shelf is strictly valid only when the grounding-line position is independent of y.
This will not be the case in some of the calculations to follow. The assumption of a
two-dimensional shelf is thus a deficiency of our model; addressing this deficiency
is a target for future work.
Proc. R. Soc. A
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(c) The grounding line

The equation governing the position of the grounding line will be determined
by balancing stresses between the ice shelf and the ice sheet. The ice-sheet normal
stress at the grounding line is N sheet

nn = n · Nsheet · n, where n is a unit vector normal
to the line xG(y, t) given by

n = i − ∂yxGj√
1 + (∂yxG)2

. (2.16)

Here, ∂y is a partial derivative in the y-direction, and i and j are unit vectors in
the x- and y-directions, respectively.

Expanding the ice-sheet normal stress at xG gives

N sheet
nn = −1

2
ρgH 2 + 2μ

(
∇ · q + n · J · n + gH 2

2ν
n · H · n

)
, (2.17)

where

J =
[
∂xqx ∂yqx
∂xqy ∂yqy

]
and H =

[
2(∂xh)2 + (∂yh)2 (∂xh)(∂yh)

(∂xh)(∂yh) 2(∂yh)2 + (∂xh)2

]
. (2.18)

Assuming a balance between the forces normal to the grounding line from the
ice sheet and the ice shelf (see above, §2b) gives

[
g ′H 2

4ν

]
shelf

=
[
∇ · q + n · J · n + gH 2

2ν
n · H · n

]
sheet

. (2.19)

In the limit ∂/∂y → 0, this equation reduces to the one-dimensional version,

[
g ′H 2

8ν

]
shelf

=
[

∂q
∂x

+ g
2ν

H 2
(

∂h
∂x

)2
]

sheet

, (2.20)

which appears in Robison et al. (in press) as eqn (2.30).
Combining the mass-balance equation (2.6) with the time derivative of the

flotation condition (2.8) gives an expression for the flux divergence,

∇ · q = ẋG

(
∂H
∂x

− ρ ′ ∂b
∂x

)
− ρ ′ ∂b

∂t
, (2.21)

where ẋG = ∂xG/∂t, and we have defined ρ ′ = ρw/ρ. Finally, this can be
substituted into equation (2.19) to give the grounding-line equation,

[
(ρ ′ − 1)

∂b
∂x

− ∂h
∂x

]
ẋG = n · J · n + gH 2

2ν
n ·

(
H − g ′

2g
I
)

· n − ρ ′ ∂b
∂t

(2.22)

at x = xG(y, t). I represents the identity matrix.
Proc. R. Soc. A
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(d) Non-dimensionalization and change of coordinates

We define the following scales

Sh =
(

6νq0

g

)1/3 (
g
g ′

)1/6

, (2.23)

Sx = 2
(

6νq0

g

)1/3 (
g
g ′

)2/3

(2.24)

and St = 2
q0

(
6νq0

g

)2/3 (
g
g ′

)5/6

, (2.25)

where q0 is a constant flux with dimensions of area per time. These scales are
used to non-dimensionalize variables

(ĥ, Ĥ , b̂) = (h, H , b)
Sh

, (x̂ , ŷ) = (x , y)
Sx

, t̂ = t
St

(2.26)

and q̂ = q/q0. In terms of dimensionless variables, the grounding-line equation
becomes[

(ρ ′ − 1)
∂ b̂
∂ x̂

− ∂ ĥ
∂ x̂

]
˙̂xG = n · Ĵ · n + 3Ĥ 2

G n ·
(

Ĥ
2

− I

)
· n − ρ ′ ∂ b̂

∂ t̂
, (2.27)

where ĤG(ŷ, t̂) = ρ ′ b̂(x̂G, ŷ, t̂) is the ice thickness at the grounding line. Below,
we drop hats from dimensionless variables.

