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During the solidification of two-component solutions a two-phase mushy layer often forms
consisting of solid dendritic crystals and solution in thermal equilibrium. Here, we extend
previous weakly nonlinear analyses of convection in mushy layers to the derivation and study of
a pattern equation by including a continuous spectrum of horizontal wave vectors in the
development. The resulting equation is of the Swift–Hohenberg form with an additional
quadratic term that destroys the up-down symmetry of the pattern as in other studies of non-
Boussinesq convective pattern formation. In this case, the loss of symmetry is rooted in a non-
Boussinesq dependence of the permeability on the solid-fraction of the mushy layer. We also
study the motion of localized chimney structures that results from their interactions in a
simplified one-dimensional approximation of the full pattern equation.

Keywords: Convection; Pattern formation; Solidification; Mushy layers; Swift–Hohenberg
equation

1. Introduction

The solidification of a multi-component solution often leads to the formation of a layer

of dendritic crystals in thermal equilibrium with solution in the interstices. These mushy

layers derive from morphological instability at solidification fronts; they mediate the

transition between the solid material behind an advancing solidification front and the

solution ahead of it. A mushy layer is a reactive porous medium in which the solid

fraction and hence the permeability evolves and so influences the dynamics of the flow

within it. Mushy layers are formed in sea ice and lava lakes, at the Earth’s inner-core

boundary and in other natural contexts. In industry they are formed in large alloy

castings, for example. For general discussions of mushy layers and related macroscopic
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issues in solidification theory, see Huppert (1990), Worster (1997, 2000, 2006) and
Davis (2001). Weakly nonlinear analysis of the convection that typically occurs in
mushy layers was carried out by Amberg and Homsy (1993) and by Anderson and
Worster (1995) for geometrically simple configurations. In these treatments, discrete
planforms were prescribed consisting of three superimposed rolls of different amplitude
at 120� to one another. In Anderson and Worster (1995), the stability of rolls, hexagons
(three rolls of equal amplitude) and mixed modes (three non-zero amplitudes, two
equal) was calculated and it was concluded that there exists a transcritical bifurcation to
hexagons from rolls. Anderson and Worster (1995) also detected a Hopf bifurcation
from stable hexagons to an oscillatory mode, which they examined in more detail in a
later paper (Anderson and Worster 1996). The oscillatory instability identified by
Anderson and Worster (1996) is caused by physical interactions internal to the mush
itself, in contrast to an earlier oscillatory instability studied by Chen et al. (1994) which
owed its origin to double-diffusive convection in the solution above the mush. The
theory of these oscillatory modes has been developed elsewhere (Riahi 2002, 2004,
Guba and Worster 2006) and we shall discuss them no further here.

In this article, we extend the weakly nonlinear analyses of Amberg and Homsy (1993)
and Anderson and Worster (1995) to the case of a continuous spectrum of horizontal
wave vectors as is normally done in pattern formation analyses as developed in the
context of Rayleigh-Bénard convection, for example (Manneville 1990, Cross and
Hohenberg 1993). We are thereby able to retain the temporal and the horizontal spatial
dependences of the planform function that would otherwise be lost by imposing a priori
a fixed pattern of discrete rolls. Information about horizontal gradients is thus retained
in the amplitude equation, and it becomes possible to study the transient spatiotem-
poral behaviour of the convective instability and its eventual selection of a pattern. In
particular, it is shown that the horizontal planform obeys a generic pattern equation of
the Swift–Hohenberg type. This result could have been anticipated based upon the
rotational and reflection symmetries of the system (Cross and Hohenberg 1993); our
main contribution here is a careful derivation of the relevant coefficients appearing in
the pattern equations.

The second half of this article is devoted to an illustration of the utility of the spatially
dependent pattern equation in solidification problems. This allows us to make a
beginning on the study of the dynamics of chimneys — nearly vertical channels of zero
solid fraction through which solute-poor liquid flows from the mush into the adjacent
liquid layer (Worster 1997). These striking features of mushy layers appear as brine
channels in sea ice and are believed to be responsible for ‘‘freckles’’ in geological
formations and in alloy castings in industry, where they are mostly undesirable. From a
highly simplified approximation of the full pattern equation, we can derive a dynamical
system governing the motion and interactions of ‘‘nascent chimneys’’ (localized minima
of the solid fraction) in limited circumstances. In particular, we can use this equation to
examine the evolution of a (one-dimensional) lattice of widely separated chimneys and
its response to defects such as the addition or removal of a chimney.

This article proceeds as follows. In section 2 we briefly review the formulation of
Amberg and Homsy (1993) and Anderson and Worster (1995). In section 3 we extend
the weakly nonlinear analysis of these authors to the case with a continuous spectrum of
planform wave vectors to derive the relevant pattern equation, which we show to be of
the Swift–Hohenberg type. We then calculate explicit expressions for the coefficients
appearing in the pattern equation in terms of the physical parameters of the system for
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the near-marginal case of a narrow band of wavenumbers centred on the critical
wavenumber. In section 4 we discuss the transient dynamics of widely separated
interacting chimneys. Finally, we discuss our results in section 5.

2. The Model

2.1. Phenomenology

In this section we present a brief review of some of the rich phenomenology observed in
solidifying binary solutions. We are interested in the upward propagation of a freezing
front from below into an overlying solution UV composed of two components U and V.
As indicated in the phase diagram (figure 1), a sample of the solution will be entirely
liquid if the local temperature T is greater than the liquidus temperature TL(C ), where
TL depends on the local concentration C of U in the sample. When the sample’s
temperature is below the eutectic temperature TE, it will be solid and when T4TE, at
least some of the mixture will be liquid.

A transition layer, lying between the solid layer below and the purely liquid layer
above, is composed of crystals of V (say) in thermodynamic equilibrium with solution
UV in the interstices. As V freezes out of the solution and forms crystals, the component
U is rejected, leading to an interstitial solution UV with higher relative concentration of
U than in the original solution. Thus we see how the solid fraction and porosity of the
transition layer and the concentration of rejected component U are dynamically
coupled.

100% U 100% V
Composition (C)

T
em

pe
ra

tu
re

 (
T

)

Solid U +
Liquid UV

Solid UV

Liquid UV

TL (C )

Solid V + 
Liquid UV

(TE, CE)

Figure 1. Simplified phase diagram for a binary solution, UV, with components U and V that exists at
temperature T and composition C. Below the eutectic line, T¼TE, the solution is in the solid phase; above
this line, at least some liquid exists. The liquidus line T¼TL(C ) marks the temperature at which solid U (or
V ) exists in thermal equilibrium with liquid UV. The lowest such temperature and the associated composition
are called the eutectic temperature and composition TE and CE.
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In terms of these common observed features of the solidification of binary solutions,
one may attempt to understand the propagation of a freezing front and the resulting
dynamical processes. In the model of Amberg and Homsy (1993), which we adopt, the
mush is modelled as a single porous layer sandwiched between liquid above and solid
below (figure 2). The properties of the homogeneous material sample just described are
assumed to hold locally throughout the system. To follow the propagation of the single
porous layer at the front, we adopt Amberg and Homsy’s device of imposing comoving
boundaries at the upper and lower edges of the mushy layer so as to allow us to treat the
freezing process as steady in the mean, apart from the variations caused by fluid
instabilities. Thus, we assume that both interfaces advance at a speed V, the mean
propagation speed of the freezing front. More physically plausible boundary conditions
have been considered by Chung and Chen (2000) and by Roper et al. (2008), with only
quantitative improvement upon the work of Amberg and Homsy (1993) and Anderson
and Worster (1995). Nonetheless, the formulation of Amberg and Homsy (1993),
simplifies the analysis while preserving the essential physical interactions of interest and
we adopt it here.

