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ABSTRACT. We consider an idealized problem of a sphere of ice growing symmetrically in a spherical
cavity within a porous rock in order to identify and quantify different physical mechanisms that can
result in fracturing the rock. We show that if the permeability of the rock is very small then high
pressures can develop in the cavity as the water inside it expands on freezing. However, given typical
permeabilities of most rocks, the pressure is relieved by flow out of the cavity through the rock pores.
When ice fills the cavity, there remains a microscopic film of water separating the ice from the rock,
owing to disjoining forces, and these forces can stress the rock and have the potential to fracture it. The
elastic pressure in the rock depresses the freezing temperature, which can limit the potential for
fracturing. This simple example reveals the important interactions between disjoining forces, elasticity
and fluid flow in determining the pressure exerted during freezing of water-saturated cavities in rocks.

INTRODUCTION
Fracturing occurs when water in saturated rocks freezes. It is
an important problem for both engineers and scientists, as it
can affect building and highway construction, water
supplies and gas and oil pipelines. Its importance in the
development of landscapes is also widely recognized
(Washburn, 1980). It is often assumed that the volumetric
expansion (�9%) of freezing water is the fundamental
mechanism underlying the fracturing of rock by ice.
However, if expansion played an important role in rock
fracturing, there would be a critical saturation level (�91%),
below which fracturing would not occur. This is not
supported by experimental data (Walder and Hallet, 1985).

It is reasonable to expect that frost weathering is governed
by mechanisms similar similar to those for frost heave in
soils. The latter has been studied extensively and it is known
that it is water migration from unfrozen regions towards the
solidification fronts that causes ice lenses to grow (Taber
1929, 1930). Here, like Walder and Hallet (1985), we
assume that ice-filled cavities in rocks play the role of ice
lenses in soils. Disjoining (intermolecular) forces between
the ice and the rock lower the pressure in unfrozen water
films adjacent to the ice surface, which draws water in from
the surrounding saturated medium. These same forces cause
the ice-filled cracks to widen. Thus, the same ideas that have
been used to study frost heave in soils can be applied to the
freezing of water-saturated rocks. The difference lies in the
way each medium deforms under the forces exerted by the
ice; soil particles can be rejected from the solidification front
if the freezing is slow enough, while the pressure exerted on
the rock deforms it elastically.

The rate of fracturing, or frost heave, depends on the
ability of water to flow to the freezing front, and hence on
the size of the pores. There are two factors that act in
opposing ways: the magnitude of the forces and the water
mobility. Finer soils generate bigger forces, but water
transport is limited owing to low permeability, and hence
the heave is slower. It is the balance of these processes that
maximizes heaving. Frost-susceptible soils are usually silts
which have grain sizes of �10mm , between sand (�100 mm)
and clay (below �1 mm). Similarly, limestones and sand-
stones (with permeabilities of around 10–10–10–13 cm2; see

Bear, 1988) are more prone to fracturing than more
permeable rocks. In the case of very impermeable rocks,
such as granite, we see below that the expansion of the
freezing water can play a role.

Walder and Hallet (1985) developed a model for the
fracture of the rock during freezing. They recognized the
importance of the flow of water towards the solidification
front as well as the existence of thin films separating the ice
and the rock. They discussed how these films exert an
‘attractive force’ on the pore-water (hence the flow towards
the ice front) and a disjoining pressure that pushes the ice
and the rock apart. This disjoining pressure was then
equated to the ice pressure, under the assumption that the
water pressure is uniform and negligible compared to the ice
pressure. They showed that the fastest growth rate occurs at
temperatures in the range �4 to �15�C. In colder systems,
the transport of water is very difficult, owing to ice forming a
frozen fringe in the pores surrounding a crack. For tempera-
tures closer to 0�C, there is not enough pore ice to raise the
pressure sufficiently to create crack growth in the pores
surrounding the fracture. The same fracture model was used
by Murton and others (2006) for their numerical simulations.
The idea of disjoining pressure is used in this paper,
incorporated into a rigorous mathematical model. This
model allows for variations of the water pressure, which
plays a very important role in the water flow towards the
solidification front. We do not consider a frozen fringe but
instead focus attention on the effect that the permeability of
the rock has on the water mobility and the pressure rise in
the cavity.