To facilitate discretization of the problem on a regular grid, we map the domain
to a rectangular one using the transformation

(x , y, t) −→
(

ξ = x
xG

, y, t
)

, (2.28)

where ξ goes from zero at x = 0 to one at x = xG. With this change,

∂

∂x
→ ∂ξ

∂x
∂

∂ξ
= 1

xG

∂

∂ξ
, (2.29)

∂

∂y
→ ∂

∂y
+ ∂ξ

∂y
∂

∂ξ
= ∂

∂y
− ξ

xG
x ′

G
∂

∂ξ
(2.30)

and
∂

∂t
→ ∂

∂t
+ ∂ξ

∂t
∂

∂ξ
= ∂

∂t
− ξ

xG
ẋG

∂

∂ξ
, (2.31)

where x ′
G is the y-derivative of the x-position of the grounding line.

With dimensionless variables and transformed coordinates, the mass-balance
equation (2.6) becomes

∂H
∂t

− ξ

xG
ẋG

∂H
∂ξ

= ∇ξ · H 3∇ξh, (2.32)

where

∇ξ = 1
xG

∂

∂ξ
i +

(
∂

∂y
− ξ

xG
x ′

G
∂

∂ξ

)
j. (2.33)
Proc. R. Soc. A
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The boundary conditions (2.7) and (2.8) become

H 3

xG

∂h
∂ξ

= −1 (ξ = 0) (2.34)

and
h = (ρ ′ − 1) b(xG, y, t) (ξ = 1). (2.35)

The grounding-line equation (2.26) was transformed similarly in the numerical
code.

(e) Numerical solution

We discretize the governing equations with implicit time stepping and a
flux-conservative, finite-volume scheme. The mass-balance equation (2.32) is
discretized onto a Cartesian two-dimensional grid with ni points in the ξ -direction
and nj points in the y-direction; the grounding-line equation is discretized onto
a one-dimensional grid with nj points. This yields a system of (ni + 1) × nj
nonlinear algebraic equations in (ni + 1) × nj variables. Experience has shown
us that a solution strategy based on iterative, separate updates of the grounding-
line position and the ice-sheet height at each time step is numerically unstable. To
avoid this problem, we invert the entire, coupled system for {hij , xGj} at each time
step. This inversion is accomplished using a Newton–Krylov method (Generalised
Minimum Residual), preconditioned with an incomplete Lower–Upper matrix
factorization; both are provided by the Portable Extensible Toolkit for Scientific
Computation (PETSC; Balay et al. 2001, 2004).

The calculations are initialized with an asymptotic solution to the
two-dimensional governing equations at t � 1 (Robison et al. in press). For two-
dimensional calculations (e.g. figure 2a), we use 2000 grid cells, evenly distributed
in the ξ -direction. For three-dimensional calculations, unless noted in the figure
caption, we use a grid of 120 × 120 cells, evenly distributed in ξ , y; the grounding-
line position is discretized over the same number of cells as in the y-direction of
the ice sheet. The time-step size is adjusted at each step to give a maximum
proportional change in the grounding-line position of approximately 0.05 per
cent. We accept the solution at any time step when the L2 norm of the nonlinear
system residual is less than 10−8. The code has been verified in the simple case
of a two-dimensional ice sheet with constant bed slope by comparison with
an analytical solution from Robison et al. (in press). This work demonstrated
that the theory admits a single solution for the grounding-line position on any
contiguous section of prograde bed. As a qualitative check for the case of more
complex bed topography, we compare the results with the model of Schoof (2007a)
in the next section.

3. Results

(a) Stability in two-dimensional models

It is instructive to consider grounding-line instability in comparison to the results
of Schoof (2007a). To do so, we adopt the profile of basal topography proposed
in eqn (10) of that paper (shown in our figure 2a). This basal topography profile
mimics the form of many of the ice-sheet beds around western Antarctica: a long,
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shallow, prograde continental slope curves upward into a shallower outer rise prior
to dropping sharply into the deep ocean. The presence of retrograde slopes on
the upstream side of this outer rise creates a region where grounding lines are
expected to be unstable. Our results affirm this expectation.
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Figure 2a shows equilibrium profiles of ice-sheet surface height at various sea-
level heights. Each curve was calculated by stepping sea level in increments
(approx. 1 m) from the previous value and allowing the height and grounding-
line position to evolve according to the governing equations until a new steady
state was reached. The critical step over which unstable grounding-line recession
occurred was refined to 0.4 mm change in sea level.

