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Gravity currents created by the release of a fixed volume of a suspension into a lighter 
ambient fluid are studied theoretically and experimentally. The greater density of the 
current and the buoyancy force driving its motion arise primarily from dense particles 
suspended in the interstitial fluid of the current. The dynamics of the current are 
assumed to be dominated by a balance between inertial and buoyancy forces; viscous 
forces are assumed negligible. The currents considered are two-dimensional and flow 
over a rigid horizontal surface. The flow is modelled by either the single- or the two- 
layer shallow-water equations, the two-layer equations being necessary to include the 
effects of the overlying fluid, which are important when the depth of the current is 
comparable to the depth of the overlying fluid. Because the local density of the gravity 
current depends on the concentration of particles, the buoyancy contribution to the 
momentum balance depends on the variation of the particle concentration. A transport 
equation for the particle concentration is derived by assuming that the particles are 
vertically well-mixed by the turbulence in the current, are advected by the mean flow 
and settle out through the viscous sublayer at the bottom of the current. The boundary 
condition at the moving front of the current relates the velocity and the pressure head 
at that point. The resulting equations are solved numerically, which reveals that two 
types of shock can occur in the current. In the late stages of all particle-driven gravity 
currents, an internal bore develops that separates a particle-free jet-like flow in the rear 
from a dense gravity-current flow near the front. The second type of bore occurs if the 
initial height of the current is comparable to the depth of the ambient fluid. This bore 
develops during the early lock-exchange flow between the two fluids and strongly 
changes the structure of the current and its transport of particles from those of a 
current in very deep surroundings. To test the theory, several experiments were 
performed to measure the length of particle-driven gravity currents as a function of 
time and their deposition patterns for a variety of particle sizes and initial masses of 
sediment. The comparison between the theoretical predictions, which have no 
adjustable parameters, and the experimental results are very good. 

1. Introduction 
A gravity current is a wedge of fluid intruding laterally into an ambient body of fluid 

of a different density, as depicted for example in figure 1, which shows a gravity current 
propagating along a horizontal surface below the ambient fluid. The buoyancy or 
gravitational force driving the motion may be due to differences in composition or 
temperature between the gravity current and the ambient fluid, or the two fluids may 
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FIGURE 1. Schematic representation of a dense gravity current intruding into a less dense body of 
ambient fluid that is: (a) very deep compared to the depth of the current; (6) of comparable depth 
to the current. 

even be physically different liquids. A density difference can also arise from the 
suspension of particles in the fluid forming the current. The bulk density of such a 
suspension may be greater than its surroundings, resulting in a gravity current. We 
term this a particle-driven gravity current since the presence of the particles is the cause 
of the motion. 

Particle-driven gravity currents are considerably more complex than homogeneous 
currents because the particle concentration, and hence the driving buoyancy force, 
change with time and position along the current. Particles may settle out, which 
reduces the density difference. Alternatively, if the current is passing sufficiently rapidly 
over an erodible bed, sediment may be entrained, which increases the particle 
concentration and driving buoyancy force. Both the settling and entrainment rates 
depend on the velocity and dimensions of the gravity current, and so there is a strong 
coupling between the sediment transport and the dynamics of the flow. 

Particle-driven gravity currents are important in many environmental and geological 
situations. In the form of industrial or estuarial effluents they are an important 
mechanism for transporting sediment that may have adsorbed pollutants. The erosive 
power of particle-driven gravity currents, often called turbidity currents in a geological 
context, is responsible for the formation of submarine canyons on continental shelves 
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and the transport of silt and sand into the deep oceans (Inman, Nordstrom & Flick 
1976). Some turbidites (the sedimentary deposits of ancient turbidity currents) have 
become oil reservoirs (Perrodon 1985). A particle-driven gravity current with reversing 
buoyancy can occur when the interstitial fluid has a lesser density than the 
surroundings. For example, sediment-laden fresh water from a river outflow can 
actually sink in a salty bay or ocean outlet provided there are enough dense particles 
in suspension (Wright et al. 1990). When sufficient particles have settled, however, the 
bulk density of the gravity current will become less than that of the surroundings, and 
the gravity current will rise as a plume. 