In this paper, we are interested in the effects that
expansion and disjoining forces have on the elastic pressure
which eventually causes fracturing. We find that the effect of
expansion is negligible in most cases. Therefore, when we
want to restrict attention to the effect of disjoining forces we
ignore expansion by setting the density of the ice, �s, equal
to the density of the water, �l. We concentrate on the
physical mechanisms associated with the disjoining pres-
sure, using a model based on van der Waals forces, and
showing that it has to balance the pressure difference
between the ice and the water. The results of this study give
us a useful insight into the mechanisms involved in the
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fracturing of rocks and how they contribute to the pressure
fields within rocks and ice-filled cavities within them.

PRE-MELTING DYNAMICS
Classical thermodynamics can be used to describe the
process of solidification, i.e. the change from liquid to solid
state. At a phase boundary in equilibrium, the specific Gibbs
free energy is the same in the two phases either side. We
consider the independent thermodynamic variables tem-
perature, T , and pressure, p. By considering small depart-
ures from a reference state ðTm, pmÞ to a state that has ðT , psÞ
in the solid state and ðT , plÞ in the liquid state (since the
temperature is continuous across the boundary) it can be
shown that

�sL�T
Tm

¼ ðps � plÞ þ ðpl � pmÞ 1� �s
�l

� �
, ð1Þ

where �T ¼ Tm � T (Wettlaufer and Worster, 2006). Equa-
tion (1) is known as the Gibbs–Duhem equation. The
densities of the solid and liquid states are �s and �l,
respectively, while L is the latent heat of fusion per unit mass
released during solidification.

If there is no pressure difference across the solid–liquid
interface, so ps ¼ pl, we obtain the Clausius–Clapeyron
relation

pl � pm ¼ 1
�s
� 1
�l

� ��1 L�T
Tm

: ð2Þ

The effect that a pressure applied on a freezing surface has
on the freezing temperature depends on the densities of the
liquid and the solid state. Water is a special case, since it is
denser than ice. Therefore, a rise in pressure on ice causes it
to melt. This well-known effect, pressure melting, is signifi-
cant in the scenarios we consider below.

A pressure difference across the interface, described by
the first term on the right-hand side of Equation (1), can arise
due to intermolecular forces acting between the solid and
another material. The existence of melt on the surface of a
solid below its freezing temperature as a result of
intermolecular interactions across the boundaries is called
pre-melting. It occurs either at the vapour interface (surface
melting), against a foreign substrate (interfacial melting) or at
the interface between two crystallites of the same substance
(grain-boundary melting) (Wettlaufer and Worster, 2006).

Interfacial melting can be induced by a variety of
intermolecular forces. In the case of van der Waals
interactions, for example, when a solid and a foreign
substrate are separated by a thin film of melt of thickness
h (Fig. 1), the intermolecular forces give rise to a pressure

between the solid and the substrate of the form

pT ¼ A
6�h3 , ð3Þ

where A is the effective Hamaker constant (Löwen and
others, 1989), and depends on the dielectric properties of all
three materials involved and can have either sign. A negative
sign leads to an attraction force and rupturing of any
intervening liquid film. We are interested in the cases where
A is positive and hence the pressure between the solid and
the substrate is disjoining. The balance of pressures across
the liquid film gives

pl ¼ ps � pT, ð4Þ
which describes the dependence of the liquid pressure on
the thickness of the pre-melted film (through pT) and on the
elastic forces between the ice and the rock. As we describe
below, the net force between ice and rock depends only on
the local temperature and is independent of the type of
intermolecular interactions, which only determines the film
thickness.

SPHERICAL MODEL
As a means to illustrate and understand the different physical
mechanisms involved when ice forms inside a cavity of a
porous elastic rock, we consider the geometrically simple
case of a spherical cavity, illustrated in Figure 2. This
unrealistic idealization captures the essential interactions
and the magnitudes of the pressures involved. We consider a
system supercooled to some uniform temperature T1 < Tm,
where Tm is the melting temperature of the ice measured at
pressure pm ¼ p1. We are interested in finding out how the
radius of the solid ice and the pressure in the cavity evolve
with time and also how the different parameters of the
problem affect the solidification process.