2.2. Formulation

Within the mushy layer, interstitial liquid is in thermodynamic equilibrium with fine
dendritic crystals, as described in the foregoing section. Hence, within the mush, the
temperature T and the concentration C are coupled via the liquidus relation

T ¼ TL Cð Þ: ð1Þ

We make the simplifying but qualitatively reasonable assumption that the liquidus
relation (1) is approximately linear so that

TL Cð Þ ¼ TL C0ð Þ þ � C� C0ð Þ, ð2Þ

Solid

Mush

Liquid V

V

z = 0

z = dC = C0
T = TL(C0)

C = CE

T = TE

Figure 2. The model system. A solidification front advances into a binary solution at a rate V. A mushy
layer of thickness d is sandwiched between a liquid and a solid region. The solid–liquid interface is at the
eutectic temperature TE; the liquid region starts at the far-field composition C0 and associated liquidus
temperature TL(C0).
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where � is the slope of the liquidus (�40 in this case). This tight coupling of the
temperature and composition fields eliminates double-diffusive effects and allows us to

express both T and C in terms of the single non-dimensional field

� ¼
T� TL C0ð Þ

TL C0ð Þ � TE
¼

C� C0

C0 � CE
: ð3Þ

The quantity � is negative within the mushy layer, rising from a value of �1 on the
lower boundary to 0 at the mush–liquid interface.

The non-dimensional temperature field �, solid fraction �, fluid velocity u and

pressure p within the mushy layer are then governed by equations describing heat

balance, solute balance, Darcy’s law for flow in a porous medium and mass continuity.

The non-dimensional ideal mushy layer equations in a reference frame moving with the

solidification front are given by Worster (1992, 1997) as

@t � @zð Þ � � S�ð Þ þ u � ;� ¼ r2�, ð4aÞ

@t � @zð Þ 1� �ð Þ� þ C�ð Þ þ u � ;� ¼ 0, ð4bÞ

K �ð Þu ¼ �;p� Ra �ẑ, ð4cÞ

; � u ¼ 0, ð4dÞ

where lengths, times and velocities in (4a–d) have been scaled with �/V, �/V2 and V,
respectively, and � is the thermal diffusivity. Note that, as is typical in problems of this

kind, diffusion of solute is neglected in (4b). Lastly, we define

K �ð Þ ¼
� 0ð Þ

� �ð Þ
, ð5Þ

where �(�) is the permeability as a function of solid fraction, assumed to be finite
when �¼ 0.

The dimensionless parameters appearing in (4a–c) are the Stefan number, which gives

the ratio of the latent heat to the heat available in the system,

S ¼
L

cl TL C0ð Þ � TEð Þ
, ð6Þ

with L and cl the latent and specific heats, respectively; the concentration ratio

C ¼
CS � C0

C0 � CE
, ð7Þ

which relates the difference in composition between the liquid and solid phases and the
change in C across the mushy layer; and the mush Rayleigh number

Ra ¼
� C0 � CEð Þ g� 0ð Þ

�V
, ð8Þ

where � is the linear expansion coefficient, g the acceleration due to gravity and � the
kinematic viscosity (note that the Rayleigh number is usually expressed in terms of the

temperature difference across the domain rather than the concentration difference as

here; however, as the temperature and concentration fields in the mushy layer are

coupled via the liquidus relation, this amounts to the same thing).
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A fourth dimensionless parameter,

� ¼
Vd

�
, ð9Þ

can be identified as the dimensionless mush thickness and it appears in the boundary
conditions

� ¼ �1, w ¼ 0 on z ¼ 0, ð10aÞ

� ¼ 0, w ¼ 0, � ¼ 0 on z ¼ �: ð10bÞ

These conditions correspond to impermeable rigid plates co-moving with the upper and
lower boundary of the mushy layer. The lower boundary, between the solid and the

mush, is maintained at the eutectic temperature TE, while the upper boundary between

the liquid and the mush (that is, at zero solid fraction �), is maintained at the far-field

liquidus temperature TL(C0).
As in previous studies, we isolate the parameter regime for which there is an

interesting interplay between dissolution, solidification and convection by adopting the

following additional conditions. As in Amberg and Homsy (1993), we consider

�� 1, ð11Þ

which can be achieved physically by having a large far-field temperature. We make a
near-eutectic approximation (Fowler 1985),

C ¼ �C=� ¼ Oð��1Þ: ð12Þ

We also assume a large Stefan number (Anderson and Worster 1995),

S ¼ �S=� ¼ Oð��1Þ: ð13Þ

The rescaled concentration ratio �C and Stefan number �S are O(1) quantities.
A key implication of the near-eutectic approximation (C¼O(��1)) is that the solid

fraction is small, hence the permeability is uniform to lowest order. Finally, following

Amberg and Homsy (1993) we expand the permeability in the small solid fraction

K �ð Þ ¼ 1þK1�þK2�
2 þ � � � : ð14Þ

On physical grounds, one expects the permeability �(�) to be a decreasing function of
solid fraction �, and so K1 will be non-negative.

3. Amplitude expansion

In this section, we expand the governing equations in the spirit of Amberg and Homsy

(1993) and Anderson and Worster (1995). But where these studies and those of

subsequent authors treated superpositions of discrete rolls, we consider a superposition

of a continuum of general planforms whose magnitudes are largest for horizontal wave-

vectors in a thin annulus with radius kc, the critical wavenumber of the linear theory, in

the plane of horizontal wave vectors. By this means, we retain information about

horizontal gradients in the amplitude equation, and hence need make no a priori

6 S. R. Keating et al.
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assumptions about the pattern, as in various derivations of the Swift–Hohenberg

equation (Swift and Hohenberg 1977, Cross 1980, Haken 1983, Bestehorn and Haken

1983, Coullet and Spiegel 1988, Cessi et al. 1990).
As in Amberg and Homsy (1993) and Anderson and Worster (1995), we rescale space

and time by x! �x, t! �2t and u! ��1u, and introduce the control parameter

Q ¼ ��Ra, ð15Þ

where � ¼ 1þ �S= �C. (The control parameter Q can be identified with the quantity �R2

of Anderson and Worster (1995).) We replace each dynamical field F by the sum of a

stationary basic state FB and a perturbation F̂, and, for easy comparison with Anderson

and Worster (1995), we adopt the following additional scalings:

� ¼ �B þ ��̂, � ¼ �B þ ��
�1�̂, u ¼ 0þ ���1û, ð16a;b;cÞ

where uB¼ 0 and � is a (small) expansion parameter to be defined below in terms of a
mush Rayleigh number. The basic states �B(z) and �B(z) of the model obey

�
d

dz
�B �

�S

�
�B

� �
þ
d2�B
dz2
¼ 0, �

d

dz
1� �Bð Þ�B þ

�C

�
�B

� �
¼ 0: ð17a;bÞ

Equations (17a,b) can be solved perturbatively for small �, yielding

�B ¼ z� 1ð Þ � �
�

2
z2 � z
� �

þOð�2Þ, �B ¼ �
�
�C
z� 1ð Þ þOð�2Þ: ð18a;bÞ

As a consequence of the near-eutectic approximation, the lowest-order contribution to
the solid fraction is O(�).