This work is motivated by a desire to understand and model such flows and the 
resulting sedimentary transport processes. In this paper we analyse the specific problem 
of a particle-driven gravity current of fixed volume spreading over a rigid horizontal 
surface. We assume that the current is two-dimensional, though the model can be easily 
extended to include an axisymmetric flow (Bonnecaze, Huppert & Lister 1993). Our 
analysis describes the settling of the particles and their advection within the current, 
but entrainment of sediment is not considered. The particles in the current are assumed 
to be dilute, non-cohesive and monodisperse with equal settling velocities. We also 
assume that the viscous forces acting on the current are negligible, except perhaps at 
its head, and that the force balance is dominated by inertia and buoyancy. This is often 
the case for many practical situations. 

There has been a great deal of research on homogeneous gravity currents, and many 
of the concepts and results are useful for analysis of particle-driven currents. The 
dynamics of the front or nose of a gravity current intruding into a very deep body of 
fluid with negligible viscous forces acting on the current was analysed using the 
Bernoulli equation first by von Karman (1940) and later correctly by Benjamin (1968). 
They both arrived at the result that the velocity at the front of the current uN and the 
height or depth of the current just to the rear of the head h, are related by uN = 
Fr(g’h,);, where the Froude number Fr is constant. In this relationship the reduced 
gravity g’ is defined by g’ = @,-p,)g/p,, where pc and pa are the densities of the 
current and the ambient fluid respectively, and g is the gravitational acceleration. 
Benjamin found that the value of the Froude number Fr depends on the ratio of the 
height of the head of the current to the depth of the ambient fluid and has a theoretical 
value of 4 2  for a current intruding into very deep surroundings. 

A homogeneous gravity current dominated by inertial and buoyancy forces can be 
modelled by the shallow-water equations, which admit a long-time asymptotic 
similarity solution (Fannelop & Waldman 1972; Hoult 1972; Chen 1980). The length 
of a two-dimensional homogeneous gravity current, xN( t ) ,  is given by x,(t) = C(g’q)fti, 
where t is the time since release and q is the fixed volume per unit width of the current. 
The constant C depends on the value of Fr at the nose. The initial evolution of a lock- 
exchange flow, in which a fixed volume of dense fluid held behind a gate is 
instantaneously released into an ambient fluid, has been studied by Huppert & 
Simpson (1 980). In this so-called slumping phase, which precedes the self-similar 
regime, they found experimentally that the length increased almost linearly with time. 
The approach to the similarity form was studied further by Rottman & Simpson (1983) 
with experiments and a model based on the shallow-water equations. An interesting 
observation of their work was the formation of an internal bore if the initial height of 
the gravity current behind the lock was more than 70% of the depth of the ambient 
fluid. Until this bore overtook the front, the height of the current at the front remained 
constant, resulting in a constant velocity at the nose, and hence the length of the 
current increased linearly with time. 
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Inertial forces do not dominate the dynamics of a gravity current indefinitely. When 
the current has reached a sufficient length the viscous forces acting on the bottom of 
the current along the rigid horizontal surface become more important than the inertial 
forces. The conditions for the transition from inertially to viscously dominated flow for 
a current of fixed volume has been determined experimentally by Huppert & Simpson 
(1980) and theoretically by Huppert (1982). The transition can be written in terms of 
the criterion (uN hN/v) (hN/xN) M 2.25, where the left-hand side is essentially a Reynolds 
number and v is the kinematic viscosity of the current. As the current lengthens and the 
velocity and height at the nose decrease, the Reynolds number decreases below the 
critical value and viscous forces dominate the inertial forces. The dynamics of a gravity 
current dominated by a viscous-buoyancy balance have been analysed by Huppert 
(1982) using lubrication theory. 

In $2.1 we incorporate some of the results from the inertial studies in order to 
construct a model for a particle-driven gravity current spreading over a horizontal rigid 
boundary in very deep ambient fluid. We use the single-layer shallow-water equations 
and a vertically averaged advective conservation equation, which includes settling, for 
the particle concentration. The model assumes that the dynamics of the current are 
dominated by a balance between inertial and buoyancy forces and that the particles are 
vertically well-mixed due to sufficiently vigorous turbulent mixing. The Froude- 
number condition is specified at the moving front of the gravity current, whose position 
must be determined as part of the problem. The height and velocity profiles from the 
similarity solutions for a fixed-volume homogeneous or non-settling gravity current are 
reviewed for later comparison with those for a particle-driven gravity current. 