Like Schoof (2007a), our model produces a hysteresis loop, shown in figure 2b,
for grounding-line position as a function of sea-level height. With the grounding
line on the outer prograde slope and a rising sea level, the grounding line recedes
in small steps, proportional to the change in sea level. When it reaches the crest
of the outer topographic rise, an incremental increase in sea level leads to a large
leap backwards in grounding-line position. The grounding line settles on the inner
prograde slope at a position where the basal depth is approximately equal to
that of the crest of the outer rise. Further small increases in sea level lead to
proportional recession of the grounding line up the inner slope. As sea level is
dropped in small steps, a reversal of this process occurs, except that the unstable
leap in grounding-line position occurs when the grounding line has reached the
trough between the inner slope and the outer rise. There, the grounding line leaps
forward to the prograde outer slope.

Figure 2c demonstrates that, in calculations with different values of the input
flux q0, the unstable grounding-line transitions occur at different values of sea
level. A larger flux of ice results in a thicker ice sheet and therefore requires a
higher sea level for both prograde and retrograde transitions of the grounding-line
position. More importantly, for a fixed sea level, a transition in grounding-
line position can result from a change in the ice flux. Although our model
does not explicitly include basal melting of ice at the grounding line as does
Walker et al. (2008), this melting may be similar in effect to a reduction in
flux q0. As figure 2c shows, such a reduction can lead to unstable grounding-line
retreat.

To investigate the dynamics of a retrograde transition event, we consider a
fixed flux q0 and begin the calculation with a steady-state ice-sheet profile that is
on the verge of a transition. A step increase in sea level is applied and the system
is allowed to evolve according to the governing equations. Figure 3 shows the
results of an example calculation with q0 = 0.02 (other parameters as in figure 2a).
In this case, the step in sea level triggered a retrograde transition that shifted
the grounding line xG by almost 500 km. Figure 3a shows the grounding-line
position and the ratio of the flux across the grounding line to that entering
the domain qG/q0, as a function of time, from the time of the change in sea
level. The first phase of the transition is slow owing to the shallow retrograde
slopes at the crest of the outer rise. As the grounding line reaches the steeper
retrograde slope of the outer rise, the transition enters the second phase. In this
phase, the basal depth at the grounding line increases, leading to an accelerating
change in ice flux across the grounding line and a thinning of the ice sheet,
which, in turn, causes further grounding-line recession. Figure 3b shows that qG/q0
reaches a maximum when the grounding line is at the deepest point between
the inner prograde slope and the outer rise. In phase 3 of the transition, the
grounding line climbs the inner slope. As the basal depth at the grounding
line decreases, so too does the flux ratio; the transition ceases as the flux ratio
approaches unity.
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Figure 3. Ratio of grounding-line flux qG to influx q0 over an episode of unstable grounding-line
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(a) The grounding-line position (dashed line) and the flux ratio (solid line) as a function of time t
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of this plot; with time it moves to the left. The parameters for this calculation are as stated in the
caption to figure 2. The step change in sea level was 5 m.

For the basal topographic profile adopted from Schoof (2007a), the rapid phases
(2 and 3) of the transition in grounding-line position occur over about 100 kyr,
a period that is nearly independent of the influx q0 and the step size in sea level,
for values considered. The maximum flux ratio during the transition decreases by
about 10 per cent with changing background flux q0, from 1.57 at q0 = 0.02 to 1.42
at q0 = 0.045. These results are specific to the basal profile proposed by Schoof
(2007a) and used here (as well as the chosen model and parameter values). In §4b,
we demonstrate that a different profile of basal topography yields a grounding-
line transition that is significantly more rapid. Beyond this dependence, the
dynamical time scale associated with unstable grounding-line recession will be
affected by the rheology of the ice and the basal conditions (Joughin et al. 2009).
We expect that our use of Newtonian rheology and a no-slip condition at the
base of the grounded ice yields an overestimate of the dynamical time scale
for recession.