Subtracting (17a,b) from the equations of motion and eliminating the pressure p via

the incompressibility condition, we obtain the following equations for the perturbations

� and �. On doffing hats, these become

@t � �@zð Þ �� �
�S

�
�

� �
þ
d�B
dz

w��r2� ¼ ��u �;�, ð19aÞ

@t � �@zð Þ 1� �B � �
�

�

� �
�� þ

�C

�
� �B

� �
�

� �
þ
d�B
dz

w ¼ ��u �;�: ð19bÞ

In place of (19b), we will find it convenient to use the combination (19a) þ �S= �C (19b),
namely,

ð@t � �@zÞ � ��
�S

�C
�B

� �
� �

�S

�C
�B þ ��ð Þ�

� �
��r2� þ�Q

d�B
dz

w ¼ ���Qu �;�: ð19cÞ

In addition to (19a,c), we have the equations for the perturbations u, which can be
written in the concise form

r2 K �ð Þuð Þ � ; u �;Kð Þ �Q;� ;� �ẑ ¼ 0, ð20Þ

where ẑ is the unit vector in the vertical direction.
The boundary conditions are

� ¼ w ¼ 0 on z ¼ 0, ð21aÞ

� ¼ w ¼ � ¼ 0 on z ¼ 1: ð21bÞ

Patterns of convection in solidifying binary solutions 7
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In principle, u, v and w can be eliminated from (19a,c) by using the diagnostic
equation (20); in practice, it is easier to write (19a,c), (20) schematically in the form of a

single prognostic equation

L þ T @tð Þv ¼ �N, ð22Þ

where v¼ {�, �, u} is the vector of perturbed fields, LþT @t is the linear operator, and
�N are the nonlinearities. Explicit expressions for the linear operators L and T and the

nonlinearity N can be found in appendix A.
Equation (22) can then be solved perturbatively by expanding each of the fields in

powers of � as

v ¼ v0 þ �v1 þ �
2v2 þ � � � : ð23Þ

Likewise, we expand the control parameter Q, and, therefore, the linear operator L as

Q ¼ Q0 þ �Q1 þ �
2Q2 þ � � � , L ¼ L0 þ �L1 þ �

2L2 � � � : ð24a;bÞ

The operator T is O(�0).
At higher orders in �, (22) yields a system of linear inhomogeneous differential

equations, so that we can look for solutions of the form

vn x, z, t,Tð Þ ¼

Z
dk d	 eik �xþ	t~vn,	k z,Tð Þ, ð25Þ

where T¼ �2t is the slow time scale on which the amplitudes vary, k¼ (kx, ky)
and x¼ (x, y).

In addition, we separate the lowest-order solution so that

~v0,	k ¼

~�0,	k
~�0,	k

~w0,	k

0
B@

1
CA ¼

�0,	kðzÞ

�0,	kðzÞ

W0,	kðzÞ

0
B@

1
CA ~f	kðT Þ, ð26Þ

where ~f	kðT Þ is the Fourier–Laplace transform of the planform function f(x, t,T ).
In (26), the number of dynamical variables has been reduced to three using the

incompressibility condition, which gives expressions for the two horizontal components

of velocity in terms of the vertical component:

~u0,	k ¼ i
kx
k2

W 0
0,	k

~f	kðT Þ, ~v0,	k ¼ i
ky

k2
W 0

0,	k
~f	kðT Þ, ð27a;bÞ

where primes denote differentiation with respect to z.
Following Anderson and Worster (1995), at each order in � we expand in powers of �;

that is, we perform an asymptotic expansion in the ordered limit �� �� 1. This yields

v ¼ v00 þ �v01 þ � � �ð Þ þ � v10 þ �v11 þ � � �ð Þ þ �2 ��1v2,�1 þ v20 þ � � �
� �

þ � � � , ð28aÞ

Q ¼ Q00 þ �Q01 þ � � �ð Þ þ � Q10 þ �Q11 þ � � �ð Þ þ �2 Q20 þ �Q21 þ � � �ð Þ þ � � � , ð28bÞ

	 ¼ 	00 þ �	01 þ � � �ð Þ þ � 	10 þ �	11 þ � � �ð Þ þ �2 	20 þ �	21 þ � � �ð Þ þ � � � , ð28cÞ

where, because S, C¼O(��1), we must include in the expansion the field
v2,�1¼ {�2,�1,0, 0}.

8 S. R. Keating et al.
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3.1. Linear analysis

At the lowest order, O(�0��1), we obtain

	0�00,	k ¼ 0, ð29Þ

implying that 	�0,	k¼O(�).
At O(�0�0), we find solutions

�00,	k ¼ � sinð
zÞ, W00,	k ¼ ð

2 þ k2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�	0

2 þ k2

r
sinð
zÞ, ð30a;bÞ

along with the associated solutions for ~u00,	k and ~v00,	k given by (27a,b).
In addition to the solutions (30a,b), we seek the linear perturbation to the solid

fraction �0,	k. However, (29) requires that we consider terms of higher order in �.
Anderson and Worster (1996) showed that, for the case of 	¼O(�), �0,	k¼O(1), the
dispersion relation admits complex solutions, indicating the presence of an oscillatory
instability. As we are interested in the parameter regime near the marginal stability
curve Q¼Q00(k)þO(�) in the asymptotic limit �� �� 1, we will set 	¼ 0 throughout
our analysis and suppress the symbol 	 everywhere. Thus, we find

�00k zð Þ ¼ �

2 þ k2


 �C
ðcosð
zÞ þ 1

�
: ð31Þ

The growth rate at this order is found to be

	0 ¼ 
2 þ k2
� � Q00

Q00 kð Þ
� 1

� �
, ð32Þ

where Q00(k) describes the neutral curve

Q00 kð Þ ¼

2 þ k2
� �2

k2
: ð33Þ

The neutral curve (33) has a minimum of Qc¼ 4
2 at the critical wavenumber kc¼
.
These results, along with the expressions for the temperature and velocity fields,
correspond to those obtained for steady thermal convection in a passive porous
medium (Lapwood 1948). The effects of dissolution enter the perturbative analysis at
higher order.