We will see that there are two main stages of growth. The
first is the expansion regime, shown in Figure 2a, where the
ice fills the cavity and water flows away from the
solidification front as it expands on freezing. The expansion
causes pressure to build up inside the cavity which can be
partially relieved by water flowing through the porous
medium. Therefore, the magnitude of this pressure depends
on the permeability of the rock. For a very permeable rock
the water will flow easily and the pressure build-up will be
negligible. The second regime is when the ice has almost

Fig. 1. Water fills the gap between ice and rock. The disjoining
pressure, pT, plus the water pressure, pl, balance the solid pressure,
ps ¼ pR.

Fig. 2. (a) Ice growing inside a water-saturated spherical cavity. The
expansion of the water as it freezes drives unfrozen water out of the
cavity through the porous medium. (b) The later stage, where
disjoining forces push the rock and the ice apart. Water flow is
reversed because the liquid pressure, pl ¼ ps � pT, is negative.
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filled the cavity and is characterized by strong intermolecu-
lar forces between the ice and the rock, acting through a thin
water film separating the two. The ice formation has now
slowed considerably and the main pressure contribution
comes from the disjoining forces. These forces cause the
cavity to expand, widening the gap between the ice and the
rock and hence causing water to flow towards the ice front,
as shown in Figure 2b. We show below that this is the
important regime, since the pressures appearing here are, for
most rocks, much larger than the pressure build-up through
expansion and, furthermore, they cannot be relieved.

Governing equations
We assume that solidification begins at the centre of the
supercooled cavity and that the solid ice grows in a spherical
shape with radius aðtÞ. As the water freezes, it expands,
causing flow away from the solidification front as shown in
Figure 2a. The water tries to escape the cavity through the
porous medium in which the flow is controlled by its
permeability. The resistance to flow through the porous
medium causes the pressure in the cavity to rise. The
increased pressure on the freezing interface depresses the
freezing temperature according to the Clausius–Clapeyron
equation (2), and hence the flow through the porous
medium controls the rate of solidification. We have ignored
the curvature of the solidifying front, which would create a
pressure difference across it and hence a further depression
of the melting temperature. It can be shown that the effect of
curvature, known as the Gibbs–Thompson effect, is neg-
ligible for cavities with radii greater than �10�5 cm. We
assume the flow in the cavity is slow and that the
temperature field is quasi-steady so

r2T ¼ 0: ð5Þ
We also assume, for simplicity, that the thermal properties of
ice, water and rock are identical. The temperature is
bounded at the origin (the centre of the cavity) and
T ! T1 as r !1 (i.e. in the rock far from the cavity).
The spherically symmetric solution to this is

Ts ¼ T IðtÞ and Tl ¼ T1 þ T IðtÞ � T1
r

aðtÞ, ð6Þ

where Ts and Tl are the temperature fields in the solid ice
and the water, respectively, T l is the temperature at the
solidifying interface given by the Clausius–Clapeyron equa-
tion (2) and aðtÞ is the radius of the ice. When water
solidifies, there is a release of latent heat of fusion, which
has to be transported away in order for the process to
continue. This balance of heat is described by the Stefan
condition

�sL _aðtÞ ¼ n �ql � n �qs, ð7Þ
where qs ¼ �ksrT and ql ¼ �klrT , evaluated at r ¼ aðtÞ,
and ks and kl are the thermal conductivities of ice and water,
respectively. The Stefan condition expresses the fact that the
rate of release of latent heat per unit area is equal to the net
heat flux away from the interface. Combining Equations (6)
and (7) we obtain

n �qlr¼a ¼
TI � T1

a
ð8Þ

governing the rate of solidification.
The interfacial temperature, T I, is determined by the

pressure in the cavity, which is controlled by the flow in the

surrounding porous medium. Such flow is described by
Darcy’s equation,

�u ¼ ��rpl, ð9Þ
where � is the permeability of the rock, � is the dynamic
viscosity and the incompressibility constraint is

r � u ¼ 0: ð10Þ
Note that we ignore any motion of the rock in the relative
flow equation. Without loss of generality, we consider the
pressures to be relative to the far-field pressure in the rock,
p1. Therefore, the pressure p ! 0 as r !1 and is
continuous across the cavity boundary r ¼ RðtÞ, where the
cavity has radius RðtÞ. We expect the flow in the cavity to be
slow enough that the pressure gradient there is negligible
compared to that in the porous medium and hence we
assume the cavity pressure to be constant. Mass conserva-
tion, expressed as