(b) Steady states in three dimensions

The governing equations derived above permit the calculation of grounding-line
evolution in three dimensions. With the addition of the across-flow (y) direction,
we have the opportunity to specify variations in basal topography in both x
and y. The calculations presented in this section use a particularly simple basal
topography: a constant, prograde slope that is modulated by a sinusoidal function
in the y-direction,

b(x , y) = x[α − β cos(ky)]. (3.1)

Here, α is the mean slope in the x-direction, β is the amplitude of modulation in
slope and k is the wavenumber of that modulation in the y-direction; variables in
equation (3.1) are dimensional. The ratio B = β/α gives the proportional variation
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Figure 4. Results from an example calculation with variations in basal depth in the y-direction
as described by equation (3.1), with α = 3.3 × 10−3 and β = 2.7 × 10−3. (a) The top and bottom
surfaces of the ice sheet in its steady-state configuration. Sea level is at zero on the z-axis. The
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it approaches a steady state. Coloured curves are contours of basal depth. (c) The magnitude
of the vertically integrated, steady-state ice flux. The black curves are streamlines. Parameters
for this calculation are as follows: μ = 1 × 1013 Pa s, ρ = 900 kg m−3, ρw = 1000 kg m−3 and q0 =
0.04 m2 s−1.

of basal depth at fixed x relative to the mean depth at that distance. Our
assumption that the downslope component of gravity is negligible (see above)
requires that we consider only α � 1, which is an acceptable restriction because
this is uniformly true for natural ice sheets.

Figure 4 shows an example of a calculation with mean slope α = 3.3 × 10−3,
giving about 3 m of basal-depth change per kilometre in the x-direction, and
β/α = 0.8, giving up to 80 per cent deviation in basal depth at any value of x .
Setting k = 2π/ymax gives a single valley with a width equal to the width of the
domain. Although this bedform does not correspond with a specific natural ice
sheet, it is reminiscent of the Pine Island glacier, where the basal topography
confines much of the flow to a broad ice stream underlain by a basal valley (e.g.
Vaughan et al. 2006).
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Figure 5. Characteristics of the ice flux at the grounding line, x = xG, for the simulation shown
in figure 4 (β/α = 0.8). (a) The flux normal to the grounding line, and the flux in the x- and y-
directions (narrow lines, y-axis at left), as well as the depth of the ice-sheet base below sea level
(wide line, y-axis at right). (b) The flux divided by the cube of the grounding-line ice thickness
H 3

G and normalized by the maximum value of the q · n curve. Using equation (2.5), we can deduce
that the upstream dynamics of ice flow influence the gradient in surface height at the grounding
line, and thus influence the flux at the grounding line. The asymmetry in the q · n curve about
y = 25 km is a numerical artefact.

Figure 5a shows the characteristics of the ice flux at the grounding line for
the calculation depicted in figure 4. The grounding line is curved, but it does not
follow a depth contour (figure 4b). Hence, the basal depth at the grounding line
varies substantially, although less than it would if xG were a constant, independent
of y. Given this variation in basal depth, it is not surprising to find that the
ice flux across the grounding line is concentrated into the centre of the valley.
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Figure 5a shows that, for this value of β/α, there is almost zero flux at the edges
of the domain, along the ridges that flank the valley (recall that the domain is
periodic in the y-direction).

The components of the ice flux at the grounding line are plotted in figure 5b.
Because we expect a strong variation in the flux with HG (equation (2.5)), the
curves are scaled by the cube of the ice thickness there and then normalized.
The heavy curve representing q · n/H 3

G has little variation across the centre of
the grounding line, between y ≈ 5 and y ≈ 45 km, whereas outside of this region,
it decays sharply towards zero. This indicates that focusing of flow redistributes
ice towards the centre of the valley, and that the flow along the ridge crests is
anomalously sluggish relative to the thickness of ice there. Unsurprisingly, the
flow has a three-dimensional aspect that is not negligible.