3.2. Weakly nonlinear analysis

The perturbation expansion is then carried out under the usual prescription; at each
step in the expansion, we obtain a system of linear, inhomogeneous ordinary differential
equations (given explicitly in appendix B) of the form

L00vmn ¼ Imn: ð34Þ

A nonsecular solution to (34) exists if and only if the inhomogeneities Imn are
orthogonal to the solutions v̂ of the adjoint problem, that is,Z 1

0

dz v̂ � Imn ¼ 0: ð35Þ

In the present problem, the differential operator (with its boundary conditions) is not
self-adjoint.
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The analysis performed parallels that of Anderson and Worster (1995). We push the

effect of variation in the permeability to higher order by assuming

K1 ¼ � �K1 ¼ Oð�Þ: ð36Þ

In addition, we preserve spatial information by allowing the wave-vector k to vary over
all directions in its plane while keeping its magnitude jkj ¼ k very close to the critical

wavenumber kc. We further add the approximation that the support of the wavenumber

spectrum of the modes included in the analysis is confined to the narrow annulus

around k� kc mentioned previously.
This last condition, which amounts to an assumption of compact support for ~fk,

circumvents a difficulty arising in the derivation of the pattern equation for systems

with continuous spectra, namely that, to our knowledge, no centre manifold theorem

has been proved for extended systems with continuous spectra. The failure to extend

this useful theorem may probably be blamed on the presence of irremovable resonances

among stable modes that appear in the form of a factor (	(p)þ 	(q)� s(k))�1, where

k¼ pþ q is a triad of wavenumbers with associated linear growth rates 	, s(k)¼�j	(k)j
is the (strictly negative) growth rate of a stable (damped) mode and 	(k) is negative

everywhere except within a narrow band of wavenumbers centred on kc (Coullet and

Spiegel 1988, Cessi et al. 1990). In all derivations of the Swift–Hohenberg equation of

which we are aware, such singularities are avoided (sometimes implicitly), hence our

assumption of compact support of the modal spectrum.
At O(�1�0), the equations to be solved are

L00k~v10k ¼ ~N10k � L10k~v00k, ð37Þ

so that the O(�0�0) solutions appear as inhomogeneous terms on the right-hand
side of (37).

The solvability condition at this order gives

Q10 � 0: ð38Þ

This is a direct consequence of the assumption that K1 ¼ � �K1 ¼ Oð�Þ. The O(�1�0) fields
are found to be

~�10,k ¼ �

2 þ k2


 �C
½cosð
zÞ þ 1þ aðkÞ ðcosð2
zÞ � 1

�	
, ð39aÞ

~�10,k ¼ � sinð
zÞ � bðkÞ sinð2
zÞ, ð39bÞ

~w10,k ¼ ð

2 þ k2Þ ðsinð
zÞ þ cðkÞ sinð2
zÞ

�
, ð39cÞ

where

aðkÞ ¼
4
2 þ k2
� �2

5
2 þ 2k2ð Þ 
2 þ k2ð Þ

FðkÞ

6
2
, bðkÞ ¼

4
2 þ k2

5
2 þ 2k2
FðkÞ

3
2
, cðkÞ ¼


2 þ k2

5
2 þ 2k2
FðkÞ

3
2
,

ð40a;b;cÞ

and

FðkÞ ¼



2

Z
k¼pþq

dp dq ð
2 þ p2Þ
p � q

p2
� 1

� �
: ð40dÞ

10 S. R. Keating et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
e
a
t
i
n
g
,
 
S
h
a
n
e
 
R
i
c
h
a
r
d
]
[
N
e
w
 
Y
o
r
k
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
4
0
 
4
 
M
a
r
c
h
 
2
0
1
1



At O(�2��1) we find

@T ~�00k ¼ @z ~�2,�1k, ð41Þ

so that

~�2,�1k ¼ �

2 þ k2


 �C

sinð
zÞ



þ ðz� 1Þ

� �
@T ~fk: ð42Þ

Finally, at O(�2�0) we have

L00k~v20k ¼ ~N20k � L01k~v2,�1k � L10k~v10k � L20k~v00k � T 0,�1k@T~v01k � T 00k~v00k: ð43Þ

As a consequence of Q10¼ 0, the term proportional to L10k makes no contribution. We
show in appendix C that the solvability condition for (43) gives the pattern equation

�k@T ~fk ¼ 2
Q20k

2


2 þ k2
~fk þMk



~f 2
�
�Nk



~f 3
�
, ð44Þ

for the planform ~fk, where

Mk



~f 2
�
�

Z
k¼pþq

dp dqMk
pq

~fp ~fq, ð45aÞ

Nk



~f 3
�
�

1

3

Z
k¼lþmþn

dl dm dn N
k

lmn þN
k

nlm þN
k

mnl

� 

~fl ~fm ~fn, ð45bÞ

where

M
k
pq ¼M

k
qp ¼

2
 �K1

�Cþ �S

ð
2 þ p2Þð
2 þ q2Þ

ð
2 þ k2Þ

p � q

2

1

p2
þ

1

q2

� �
þ

2 þ k2


2

� �
ð46Þ

and the kernel N
k

lmn is given in appendix C.
The coefficient �k in front of the time derivative in the pattern equation (44) is

given by

�k ¼ ��

2 þ k2


2

�S

� �C2
: ð47Þ

Thus, �k may be negative or even vanish. As Anderson and Worster (1995) have noted,
this indicates the presence of a Hopf bifurcation. In this work, we do not consider that

regime of parameter values and consider the direct mode only. A derivation of the full

pattern equation in the presence of a Hopf bifurcation may be carried out in the manner

we have described for the stationary case. In the meantime, close to marginality

(jkj � kc) we obtain the result of Anderson and Worster (1995),

�k � �c ¼ ��
2 �S

� �C2
: ð48Þ

For definiteness, we shall assume that �c is positive and finite: setting �c negative is
equivalent to reversing the sign of the planform f, which in turn is equivalent to

reversing the sign of the coefficient Mk. We discuss the effect of such a sign-reversal

below.
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Close to marginality, the coefficient of the linear term on the right-hand side of (44)

can be expressed as

Q20k
2


2 þ k2
�

2 þ k2

�2
Q

Q00 kð Þ
� 1

� �
¼
	0
�2
: ð49Þ

Note that close to marginality Q�Q00(k)�Qc so that

�2 ¼
Q�Qc

Q20
, ð50Þ

which defines � precisely.
Expanding about the critical wavenumber kc¼
 we find that

	0
�2
�

2
2

�2
Q�Qc

Qc
�
1

4

k2


2
� 1

� �2
" #

¼ �� ‘k, ð51aÞ

with

� ¼
2
2

�2
Q�Qc

Qc
¼ Oð1Þ, ‘k ¼

ðk2 � k2cÞ
2

2
2�2
¼ Oð1Þ: ð51bÞ

Thus we see that � measures the departure of the Rayleigh number from its critical
value and ‘k is proportional to the Fourier transform of the familiar Swift–Hohenberg

linear operator ð;2 þ k2cÞ
2.

Finally, we find that, under suitable rescaling of both space and time, the pattern

equation for the planform f¼ f(x, y) becomes, in real space,

@T f ¼ � f � ;2
H þ k2c

� �2
fþM f 2


 �
�N f 3


 �
: ð52Þ

If the kernelsMkpq and N klmn are replaced with coefficients 
 and �, respectively, (52)
takes the real space form of a Swift–Hohenberg equation with a quadratic term term

(Swift and Hohenberg 1977, Bestehorn and Haken 1983):

@T f ¼ � f � r
2
H þ k2c

� �2
fþ 
f 2 � �f 3: ð53Þ

The primary motivation for deriving a general pattern equation for a planform ~fk (or, in
real space, f(x, y,T )) was to avoid making any a priori assumptions about the pattern.