ðrate of change of mass in sphereÞ
¼ �ðmass flux out of sphereÞ, ð11Þ

shows the velocity to be

uðr , tÞ ¼

��

�l

a2 _a
r2

r < R,

��

�l

a2 _a
r2
� ð1� �ÞR

2 _R
r2

r > R,

8>>>>><
>>>>>:

ð12Þ

where �� ¼ �l � �s and � is the porosity of the rock. In the
pores, the water pressure is related to the flow velocity by
Darcy’s equation (9). The water pressure inside the cavity
can be found from the value at the cavity boundary.
Therefore

plðr , tÞ ¼

�

�

��

�l

a2 _a
R
� ð1� �ÞR _R

� �
r < R

�

�

��

�l

a2 _a
r
� ð1� �ÞR

2 _R
r

� �
r > R:

8>>>>><
>>>>>:

ð13Þ

The second term in each expression, involving _R, represents
the opening of the cavity under pressure. Water flows freely
through the region previously occupied by the porous
medium, hence the water pressure is relaxed.

Expansion
The first stage of the process is the expansion stage, in which
the solid ice is still small compared to the cavity so there is
no interaction between ice and rock. For simplicity, we
initially take RðtÞ ¼ R0, i.e. constant. The effect of an elastic
cavity is considered in the next subsection, where we see
that this is an accurate approximation for the early stages of
expansion, at least for most types of rocks. The second term
in the expression for pressure, Equation (13), vanishes, and
hence the pressure in the porous medium is simply given by

pl ¼ ���

��l

a2 _a
r

for r > R, ð14Þ

and the uniform pressure in the cavity is

pl ¼ ���

��l

a2 _a
R

for r < R: ð15Þ

Equation (15) can be combined with the Clausius–Clapeyron
relation (2) to give the interface temperature in terms of the
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ice radius as

T l ¼ Tm 1� �ð��Þ2
�s�

2
l �L

a2 _a
R

" #
: ð16Þ

Putting this together with the heat-balance equation (8), we
find a differential equation for the ice radius, aðtÞ,

a2 _aþ KRa _a ¼ kl�T
�sL

KR, ð17Þ

where �T ¼ Tm � T l and

K ¼ �2s �
2
l L

2�

kl�ð��Þ2Tm
ð18Þ

is a dimensionless parameter proportional to the permea-
bility. The first term on the left-hand side of Equation (17)
represents the pressure-melting effect, while the second term
comes from the heat balance and represents the flow of
latent heat away from the solidification front. They both
affect the rate of solidification: high pressure on the ice
causes depression of the freezing temperature and hence
causes the process to slow down, while latent heat transport
is necessary for the solidification to continue.

The two terms on the left-hand side of Equation (17) are
comparable when a � KR, where the parameter
K � 1015 �� cm�2. Typical permeability values vary from
10�3 cm2 for very permeable media, such as highly fractured
rocks, to 10�12–10�15 cm2 for rocks like unfractured
limestone or granite (Bear, 1988). If K � 1, the two terms
are never comparable, since the radius of the ice, a, is
smaller than the radius of the cavity, R, and hence the
porous medium does not affect the ice growth significantly.
The ice then grows proportional to t1=2. For highly im-
permeable rocks like limestone or granite, both terms in
Equation (17) contribute, especially at the later stages of
solidification. A low permeability results in the flow through
the porous medium being highly restricted. Hence, the
pressure inside the cavity rises enough to have a consider-
able effect on the melting temperature and therefore on the
ice growth. If we allow for the cavity to behave elastically,
high cavity pressures will deform it and hence our assump-
tion of constant cavity radius fails. In return, such a
deformation will relax the water pressure in the cavity. The
balance of these two processes and the magnitude of their
effects on the water pressure will determine the growth rate,
as we see in the next subsection.