To explore the sensitivity of three-dimensional models to basal topography, we
have performed a suite of calculations for different values of the mean bed slope
α and the sinusoidal perturbation to the bed slope β; these are summarized in
figure 6. Figure 6a shows how the mean grounding-line position (averaged over
the y-direction) depends on the mean bed slope. There is a linear relationship
between the inverse slope 1/α and the mean grounding-line position. This relation
was predicted for the two-dimensional case (β = 0) by Robison et al. (in press).
Our results demonstrate that the mean grounding-line position is somewhat
sensitive to the perturbation in bed slope; larger perturbations yield smaller
mean values of xG. Figure 6b shows the difference between the largest and the
smallest value of xG as a function of the relative perturbation in bed slope. As
expected, this difference grows with increasing β/α. It is largest for the most
steeply sloping bed, where a given amount of relative perturbation translates to
the largest amount of actual bed-depth variation at a fixed distance x . Finally,
figure 6c shows how the distribution of flux across the grounding line varies
with increasing bed-slope perturbation. As shown in figures 4c and 5a, ice flux
concentrates above the valley. With increasing β/α, the ratio of the largest flux
to the smallest flux increases, reflecting increased focusing of ice flux towards
the centreline in y where the bed is deepest. For the largest value of α, the
grounding line is too close to the constant-influx boundary for efficient focusing
to occur.

(c) Stability in three-dimensional models

In the previous sections, we examined the unstable behaviour of two-
dimensional ice sheets with oscillatory topography (i.e. an outer rise) and the
stable behaviour of three-dimensional ice sheets flowing over topography that
is uniformly prograde in the x-direction. Next, we consider a three-dimensional
scenario with basal topography that is a combination of these two: it is an internal
valley, bounded in the y-direction and in the x-direction, that is superposed on
a gentle, monotonic slope in x (colour contours in figure 7). In this case, there is
a competition between the monotonic prograde slope, which would yield stable
grounding-line recession, and the internal valley bounded by a retrograde slope,
which would yield unstable grounding-line recession. Such a configuration is a
highly idealized version of the basal topography beneath the Pine Island glacier
(Vaughan et al. 2006) and is hence of special relevance here. Its behaviour cannot
be deduced from the calculations described above.
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Figure 6. Variations in ice-sheet characteristics with α and β. (a) The mean distance to the
grounding line as a function of the inverse of the mean slope of the bed 1/α. Steeper slopes are at
the left of the diagram. Different lines represent different values of the relative perturbation in bed
slope β/α. The grey line is the analytical solution of Robison et al. (in press). (b) The difference
in distance between the furthest point on the grounding line and the nearest as a function of the
perturbation in bed slope. A larger slope perturbation typically results in a more strongly curved
grounding line. Different lines represent different values of α. (c) The ratio of maximum (max) to
minimum (min) flux in the x-direction across the grounding line as a function of the perturbation
in bed slope. The different lines are as in (b). In (b,c), α represents kilometre height per kilometre
x-distance. (a) Shaded thick line, β/α = 0; circle with continuous line, β/α = 0.1; circle with
dashed line, β/α = 0.2; circle with dashed dotted line, β/α = 0.4; circle with dotted line, β/α = 0.6;
diamond with continuous line, β/α = 0.8. (b,c) Circle with continuous line, α = 8.3 × 10−4; circle
with dashed line, α = 1.7 × 10−3; circle with dashed dotted line, α = 3.3 × 10−3; circle with dotted
line, α = 1.3 × 10−2; diamond with continuous line, α = 5.3 × 10−2.

We parametrize the above configuration with the dimensional function

b(x , y) = (αx − 729)[1 − G(y, σ )] − TS(x)G(y, σ ), (3.2)

where x , y and b are measured in metres, G(y, σ ) is a Gaussian centred at the
domain’s midpoint in y with unit amplitude and standard deviation σ , and TS is
the topographic profile proposed by Schoof (2007a) and used above in §3a.

Figure 7 shows results from two calculations of steady-state grounding-line
position for a range of sea-level values. With rising sea level, the grounding line
retreats towards the left in each panel of the figure. The basal topography in
these two calculations differs only in the width of the central valley, given by
Proc. R. Soc. A
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Figure 7. Grounding-line positions at steady state for two different basal topography maps that
differ only in their value of σ from equation (3.2). The background slope α is equal to 0.52 m km−1

in both cases. Each grounding line, shown in black, is a steady-state solution for a different value
of sea level. (a) A narrow central valley (σ = 10 km). Sea level rises in increments of 3.2 m. (b)
A wider central valley (σ = 20 km). Sea level rises in increments of 6.3 m. The grounding line
recedes unstably in this case, while it recedes stably in (a). An examination of the time-dependent
transition between grounding lines in (b) indicates that the difference in behaviour between (a,b) is
not due to the difference in sea-level increments. The grid size was 102 × 102 in these calculations.

the standard deviation σ of the Gaussian in equation (3.2). The difference in
behaviour of the grounding line is striking, however. In the case of the narrower
central valley in figure 7a, there are steady, stable grounding-line positions
throughout the range in x between the valley’s trough and outer rise. In contrast,
figure 7b shows that, for a wider valley, the grounding line undergoes unstable
recession through this same range in x . This is the same instability as described
in §3a, but now mediated by three-dimensional flow.