Rather, one can prescribe some arbitrary initial state (e.g. a random one) and, with the

aid of a small computer, investigate its evolution. For pattern equations of the Swift–

Hohenberg type, one typically sees a number of patterns competing with one another

until the planform settles into a fixed pattern and evolves no further (see, for instance,

Cross and Hohenberg (1993) and references therein). Such equations exhibit many

quasi-stationary patterns, including, but not limited to, the hexagons, rolls, and mixed

modes studied by Amberg and Homsy (1993) and Anderson and Worster (1995).
The principal difference between the derived pattern equation (52) and the generic

Swift–Hohenberg equation (53) is the dependence of the coefficientsMk and N k upon

the spatial distribution of the planform. In particular, we note that �K1, �C and �S are all

positive (by construction), butMk
pq can take either sign, depending on the members of

12 S. R. Keating et al.
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the triplet k¼ pþ q. Thus,

M
k
pq 	 0 when k2 	


2 p2 � q2
� �2


2 p2 þ q2ð Þ þ 4p2q2
, ð54Þ

and is negative otherwise. By holding jkj fixed, the transition from positive to negative
M

k
pq can be depicted on the pq-plane (figure 3). Because the members of the triplet must

satisfy k¼ pþ q, no one member can be larger than the sum of the other two, as

represented by the grey regions in figure 3. Along the diagonal jpj ¼ jqj, (54) is

automatically satisfied for all jkj, and soMk
pq is always non-negative for these triplets.

This subset includes the triplet jkj ¼ jpj ¼ jqj ¼
 considered by Anderson and Worster

(1995; denoted by AW95 in figure 3). For asymmetrical triplets, however,Mk
pq can take

on negative values; the value of jkj (in units of kc¼
) where this occurs is indicated by

the contours on either side of the main diagonal. The overall sign of Mk then depends

on the relative population of symmetrical and asymmetrical triplets.
Thus the sign of both � and M can change depending on the values of the

experimental parameters and the spatial distribution of the planform f. Since changing

the sign of either � andM is equivalent to changing the sign of f, this means that both

|p| (in units of |k|)

|q
| (

in
 u

ni
ts

 o
f |

k|
)

No triplets allowed

k

qp

AW95

M
k
pq > 0

0.
25

0.25

0.25

0.25

0.
5

0.5

0.
5

0.5

1

1

1

1

M
k
pq < 0

M
k
pq

 < 0

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 3. The sign ofMk
pq as a function of jpj and jqj. Grey regions represent triplets that cannot satisfy the

constraint k¼ pþ q. The value of jkj (in units of kc¼
) whereM
k
pq changes sign is indicated by the contours

on either side of the main diagonal. The triplet labelled AW95 denotes the case of jkj ¼ jpj ¼ jqj ¼
 considered
by Anderson and Worster (1995).
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up and down flow states are possible (table 1). These results stand in contrast to those

of Anderson and Worster (1995), who found that the direction of flow at the centre of

hexagons was determined by the sign of � alone. We note that, to date, the only

experimental observations of hexagons are those of Tait and Jaupart (1992), who

observed upflow at the edges and downflow in the centres of hexagons.
Finally, we observe that the linear operator ðr2

H þ k2cÞ
2 establishes kc as the dominant

wavenumber at �¼ 0. In these conditions it is possible to evaluate the integrals Mkf
~f 2g

and Nkf
~f 3g explicitly. That is, we assume that ~fp ¼ F �p

� �

�1� jpj � kcð Þ, where �p is the

angle p makes with k ¼ kx̂. In appendix C we show that, under the assumption of

compact support for ~fk,

Mk



~f 2
�
¼ 6
2

�K1

�Cþ �S
F



3

� 

F �




3

� 

, ð55aÞ

N k



~f 3
�
¼

8
6

3

Z 2


0

d�
3K2

2 �Cþ �S
� �2 A �ð Þ þ B �ð Þ

( )
Fð0ÞFð�ÞFð�� 
Þ: ð55bÞ

The geometrical functions A(�) and B(�) have the form

Að�Þ ¼ 11þ 7 cos�, Bð�Þ ¼ ð1þ cos�Þ2
3� cos�

9� 4 cos�
: ð56Þ

When all wavevectors are of the same length, only certain tessellations will be selected
by the delta functions present in the integrands. In particular, when k, p and q are all of

the same length (kc¼
), the triplet must form an equilateral triangle. Consequently, we

may associate the quadratic term appearing in (52) with a planform made up of three

rolls superposed at 120�, as depicted in figure 4(a).
In the case of the cubic term, the quadruple {k, l,m, n} must satisfy k¼ lþmþ n, so

that {k, l,m, n} form an equilateral parallelogram (figure 4(b)), with arbitrary angle �
between k and l (say). Hence, both rolls (�� 0) and hexagons (�2 {0,
/3, 2
/3}) are
special cases of the general system. It is evident, then, that the simplified pattern

equation (53) preserves many of the qualitative features of the full problem.

4. Dynamics of interacting chimney-like solutions

The Swift–Hohenberg equation (53) should be considered as a highly simplified model

capable of reproducing some of the qualitative features of the more complicated full

pattern equation (52). This strategy has provided a great deal of insight in other

Table 1. Direction of flow at centre of hexagons.
The first two rows reproduce the results of

Anderson and Worster (1995).

M40 �40 upwelling
M40 �50 downwelling
M50 �40 downwelling
M50 �50 upwelling

14 S. R. Keating et al.
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convective pattern formation problems (see, e.g. Cross and Hohenberg 1993), and it is
in this spirit that we examine, in this section, the transient evolution of patterns in
mushy layers and, in particular, the dynamics of widely separated chimney-like
solutions of (53).

For motion confined to the xz-plane, the pattern equation (52) reduces to

@T f ¼ � f � @2x þ k2c
� �2

f� �f 3, ð57Þ

since 
 is necessarily zero as a consequence of the fact that the constraint k¼ pþ q

appearing in (C.5a), the expression forM { f 2}, cannot be satisfied in one horizontal
spatial dimension. Let us consider the dynamics of ‘‘chimney-like’’ solutions to (57).
True chimneys are regions of zero solid fraction and the flow within these regions is no
longer governed by Darcy’s law. Here, we will examine localized minima of the solid
fraction, or, equivalently, extrema of the planform f(x,T ), which we shall refer to as
‘‘spikes’’. These localized solutions can be considered to be nascent chimneys that still
satisfy the weakly nonlinear constraint. Far from the spike itself, the nonlinear terms in
the pattern equation can be neglected in the first approximation, so that the asymptotic
behaviour of the planform is given by e�mjxj as jxj!1, where m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=2 � k2c

p
. For

� 	 k4c localized solutions exist (Burke and Knobloch 2006). As long as the spikes
remain separated by a distance L that is large compared to the spike radius then
� ¼ e�mL plays the role of a small parameter, and the dynamics of widely separated
spikes can be investigated (see Elphick et al. 1990, Balmforth 1995, and references
therein).