Is the pressure high enough to fracture a rock? The
maximum pressure in the cavity occurs when aðtÞ ¼ R, i.e.

when the ice has filled the cavity, and is equal to

pmax ¼ �s�lL�T
��Tm

R
1þ K

� 120 atm
1þ 1:4��� 1015 cm�2 , ð19Þ

for Tm ¼ 0�C, �T ¼ 1�C and pm ¼ 1 atm (see Table 1).
Hence, the pressure in the cavity varies from 10–3 atm,
which is negligible, for a rock like sandstone with
permeabilities �10�10 cm2, to 102 atm, which is more than
sufficient to fracture a rock, for permeabilities of 10�15 cm2

(e.g. granite). These have been calculated for a cavity of
radius R = 1 cm. It is clear from Equation (19) that inside
smaller cavities these would be smaller pressures. Therefore,
to have an important pressure build-up during the expansion
regime, we need a cavity of radius of at least 1 cm in a rock
of very low permeability (� ¼ 10�14–10�15 cm2) like gran-
ite.

Pre-melting
When the ice has almost filled the cavity, the distance from
the grains is small enough for thermomolecular repulsion
forces between the two solids to be important. These forces
give rise to a disjoining pressure, pT, which has to balance
the pressure difference between the water and both of the
surrounding solids. Close to the cavity boundary the ice can
protrude inside the pores, making the ice front highly
curved, as shown in Figure 3. Accounting for curvature, we
find

ps � pl ¼ pT þ ��, ð20Þ
where � is the curvature of the ice boundary and � is the
surface tension. The disjoining pressure depends on the
thickness, h, of the water film between the ice and the rock.
For example, for non-retarded van der Waals forces it is
given by pT ¼ A=6�h3, where A is the Hamaker constant.

The net thermomolecular force on the rock, arising from
intermolecular interactions, can be computed as

FT ¼ �
Z
�

pT d�� ¼ �
Z
�

�sL
Tm � T I

Tm
� ��

� �
d��, ð21Þ

where the surface � is, as shown in Figure 3, the surface of
the ice.

We can close � by adding the dashed surface of area C
which we assume is at r ¼ R, following Rempel and others
(2004). The integral of the curvature, �, over a closed surface
vanishes and we can assume that the surface C is approxi-
mately flat locally. Then, implementing the divergence

Fig. 3. A cross-section near the cavity/porous-medium boundary.
The ice expands into the free space of the porous medium, while it
is separated from the grains by a thin film of pre-melted water. The
macroscopic, smooth surface, C , can replace the corrugated ice/
water interface.

Table 1. Some typical values for the parameters used in the analysis

Parameter Value

Latent heat, L 334� 103 m2 s�2

Density of ice, �s 0:92� 103 kgm�3

Density of water, �l 103 kgm�3

Thermal conductivity, kl 2 kgm s�3 K�1

Dynamic viscosity, � 1:79� 10�3 kgm�1 s�1

Melting temperature, Tm 273K
Elastic modulus, E 5� 1010 kgm�1 s�2
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theorem, we obtain

FT ¼ � �sL
Tm

Z
V
rðTm � T lÞ dV þ �sL

Tm

Z
C
ðTm � T lÞ dC: ð22Þ

Since the temperature in the ice is uniform, the first term on
the right-hand side vanishes, while the second term simply
gives

FT ¼ �sLC
Tm � T l

Tm
n, ð23Þ

where n is the normal to the surface C . It is important to note
here that the net disjoining force is independent of the
curvature and independent of the type and strength of
interactions that give rise to the disjoining pressure, pT.
Hence our choice of van der Waals interactions as a model
for the intermolecular forces does not affect the results.
Moreover, it only depends on the approximated boundary,
C , and not on the microscopically complicated surface �.
Hence, we are justified in treating the ice/water/rock
boundary by averaging over the pore scale.