A set of calculations similar to (and including) those shown in figure 7 are
summarized in figure 8. Here, the grounding-line position has been averaged in
the y-direction and plotted on the x-axis. The independent variable, sea level, is
plotted on the y-axis. With increasing time, the curves trace a trajectory that
goes from the right-hand side of the figure to the left. Only the grey curves
(α = 0.52 m km−1) with narrow central valleys (σ = 5 and σ = 10) show stable
grounding-line recession. A narrower valley drains the grounded ice less efficiently
as sea level rises, reducing its destabilizing effect. Similarly, for larger α, grounded
ice flows more rapidly on the monotonic slope outside the central valley. This
diminishes the relative contribution of drainage through the valley and hence
diminishes its destabilizing effect on the grounding line.

4. Discussion

(a) Review of the new model

In the foregoing sections, we describe a model of ice-sheet flow and grounding-
line dynamics extended from that of Robison et al. (in press). Our model differs
from that of Schoof (2007a) in that we neglect basal sliding of the glacier,
assume a constant viscosity for the ice and account for vertical shear stresses. We
collapse the transition zone between grounded and ungrounded ice proposed by
Chugunov & Wilchinsky (1996) and Schoof (2007b) to a single interface on which
normal forces between the ice sheet and the ice shelf are assumed to be in balance.
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Figure 8. Summary of grounding-line position (averaged in the y-direction) as a function of sea
level for two sets of calculations with different values of α. Mean grounding-line position xG is on
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corresponding value of σ from equation (3.2). The grey curves labelled 10 and 20 are derived from
the calculations shown in figure 7. Black line, α = 0.17 m km−1; grey line, α = 0.52 m km−1.

The results presented above support the theory of unstable recession of ice
sheets grounded on retrograde beds (Weertman 1974). In this paper, our focus
is on the effect of changes in sea level, but in our model, changes in the
influx of ice can also trigger instability. Such flux changes may be qualitatively
interpreted as changes in the accumulation rate of ice on the glacier surface,
or as changes in the ablation rate of ice at or upstream from the grounding
line; both of these have been documented on the West Antarctic Ice Sheet
(Rignot et al. 2008).

Our predictions of unstable grounding-line retreat are similar to the findings
of Schoof (2007a). These results reinforce the conclusion that, for ice-sheet/shelf
models which enforce boundary conditions at the grounding line, the position of
this line should be modelled as a free boundary, and it should be determined
with a dynamic boundary condition (e.g. equation (2.22)) similar to that used in
Stefan-type solidification problems. In contrast, models that solve the full Stokes
equation without vertical integration, throughout a unified domain comprising of
the ice sheet and the shelf, do not require boundary conditions at the grounding
line; in that case, the conclusion above is not applicable. These latter type of
models could be used as an independent test of our results and conclusions. Below,
we discuss the implications of our model for understanding the current behaviour
of the Pine Island glacier.
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(b) Stability of Pine Island glacier

The theory and calculations described above are idealized in order to highlight
the fundamental behaviour of the grounding line; we assumed Newtonian
viscosity, one-dimensional ice-shelf flow and smoothed basal topography. With
these assumptions, the model is not well suited to a detailed study of the
dynamics of the Antarctic ice cap as a whole, or that of its component
glaciers. However, it is interesting to consider calculations that incorporate
a basal topography map inspired by observations of the Pine Island glacier.
These observations are available thanks to the Airborne Geophysical Survey
of the Amundsen Embayment (AGASEA) project (http://www.ig.utexas.edu/
research/projects/agasea/; Vaughan et al. 2006).