Let us assume that the pattern equation possesses isolated spike solutions of the
form f¼ h(x)

�� @2x þ k2c
� �2� 


h� �h3 ¼ 0: ð58Þ

The general solution can be approximated as a linear superposition of N widely spaced
spikes, plus some small remainder, �r, which is a function of the slow timescale �¼ �t
and the set of spike positions {xi}. Thus

f ¼
XN
n¼1

hn þ �rðfxig, �Þ, hn ¼ h x� xnð�Þð Þ: ð59Þ

(a) (b)

k

qp

k

m

l
n

Figure 4. (a) Allowed tessellations satisfying the condition k¼ pþ q. (b) Allowed tessellations satisfying the
condition k¼ lþmþ n. The quadruple {k, l,m, n} forms an equilateral parallelogram with interior angle �.
If all four wavevectors lie along the same axis, this corresponds to the case of three interacting one-
dimensional rolls.
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On substituting (59) into the one-dimensional pattern equation (57), we obtain

0 ¼ �
XN
n¼1

dhn
dx

dxn
d�
� �2

dr

d�
þ �� @2x þ k2c

� �2� 
 XN
n¼1

hn þ �r

 !
� �

XN
n¼1

hn þ �r

 !3

: ð60Þ

Making use of (58) and keeping only the lowest order terms, we find that

H r ¼
XN
n¼1

dhn
dx

dxn
d�
� ��1�

XN
n¼1

hn

 !3

�
XN
n¼1

h3n

2
4

3
5, ð61aÞ

where the operator H is

H ¼ � �� @2x þ k2c
� �2� 


þ 3�
XN
n¼1

hn

 !2

: ð61bÞ

The nonlinear expression on the right-hand side of (61a) is, despite appearances,
O(1), as can be seen by writing the term in brackets as

XN
n¼1

hn

�
hn þ

X
m 6¼n

hm

�2

�
XN
n¼1

h3n ¼
XN
n¼1

hn 2hn
X
m 6¼n

hm þ

�X
m 6¼n

hm

�2
" #

: ð62Þ

From the assumption that the spikes are widely spaced it follows that hn
1¼O(�),
hn
2¼O(�2), and so on. Thus, (61a) becomes,

H r ¼
XN
n¼1

dhn
dx

dxn
d�
� 2��1�

XN
n¼1

hn
2 hn�1 þ hnþ1ð Þ þOð�Þ, ð63aÞ

with

H ¼ � �� @2x þ k2c
� �2� 


þ 3�
XN
n¼1

h2n: ð63bÞ

As discussed in Elphick et al. (1990), the operator H is reminiscent of the
Hamiltonian operator appearing in the Schrödinger equation for an electron moving in

a lattice potential. As in the tight binding approximation of solid state physics, we may

expect that r, which corresponds to the electron wave function, will be concentrated

near the lattice points, that is, the spikes. For widely separated spikes, therefore, the

eigenfunctions of H can be approximated by the eigenfunctions of

Hn ¼ � �� @2x þ k2c
� �2� 


þ 3�h2n: ð64Þ

As can be seen by differentiating (58) with respect to x, the eigenfunction of Hn with
eigenvalue zero is @xhn. Using the self-adjointness of the operator H, we see that @xhn is
the solution to the adjoint equation. Thus, the solvability condition for (63a) implies

h@xhnj@xhni@�xn � 2���1h@xhnjh
2
nðhn�1 þ hnþ1Þi ¼ Oð�Þ, ð65Þ

where h f jgi is the inner product of functions f and g.

16 S. R. Keating et al.
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The solvability condition (65) represents a dynamical equation for xn, the position of

the nth spike, in terms of the positions of its nearest neighbours xn
1. As we are

integrating over all x, the detailed structure of h is not important. Since xn is assumed to

be far from both xn
1, we can take

hnþ1 � h0e
mye�mðxnþ1�xnÞ, hn�1 � h0e

�mye�mðxn�xn�1Þ ð66a;bÞ

where y¼ x� xn and h0 is a constant. The dynamical equation for xn(�) then becomes

dxn
d�
¼ Aþe

�mðxnþ1�xnÞ þ A�e
�mðxn�xn�1Þ, ð67aÞ

where

A
 ¼ 2���1h0

Z
dy ð@yhð yÞÞhð yÞe


my

�Z
dy ð@yhð yÞÞ

2: ð67bÞ

Symmetry of h(y) under y!�y implies that Aþ¼�A�. Therefore, the displacement
�n¼ xn� nL of the nth spike from its lattice point is given by

d�n
d�
¼ e�mð�nþ1��nÞ � e�mð�n��n�1Þ, ð68Þ

where the constants A
 have been absorbed into �, and, with them, all information
about the detailed internal structure of the spike solution.

The dynamical equation (68) has the form of a non-inertial damped motion of a

particle interacting with its nearest neighbours. Figure 5 depicts the evolution of N¼ 20

(initially) randomly distributed spikes in a periodic domain, with m¼ 1. As can be seen,

the spikes attain the uniform spacing L on the decay timescale �¼A�t¼ 1. Figure 6

shows the effect of introducing or removing a spike on the evolution of N¼ 10 spikes in

a periodic domain. The spikes are evolved for �¼ 5 time units and establish a uniform

lattice, after which a spike is either added (left) or removed (right) by hand.

Subsequently, the spikes establish a new lattice, with a correspondingly larger or smaller

lattice spacing.

Figure 5. Evolution of N¼ 20 initially randomly distributed spikes (shown in white on a black background)
in a periodic domain. Time, increasing to the right, has been rescaled to absorb the coefficient A.
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It is worth pointing out that (68) does not give a prediction of the spacing between
spikes; in this regard, the theory we have outlined shares the inability of weakly
nonlinear convective theories in determining the horizontal scale of convective cells.
In principle, one could develop an energy stability theory for the pattern equation (52)
and hence obtain a prediction for the separation of weak chimneys in one or two
dimensions. Such a calculation is beyond the scope of this initial study, however, and
remains an interesting topic for further research.

5. Discussion

As we have noted, the pattern equation derived in section 3 has the form of a Swift–
Hohenberg equation with an additional quadratic term. The Swift–Hohenberg equation
arises in a wide variety of physical, chemical and biological contexts and has a
substantial literature associated with it (see Cross and Hohenberg (1993) and references
therein for a comprehensive review of this topic).

The quadratic term appearing in the pattern equation (52) destroys the symmetry
between up and down of the Boussinsq approximation for which hexagonal planforms
with either up-flow or down-flow at the centre have equal dissipation rates. This is
perhaps not surprising when one notes that, unlike other planforms, which exchange up
and down by translation of a half cell, hexagonal convection cells are manifestly
asymmetric.

This quadratic term is associated, via the constraints k¼ pþ q and k� kc, to
planforms made up of three rolls superposed at nearly 120� to one another. If all three
rolls have the same equal amplitude and the angle is 120�, the unit cell is a hexagon.
Thus, we recover the result of Amberg and Homsy (1993) that the transition to three-
dimensional hexagons is transcritical. The sign of the quadratic term is set by the
relative populations of symmetric and asymmetric triplets, and it is this term, in
conjunction with the experimental parameters �C and �S that determines whether there is
up-flow or down-flow at the centres of the hexagons.

We also note that the expression for the quadratic termM { f 2} is proportional to �K1.
Thus, symmetry breaking between up-flow and down-flow at the centre of hexagons is
rooted in the non-Boussinesq effect of permeability variation with solid fraction. As �K1 is

Figure 6. Effect of defects on the evolution of N¼ 10 spikes in a periodic domain. In both cases, the spikes
evolve for 5 time units, establishing a regular arrangement. At �¼ 5, a spike is introduced (left) or removed
(right), after which point the spikes rearrange into a regular lattice of different spacing.

18 S. R. Keating et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
e
a
t
i
n
g
,
 
S
h
a
n
e
 
R
i
c
h
a
r
d
]
[
N
e
w
 
Y
o
r
k
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
4
0
 
4
 
M
a
r
c
h
 
2
0
1
1



strictly positive on physical grounds, the overall sign of the quadratic term is determined
by the spatial distribution of the planform f itself, at least in this pared down model.