We assume the porous medium is elastic and use Hooke’s
law to represent the deformation of it under pressure

psðR, tÞ ¼ E
R0

R
� 1

� �
, ð24Þ

where R0 is the initial radius of the cavity and E is the
modulus of elasticity of the rock. The cavity starts expanding
under the pressure that the growing ice exerts on its
boundary, which, in turn, relaxes the pressure. The expan-
sion of the cavity causes more water to be drawn in towards
the solidification front. The water freezes and the process
continues until, ultimately, the system reaches an equi-
librium where the disjoining pressure is balanced by the
restoring force exerted by the deformed rock. The equation
for the evolution of the cavity radius comes from the Gibbs–
Duhem relation combined with the heat balance equation
(8) to give

a2 _aþ KRa _a ¼ kl�T
�sL

KR þ �l
��
ð1� �ÞR2 _R

� �l
2

ð��Þ2
�

�

AR

6�ðR � aÞ3 ,
ð25Þ

which is similar to Equation (17) with two extra terms,
representing the cavity expansion and the disjoining pres-
sure. The latter balances the pressure difference across the

interface, ps � pl, to give a second equation for the system,

A

6�ðR � aÞ3 ¼ E
R
R0
� 1

� �
� ���

�l�R
a2 _aþ �ð1� �Þ

�
R _R: ð26Þ

Results
The system of differential equations (25) and (26) was solved
using the MatlabTM solver ode15s. Figures 4–6 show results
for the evolution of the radii and pressures with time. In all of
these results, the effect of disjoining forces has been
exaggerated by using a larger value for the Hamaker
constant, A. The actual value of the constant is 10�18J while
we have used values of O(1) in order to make the gap
between the ice and the rock visible. The qualitative results
are the same, and the quantitative consequences are
discussed in more detail below. We start by showing the
results for a very impermeable rock, like granite (Fig. 4), with
permeability � � 10�15 cm2. There are three distinct stages.
The first corresponds to the expansion regime discussed
above. In the analysis there, we assumed that the cavity does
not deform and hence we found ice growth with rate
proportional to t1=2 (Fig. 4; dot–dashed curve). We notice
that the cavity expands most in this regime and consequently
the two predictions diverge at larger ice radii. This is
explained by considering that, for such impermeable rocks,
the flow of water away from the solidification front is
restrained, which results in a high water pressure inside the
cavity, and hence deformation of the cavity. The high
pressure on the solidification front subsequently results in
depression of the freezing temperature and hence slower
growth, as shown in Figure 4. The second regime represents
a quick transition from the expansion stage to the pre-
melting stage, with both the solid and the liquid pressures
dropping rapidly. This happens when the ice is close enough
to the rock for intermolecular disjoining pressures to
become important, as demonstrated by the dot–dashed
curve in Figure 4b. In the third stage, the system tends to an
equilibrium where the liquid pressure vanishes (i.e. there is
no water flow) and hence the solid pressure is simply the
disjoining pressure. The radii of the ice and the cavity tend to
the equilibrium values

Req ¼ R0 þ �sL�TR0

ETm
ð27Þ

Fig. 4. Results for the evolution of (a) radii and (b) pressure values in granite. (a) The radius of the cavity is represented by the dashed curve,
the radius of the ice by the solid curve and the dot–dashed curve shows the approximate result from the expansion regime. (b) The solid
curve is the solid pressure, the dashed curve is the water pressure and the dot–dashed curve the disjoining pressure.
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and

aeq ¼ Req � ATm
6��sL�T

� �1=3

: ð28Þ

We next present the results for a rock of intermediate
permeability �10�12 cm2 (e.g. a sandstone) (Fig. 5). We
notice that in the first stage the cavity expansion is
negligible, while the evolution of the solid ice agrees very
well with the t1=2 behaviour (dot–dashed curve) predicted
above. There is no pressure difference across the solidifica-
tion front since we ignore curvature effects and the
disjoining forces are negligible (dot–dashed curve). Note
that the maximum pressure during the expansion regime is
much smaller than the maximum disjoining pressure. The
second region is characterized by a very fast increase in the
disjoining forces. The ice is now close enough to the cavity
for intermolecular forces to become important, and the
solidification process has slowed down considerably since
the ice is limited by the cavity boundary. Disjoining forces
cause the cavity to expand and water is sucked into the
gap, as can be seen from the drop in the water pressure,
which falls below the reference pressure p1 ¼ 1 atm. The
third and last region is the recovery phase, where both the
cavity and the ice keep growing until they reach (asymp-
totically) the stable state where the restoring force of the

elastic rock balances the disjoining pressure and there is no
water flow.