In some applications and in the early times of our experiments, however, the depth 
of the overlying fluid is comparable to that of the gravity current. In order to account 
for the effects of the overlying fluid, we describe in $2.2 a modification to our model 
that incorporates the two-layer shallow-water equations and the nose condition of 
Huppert & Simpson (1980). These changes lead to the prediction of the slumping phase 
and bore between the two layers. The inclusion of these phenomena is important for 
modelling gravity currents in shallow ambient fluids, such as in our experiments or for 
turbidity currents in shallow seas. We should point out that both the single-layer and 
two-layer models have no free parameters, because the nose condition and the settling 
velocity of the particles are determined either theoretically or from independent 
experiments. 

Since the equations that describe particle-driven gravity currents do not admit 
analytic solutions, we outline a method for numerical solution of the model equations 
briefly in $ 3  and in more detail in Appendix A. We also present typical height, velocity 
and concentration profiles from the solution of the equations of fluid and particle 
transport and discuss their evolution. In particular, the structure of the current has an 
important effect on the settling of particles in the current, which in turn affects the 
dynamics of the current. In $4 we describe some lock-exchange experiments in which 
dense suspensions of particles were released into a long flume from behind a gate. We 
present data for the length of the gravity current as a function of time and for the final 
deposition patterns of the flow. These experimental results are then compared to the 
numerical predictions of the two-layer model. In $ 5  we summarize and discuss our 
results and conclude with an outline of future work on particle-driven gravity currents. 
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2. Theory 
2.1. Single-layer model 

Consider a particle-driven gravity current created by the release of a well-mixed 
suspension of bulk density pc into a deep ambient body of fluid of lesser density pa. The 
volume of the current is fixed and we assume that it flows over a rigid horizontal 
surface, as illustrated in figure 1 (a). The flow is driven by the difference between the 
bulk density of the current and the density of the ambient fluid. The density of the 
current, which may vary along its length, is the local volume average of the particle 
density pp and the interstitial fluid density pi and is given by 

pc (4 )  = @p - Pi) q5 +pi, (1) 

where 4 is the volume fraction occupied by the particles. 
The initial flow following the release of a gravity current of finite volume is usually 

a complex three-dimensional unsteady flow, but soon after release the current has 
spread sufficiently that its length is very much greater than its height, h(x, t) ,  which is 
slowly varying over the horizontal position x and in time t. For such conditions, it is 
reasonable to neglect vertical accelerations in the flow and to assume a hydrostatic 
pressure distribution. We also assume that the Reynolds number of the flow is 
sufficiently large that viscous forces are negligible and that the flow dynamics are 
dominated by a balance between buoyancy and inertial forces. We can then assume 
that the horizontal velocity field in the current u(x, t )  is vertically uniform. By extension 
of previous successful analyses of fixed-volume saline gravity currents, we neglect the 
effects of entrainment of ambient fluid (Huppert & Simpson 1980; Rottman & 
Simpson 1983), though the effects of entrainment are now being investigated 
(Hallworth et al. 1993). 

These assumptions lead to the shallow-water equations, which describe conservation 
of mass, 

ah a -+-(uh) = 0, 
at  ax 

and conservation of momentum, 

a a -(uh)+-"U2h++gg,(q5)h2] = 0, 
at ax (3) 

where the reduced gravity g'(4) = [pc(q5)-pa]g/pa is a function of the volume fraction 
of particles. We have assumed that q5 is small and used a Boussinesq approximation 
which neglects terms O(q5) and smaller in the equations of mass and momentum 
conservation except for the gravitational terms. We have also assumed that the 
ambient fluid is very deep compared with the depth of the gravity current so that the 
effects of the overlying fluid on the dynamics of the current can be neglected. 