As we have discussed, the principal advantage of, and motivation for, the pattern
equation derived here is that it enables one to investigate the spatial structure of weakly
nonlinear convection in a mushy layer without preselecting the pattern. That the
equation thus derived has the form of a Swift–Hohenberg equation demonstrates that
convection in a mushy layer bears many similarities with other convection problems,
although with its own distinctive character arising from the interaction of dissolution,
solidification and permeability variation.

In addition to the insight gained into spatial structure, these pattern equations also
allow us to make a beginning of the study of transient evolution of patterns of
convection in a mushy layer. Such transient behaviour has been observed in a number
of experiments (Tait et al. 1992, Peppin et al. 2008), but has not been examined
theoretically. The approximations we invoke in our derivation, such as weak
nonlinearity, constant mush depth and constant speed of solidification, mean that the
pattern equation we obtain is not appropriate for a quantitative description of such
transient behaviour. However, some interesting qualitative features can be described
using a simplified one-dimensional approximation of the full pattern equation. To that
end, we examined the interaction of widely separated ‘‘spikes’’ – extrema of the
planform corresponding to nascent chimney-like structures – and derived an equation
describing their dynamics. Numerical simulations of the spikes quickly achieve uniform
spacing and can robustly adapt to an increase or decrease in the spike number.
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Appendix A: Expressions for the linear operators L and T and nonlinearity N

The linear operator L acting upon the vector v¼ (�, �, u, v,w) and appearing in equation
(22) is given by

L ¼

� �S@z �ðr2 þ �@zÞ 0 0 �@z�B

�� �S= �Cð�B@z

þ @z�BÞ

( )
�½�� �S= �Cð�B@z þ @z�BÞ

þr2 þ��@z�

( )
0 0 ��@z�B

0 �Q@x@z G þH 0 �@zKð�BÞ@x

0 �Q@y@z 0 G þH �@zKð�BÞ@y

0 Qr2
H 0 0 G

2
6666666664

3
7777777775
,

ðA:1Þ
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where the operators G and H are given by

G ¼ Kð�BÞr
2 þ @zKð�BÞ@z, H ¼ @

2
zKð�BÞ þ @zKð�BÞ@z: ðA:2a;bÞ

The linear operator T appearing in equation (22) is given by

T ¼

�S=� �� 0 0 0

�S= �C�B �� �� �S= �C�B
� �

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775
: ðA:3aÞ

Finally, the nonlinearity N appearing in equation (22) is given by

N ¼

u � ;�

�u � ;� � �S= �C �2@T � �@z
� �

ð��Þ

@xðu � ;K̂Þ � r2ðuK̂Þ

@yðu � ;K̂Þ � r2ðvK̂Þ

@zðu � ;K̂Þ � r2ðwK̂Þ

2
6666664

3
7777775
: ðA:3bÞ

Note that �K̂ ¼ Kð�B þ ��=�Þ � Kð�BÞ is of order �, as can be seen from a Taylor
expansion in powers of ��/�,

Kð�B þ ��=�Þ � Kð�BÞ ¼
��

�
_Kð�BÞ þ

1

2

��

�

� �2

€Kð�BÞ þ � � � , ðA:4Þ

where a dot represents differentiation with respect the the function’s argument.

Appendix B: Finite-amplitude expansion of L, T , and N

As a consequence of (27a,b), which expresses ~u and ~v in terms of ~w, the number of

dynamical quantities reduces to three, that is ~v ¼ ð ~�, ~�, ~wÞ. Hence, the operators Lmn,k

and T mn,k reduce to matrices of 3� 3 elements at each order �m�n. Likewise, the

nonlinearity ~Nmn,k reduces to a 3-component vector at each order �m�n.
At O(�0�0),

L00,k ~v00,k ¼ 0, ðB:1Þ

where

L00,k ¼

� �S@z �D2
k �1

0 �D2
k ��

0 �Q00ðkÞk
2 D2

k

2
64

3
75, ðB:2Þ

with D2
k ¼ @

2
z � k2.

At O(�0�1),

L00,k ~v01,k ¼ �L01,k ~v00,k, ðB:3Þ
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where

L01,k ¼

0 �@z �ðz� 1=2Þ

� �S= �C ððz� 1Þ@z þ 1
�

�2@z �2ðz� 1=2Þ

0 �Q01ðkÞk
2 0

2
64

3
75: ðB:4Þ

At O(�1�0),

L00,k ~v10,k ¼ ~N10,k � L10,k ~v00,k, ðB:5Þ

where

L10,k ¼

0 0 0

0 0 0

0 �Q10ðkÞk
2 0

2
64

3
75, ~N10,k ¼

Z
k¼pþq

dp dq

~u00,p �Dq
~�00,q

�~u00,p �Dq
~�00,q

0

2
64

3
75, ðB:6a;bÞ

in which Dq ¼ ẑ@z þ iq.
At O(�2��1):

L00,k ~v2,�1,k ¼ �T 0,�1,k@T ~v00,k, ðB:7Þ

where

T 0,�1,k ¼

�S 0 0

0 0 0

0 0 0

2
64

3
75: ðB:8Þ

At O(�2�0):

L00,k ~v20,k ¼ ~N20,k � L01,k ~v2,�1,k � L10,k ~v10,k � L20,k ~v00,k

� T 0,�1,k@T ~v01,k � T 00,k@T ~v00,k, ðB:9Þ

where

L20,k ¼

0 0 0

0 0 0

0 �Q20ðkÞk
2 0

2
64

3
75, T 00,k ¼

0 �� 0

�S= �Cðz� 1Þ ��2 0

0 0 0

2
64

3
75 ðB:10a;bÞ

and

~N20,k ¼

Z
k¼pþq

dp dq

ð~u10,p �Dq
~�00,q þ ~u00,p �Dq

~�10,q
�

� ð~u10,p �Dq
~�00,q þ ~u00,p �Dq

~�10,q
�

�K1=�


@z ð~u00,p �Dq

~�00,q
�
�D2

kð ~w00,p
~�00,qÞ

�
2
664

3
775

þ
K2

�2

Z
k¼lþmþn

dl dmdn

0

0

@z ð~u00,l �Dk�lð ~�00,m ~�00,nÞ
�

�D2
k ð ~w00,l

~�00,m ~�00,n
�

2
6664

3
7775, ðB:10cÞ

where Dp ¼ ẑ@z þ ip and D2
p ¼ jDpj

2 ¼ @2z � p2.
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Appendix C: Derivation of the pattern equation