Figure 9a shows a map of the basal topography beneath and around the Pine
Island glacier. A transect along the approximate flow axis of the glacier is given
in figure 9b. A cubic polynomial was fit to the transect using least squares and
became the basis for two-dimensional calculations of the grounding-line motion
described below (details are given in the caption of figure 9). To constrain the
influx parameter q0, we take the estimate of Rignot (2008) for the average rate
of ice input into the Pine Island glacier over the years 1980–2004 of 61 ± 9
gigatonnes per year; assuming a grounding-line length of 50 km and an ice density
of 900 kg m−3, this gives an average flux of ice across the grounding line of q0 ≈ 0.04
m2 s−1. As above, we assume a Newtonian ice viscosity of μ = 1 × 1013 Pa s. To
generate an initial condition for instability calculations, we adjusted sea level until
the calculated steady-state grounding-line position was located just downstream
of the crest of the outer rise (approx. 360 km in figure 9b). A different initial
condition was determined for each relevant value of q0. The instability calculations
were then initialized using these steady-state solutions, but with sea level raised
by several centimetres from the value used to generate the initial condition.

Output from instability calculations is shown in figure 10. In that figure, we
compare the predicted flux ratio qG/q0 as a function of time with data for the
Pine Island glacier (the data is derived from table 1 of Rignot (2008)). The data
points form an array that bends sharply upward, mirroring the behaviour of the
curves. The curves, however, are a poor fit to the slope of the data array. This
may indicate that the Pine Island grounding line is presently undergoing unstable
recession, but at a rate that is much more rapid than our simple models predict.
This discrepancy may be due to our modelling assumptions (e.g. Newtonian
viscosity, no basal slip), or may be due to a difference in the forcing that is
causing recession. For the model curves, the forcing is a small step in sea level
that triggers a change from one stable state to another. Over the time range
of the data series from Rignot (2008), approximately 30 years, the global mean
change in sea level was approximately 6 cm (Solomon et al. 2007). It is possible
that the system crossed a threshold that triggered instability at some sea-level
point within this range. It is more likely, however, that the natural system is being
forced by a larger single perturbation such as the change in sea level since the last
glacial maximum, or by a set of perturbations including reduced ice accumulation,
increased ablation at the grounding line, more basal melt water, warmer ice and
sea-level change. The comparison between data and the model indicates that the
current rate of recession of the Pine Island grounding line is well above what
might be considered a minimum estimate from our models.
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(a) A map of basal topography with respect to the current sea level. The dashed line is the current
grounding line from data by the National Snow and Ice Data Center (Haran et al. 2005). The
black line is a transect through the map that intersects the grounding line at the point marked
with a red star. (b) The basal topography −b, ice thickness H and calculated surface height h along
the transect from A to A′ in (a). Where the ice is grounded, h = H − b; where the ice is floating
h = (ρw − ρ)/ρwH with ρ = 900 and ρw = 1000 kg m−3. The blue curve is a polynomial fit given by
y(x) = −586 − 15.1x + (7.89 × 10−2)x2 − (1.01 × 10−4)x3, where x is distance in kilometres and y
is the height above the current sea level in metres.

Given the complex, three-dimensional nature of the real Pine Island glacier,
with its convergent feeder streams and subglacial hydrology, it should be clear
that the above model is a very crude representation of reality. Our current
model implementation is incapable of capturing this complexity, although in §3c,
we presented the results for a basal topography inspired by that of the Pine
Island glacier. Figure 10 demonstrates that the Pine Island basal profile yields
an instability in two-dimensional models that is qualitatively identical to, but
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Figure 10. Flux ratio qG/q0 as a function of time. The lines represent the flux ratio calculated as
in figure 3, except with basal topography as given by the blue curve in figure 9b, for four different
values of q0. Data points are derived from the ratio of glacial outflow to the mean accumulation rate
of the Pine Island glacier, as reported in table 1 of Rignot (2008). Error bars represent uncertainty
propagation from the data in Rignot (2008). The curves and data are shifted in time such that
the grounding-line position xG ≈ 260 km (figure 9b) occurs at the present time t = 0. Open circles,
data from Rignot (2008); blacked dashed line, model, q0 = 0.02 m2 s−1; solid black line, model,
q0 = 0.04 m2 s−1; grey dashed line, model, q0 = 0.06 m2 s−1; grey solid line, model, q0 = 0.08 m2 s−1.