The predicted water pressures could become negative,
since the mathematical model does not allow the water to
vaporize. An example of this can be seen in Figure 6, where
we show the results for a limestone of typical permeability
�10�13 cm2. Qualitatively, the results are similar to the
results for sandstone (Fig. 5). The main difference is that the
minimum water pressure is now negative. Of course, the
pressures cannot actually have negative values. In fact, their
values cannot be lower than the water vapour pressure.
What is happening is that the lower permeability (compared
to the sandstone case) does not allow water to flow towards
the solidification front as quickly to fill the opening gap. As
the pressure in, and close to, the pre-melted film becomes
more and more negative, vapour bubbles can begin to form.
The bubbles are, of course, unlikely to form inside the pre-
melted film, which is only a few nanometres thick, smaller
than the critical nucleation radius for a vapour bubble.
However, bubbles can form in the rock pores close to the
pre-melted film.

Above we mentioned that, although we have used an
unrealistically large value of the Hamaker constant in our
calculations, the main features of the results remain the
same. More specifically, the difference is that a lower value

Fig. 6. Results for the evolution of (a) radii and (b) pressure values in a less permeable porous rock, such as limestone. (a) The radius of the
cavity is represented by the dashed curve, the radius of the ice by the solid curve, and the dot–dashed curve shows the approximate result
from the expansion regime. (b) The solid curve is the solid pressure, the dashed curve is the water pressure and the dot–dashed curve the
disjoining pressure. The calculations give an unphysical negative water pressure.

Fig. 5. Results for the evolution of (a) radii and (b) pressure values for a rock of intermediate permeability, such as sandstone. (a) The radius of
the cavity is represented by the dashed curve, the radius of the ice by the solid curve, and the dot–dashed curve shows the approximate
result from the expansion regime. (b) The solid curve is the solid pressure, the dashed curve is the water pressure and the dot–dashed curve
the disjoining pressure.
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of the Hamaker constant reduces the time for which water
pressures are below the reference pressure but also reduces
the minimum value of the water pressure. Hence, the
negative peak seen in Figure 6b is deeper and sharper for
lower values of A, and the mathematics predicts negative
pressures for a larger spectrum of permeabilities. Similarly,
our choice of 1 cm for the initial radius of the cavity is not
essential for our conclusions to hold. A smaller cavity radius
would make the expansion effect even less important and
slightly decrease the negative pressure peak and increase the
relaxation time for the liquid pressure. Importantly, the
qualitative features remain the same.

CONCLUSION
We have studied the process of water freezing inside a
spherical cavity and how the growth of ice can create high
pressures inside the cavity. We have identified the main
features of the process: the expansion of the water when it
freezes and the disjoining forces across a thin pre-melted
film that develop when the ice has grown to be close enough
to the rock. We have compared the effect that these two
processes have on the pressure inside the cavity and seen
how they depend on the permeability of the rock. It is only
in the case of very impermeable rocks, like granite, that
expansion can raise the pressure enough to cause a fracture.
For more permeable rocks, the water can escape the cavity
easily during solidification, without experiencing any
influence of the porous medium. Therefore, the main rise
in pressure comes from the pre-melting stage when the ice is
very close to the rock. In this case, the flow reverses and the
water flows towards the solidification front. This is a result of
disjoining forces that push the ice and the rock apart and
cause the water pressure to drop. These disjoining forces can
easily reach several atmospheres, even for very small

undercoolings, indicating that they could be responsible
for the fracturing of rocks.

Although the work presented here is for a simple
geometry, it provides insight into the processes that take
place during the freezing of water-saturated rocks. It
demonstrates the relative importance of expansion and
pre-melting and shows that, in most cases, high pressures
occur at a later stage where the ice has extended to the
cavity boundary, thus justifying focusing future attention on
an ice-filled cavity. The idealized model developed here
provides us with some conclusions about the importance of
the different interactions taking place inside the cavity.
These conclusions can work as a basis for a mathematical
analysis of more complicated and realistic geometries.
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