In this appendix we provide some details of the derivation of the pattern equation (44)

from the solvability condition for the O(�2�0) equations (43). It is easy to see that the

equation proportional to �20k decouples from the rest of the system of ordinary

differential equations so that we are left with

�D2
k�20k ��w20k ¼ N�

20k þ
�S= �C�2,�1k þ�2@T�00k, ðC:1aÞ

D2
kw20k �Q00ðkÞk

2�20k ¼ Nw
20k þQ20ðkÞk

2�00k, ðC:1bÞ

where we have made use of (41) and N�
20k and Nw

20k are given by (B.10c).
The solvability condition (35) for this system of inhomogeneous ordinary differential

equations gives

I1 þ I 2 þ I3 ¼ 0, ðC:2aÞ

in which

I 1 ¼

Z 1

0

dz sinð
zÞ

� �S

�C
�2,�1k þ�2@T�00k

�
, ðC:2bÞ

I 2 ¼ ��
Q20k

2


2 þ k2

Z 1

0

dz sinð
zÞ �00k, ðC:2cÞ

I3 ¼

Z 1

0

dz sinð
zÞ
�
N�

20k �
�


2 þ k2
Nw

20k



: ðC:2dÞ

Making use of expression (42) for �2,�1k, the integral I1 is evaluated as

I1 ¼ �
�

2
�k@T ~fk, where �k ¼ ��


2 þ k2


2

�S

� �C2
: ðC:3aÞ

Likewise, the integral I2 is evaluated using expression (30) for �00k to give

I 2 ¼
�

2

Q20k
2


2 þ k2
~fk: ðC:3bÞ

Finally, we split the integral I3 into a quadratic and a cubic term so that

I 3 ¼
�

2
Mk �Nkð Þ, ðC:3cÞ

where

Mk



~f 2
�
¼ �

�K1

�ð
2 þ k2Þ

Z
k¼pþq

dp dq

Z 1

0

dz sinð
zÞ

�

�
@z ð~u00,p �Dq

~�00,q
�
�D2

k ð ~w00,p
~�00,q

�
þ p$ qð Þ



, ðC:4aÞ
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Nk



~f 3
�
¼

2K2

�2ð
2 þ k2Þ

Z
k¼lþmþn

dl dmdn

Z 1

0

dz sinð
zÞ

� @z ðu00l �Dk�lð�00m�00nÞ
�
�D2

kðw00l�00m�00nÞ

 �
� 2

Z
k¼lþmþn

dl dm dn

Z 1

0

dz sinð
zÞ

� ðu10mþn �Dl�00l þ u00l �Dmþn�10mþn
�
: ðC:4bÞ

Making use of expressions for the O(�0�0) and O(�1�0) variables and evaluating the
integrals over z, it is straightforward (if tedious) to show that (C.4a,b) reduce to

Mk



~f 2
�
�

Z
k¼pþq

dp dqMk
pq

~fp ~fq, ðC:5aÞ

Nk



~f 3
�
�

1

3

Z
k¼lþmþn

dl dm dn N
k

lmn þN
k

nlm þN
k

mnl

� 

~fl ~fm ~fn, ðC:5bÞ

with

M
k
pq ¼M

k
qp ¼

2
 �K1

�Cþ �S

ð
2 þ p2Þð
2 þ q2Þ

ð
2 þ k2Þ

p � q

2

1

p2
þ

1

q2

� �
þ

2 þ k2


2

� �
, ðC:6aÞ

and

N
k

lmn¼N
k

lnm¼
K2

4 �Cþ �S
� �2 ð
2þ l2Þð
2þm2Þð
2þn2Þ

ð
2þk2Þ

5k2


2
þ
7k � l

l2

� �

þ
1
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2þjmþnj2

5
2þ2jmþnj2

2þjmþnj2
� � k2� l2

jk� lj2
� 
2þ l2
� �4
2þjmþnj2


2þjmþnj2
1þ

k � l

l2

� �� �

� ð
2þm2Þ
m �n

m2
�1

� 

þð
2þn2Þ

m �n

n2
�1

� 
n o
: ðC:6bÞ

It can be shown, using the relation k¼ pþ q, that the kernal Mk
pq is positive and

vanishes only when jkj ¼ 0.
We now evaluate the integrals Mkf

~f 2g and Nkf
~f 3g under the assume that

~fp ¼ F �p
� �


�1� jpj � kcð Þ, where �p is the angle p makes with k ¼ kx̂. In this case, the

constraint k¼ pþ q implies that

p � q ¼ ðk2 � p2 � q2Þ=2 ¼ �
2=2, ðC:7Þ

so that Mk can be straightforwardly evaluated to give

Mk ¼ 3
2
�K1

�Cþ �S

Z
k¼pþq

d�p d�q F ð�pÞF ð�qÞ: ðC:8Þ

Without loss of generality we set �k¼ 0 so that k ¼ kcx̂. We note that there are two
possible orientations of p, q satisfying k¼ pþ q when p¼ q¼
: (a) �p¼
/3, �q¼�
/3,
and (b) �p¼�
/3, �q¼
/3. As both these make the same contribution to Mk we have

Mk ¼ 6
2
�K1

�Cþ �S
F þ




3

� 

F �




3

� 

: ðC:9Þ
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To evaluate the cubic nonlinearity Nk we note that the constraints k¼ lþmþ n and
k¼ l¼m¼ n¼
 are simultaneously satisfied in three cases (Ma 2009):

ðiÞ k ¼ l, m ¼ �n, ðiiÞ k ¼ m, l ¼ �n, ðiiiÞ k ¼ n, l ¼ �m:

Cases (ii) and (iii) are the same, because of the symmetry of the kernal N
k
lmn under

m $ n which leads to

N
kðiiÞ
lmn ¼ N

kðiiiÞ
lmn ¼ 


4 K2

ð �Cþ �SÞ2
5þ 7 cos �ð Þ þ

2
4

3
1þ cos �ð Þ

2 3� cos �

9� 4 cos �
, ðC:10Þ

where we have made use of k � l¼�m � n¼
2 cos �.
Case (i) possesses a term proportional to (k2� l2)/jk� lj2, which is singular in the

limit k¼ l. To evaluate N
kðiÞ
lmn, we follow the approach of Ma (2009) and assume that

~fk has support in a small but nonzero band of wavenumbers such that k¼ k0þ k1,

etc., and

k0 ¼ l0, m0 ¼ �n0, k1 ¼ l1 þm1 þ n1: ðC:11Þ

Taking k0 ¼ kcx̂ and k1 � l1 ¼ k0ðcos�0x̂þ sin�0ŷÞ (with k0 � kc) we find that

k2 � l2

jk� lj2
¼

2kccos �
0

k0
þ
k21 � l21
k02

: ðC:12Þ

By averaging this over (k1, l1,m1, n1) at fixed (k0, l0,m0, n0), we find that the first term in
this expression is proportional to D kccos �0

k0

E
¼ 0, ðC:13Þ

while the second term is proportional to

hk21i � hl
2
1i ¼ 0, ðC:14Þ

by symmetry. Thus, the term (k2� l2)/jk� lj2 vanishes and we find that

N
kðiÞ
lmn ¼ 12
4

K2

ð �Cþ �SÞ2
þ
16
4

15
: ðC:15Þ

Combining these results we find that

N k ¼

Z
k¼lþmþn

d�l d�m d�n F ð�l ÞF ð�mÞFð�nÞ N
kðiÞ
lmn þN

kðiiÞ
lmn þN

kðiiiÞ
lmn

� 

: ðC:16Þ

Finally, we note that �l, �m, �n can take values that are cyclic permutations of 0, � and
��
 so that

N k ¼
8
6

3

Z 2


0

d�Fð0ÞFð�ÞFð�� 
Þ

�

�
3K2

2 �Cþ �S
� �2 11þ 7 cos�ð Þ þ 1þ cos�ð Þ

2 3� cos�

9� 4 cos�

�
: ðC:17Þ

Note that this expression is strictly positive.
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