more rapid than, that associated with the basal topographic profile introduced by
Schoof (2007a). Incorporation of this profile into a three-dimensional model would
mean modification of the basal profile of the central valley, TS(x) in equation
(3.2). Based on the basal topography shown in figure 9a, this model would use
σ ≈ 20 km and α < 0.17 m km−1. Judging from the behaviour of curves in figure 8,
a model with these parameter values would produce a result similar to those in
figure 7b: unstable grounding-line recession. However, owing to the complexity of
the natural Pine Island glacier, these results would not provide additional insight
over the two-dimensional models. In fact, similar patterns between data and
models (figure 10) suggest that our simple two-dimensional models may capture
an essential aspect of the Pine Island glacier.

5. Conclusions

The theory developed in §2 can be used to describe the dynamics of ice sheets
and their grounding lines in three dimensions. We have applied this theory
to develop models of grounding-line stability and instability in two and three
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dimensions. In particular, inspired by the questions posed by early investigators
(e.g. Weertman 1974; Thomas & Bentley 1978) and by recent observations
(Blanchon et al. 2009), we have considered the instability of marine ice sheets
grounded on a bed with an outer rise separating the interior of the ice sheet’s
bed from the steep continental slope. As a benchmark of our model, we have
considered a basal profile adopted from Schoof (2007a) and calculated the
response of an idealized ice sheet to changes in sea level. Our results are
similar to those of Schoof (2007a), and again confirm the hypothesis of unstable
grounding-line recession over retrograde beds (Weertman 1974).

We have also examined the stable shape of grounding lines for three-
dimensional ice sheets with bed topography that is variable in two dimensions.
The results of this work show that ice-sheet dynamics play a significant role in
determining the position and shape of the grounding line, and the ice flux across
it; these features are not simply related to the map of basal elevation.

Three-dimensional models were then extended to a case in which an internal
valley with a retrograde outer rise is superposed on a prograde bed of constant
slope. These calculations showed that the entire ice sheet can be destabilized by
the presence of the internal valley, even if it is narrow with respect to the width
of the domain. These results bear on sections of an ice sheet affected by strong
variations in basal topography, such as the Pine Island glacier.

Calculations of grounding-line recession over a profile of basal topography
derived from AGASEA data (Vaughan et al. 2006) were considered in order to
compare the ratio of grounding-line ice flux with accumulation or influx of ice.
Data from Rignot (2008) allowed us to compare model results with the observed
behaviour of the Pine Island glacier. The data follow a trajectory with a rate
of change that is larger than model curves. If the Pine Island glacier is indeed
undergoing unstable grounding-line recession, the discrepancy between the model
and data may be due to two key factors that will affect the dynamical adjustment
time scale in our model: our use of Newtonian viscosity, and our application of zero
basal sliding. The latter, especially, is known to be important for the dynamics
at Pine Island (Joughin et al. 2009).

These results reinforce the conclusion that grounding-line dynamics are a
critical component of dynamical models of the West Antarctic Ice Sheet. While
most continental-scale models of ice sheets still use kinematic (and potentially
inconsistent; Vieli & Payne 2005) boundary conditions at the grounding line,
the current results indicate that the grounding line should be treated as a free
boundary, analogous to the solidification front in a Stefan problem.

The results also underscore the importance of continued research on ice-
sheet dynamics. This research should include the development of models that
incorporate the detailed bedform and rheology of the West Antarctic Ice Sheet,
such as the work of Pollard & Deconto (2009). It should also include the
development of idealized models, such as those presented here, that explore the
consequences of model formulation and assumptions, and probe the basic physics
of ice sheets. In particular, more work is needed to predict the time scale of
unstable grounding-line retreat.

Finally, our results suggest that, in contrast to earlier assessments (e.g.
Van der Veen 1985; Vaughan & Spouge 2002), the scenario of unstable
grounding-line recession on retrograde beds in West Antarctica is likely. Indeed,
in the case of the Pine Island glacier, it may be presently occurring.
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