The particle concentration varies throughout the current due to advection and 
settling. In this paper we neglect particle entrainment on the assumption that the 
current velocities are insufficient to lift deposited sediment into the current. We do 
consider the flow sufficiently vigorous, however, that turbulent mixing maintains a 
vertically uniform particle concentration in the current, without any detrainment of 
particle-free fluid at the top of the current. We assume that the particles leave the 
current only through the viscous sublayer at the base with a flux -us q5, where v, 
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denotes the settling velocity of an isolated particle that is appropriate when the particle 
concentration is small. This model has been used successfully in other studies of 
sedimentation from turbulent suspensions (Einstein 1968 ; McCave 1970; Martin & 
Nokes 1988, 1989). 

We then derive the equation of particle conservation, 

which may be written in the perhaps more familiar alternative form, 

by use of (2). We note from the right-hand side of (4b)  that the rate of decrease of the 
particle concentration increases with decreasing depth of the current. 

The two boundary conditions for (2)-(4) are zero flow at the end wall x = 0, 

u(0, t )  = 0, ( 5 )  

and the condition at the front of the current, which relates the velocity to the pressure 
head g’($) h at the nose x = xN(t), 

uN = FrF($N) hN]’, (6) 

where Fr is the Froude number. For gravity currents intruding into a deep ambient 
fluid with no viscous dissipation, Benjamin (1968) showed theoretically that Fr = 4 2 ,  
while experimentally Huppert & Simpson (1 980) found a value of 1.19. 

The head of a current is actually a zone of rolling, billowing three-dimensional 
turbulent motion, and the Froude-number condition at the nose in (6 )  is an effective 
lumped boundary condition, which represents the loss of momentum from the current 
to the ambient fluid as it intrudes into the surroundings. Benjamin’s theoretical value 
for Fr assumes that the momentum loss is due only to moving the ambient fluid out 
of the current’s path. The experimental value of the Froude number is somewhat lower 
because of viscous drag and turbulent Reynolds stresses, which cause additional 
momentum transfer at the head and further retard the flow of the current. 

It is convenient to non-dimensionalize (2)-(6) with some of the initial parameters of 
the current. We non-dimensionalize lengths, time and velocities by h,, (h,/g$ and 
(sl, h,)i, where h, is the initial height of the gravity current, g i  is the initial contribution 
of the particles @,-pi)+,g/p, to the reduced gravity, and 4, is the initial volume 
fraction of particles. Further, the volume fraction of particles is rescaled by $o. 
Using the previous symbols to represent the now non-dimensional variables, the 
dimensionless equations are given by 

ah a -+-(uh) = 0, 
at ax (7) 

a a 
at ax - ( u h ) + - [ ~ ~ h + i ( $ - y ) h ~ ]  = 0, 
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FIGURE 2. The long-time self-similar velocity U(y)  and height H(y)  for a homogeneous gravity 
current of fixed volume with Fr = 1.19 at the nose. 

with the boundary conditions 
u = o  (x=O) 

and u = Fr[($ - y )  h]: [x = xN(t ) ] .  ( 1  1) 

The parameter y = @,-pi)/[@,-pi)q50] is the contribution of the interstitial fluid to 
the reduced gravity. The settling number p = u,/(gb h,): is a non-dimensional settling 
velocity. In this paper we will only consider cases in which the densities of the 
interstitial and ambient fluid are equal, so that y = 0. Sparks et al. (1992), however, 
have examined the problem of particle-driven gravity currents with reversing buoyancy, 
for which y > 0. 

When /3 = 0 and there is no settling, (7)-(11) possess a long-time similarity solution 
(Fannelop & Waldman 1972; Hoult 1972; Chen 1980) 

where (14) 
1 

H ( y )  = g y z -  l ) + -  Fr” 

utv> = Y ,  
xN( t )  = [27Fr2x0/( 12 - 2Fr2)]i ti, 

and the similarity variable y is defined by y = x / x N ( t ) .  The initial volume of the gravity 
current xo in (16) is non-dimensionalized by hi. Self-similar solutions also exist for 
homogeneous gravity currents in which the volume of the current increases 
proportional to ta, where c1 is a non-negative constant, but there are some restrictions 
on their existence, as discussed by Grundy & Rottman (1985). 

Figure 2 shows the self-similar velocity and height profiles of a homogeneous or non- 
settling gravity current for Fr = 1.19. The abrupt changes in the velocity and height at 
the nose are a consequence of the nose condition in (6) .  The velocity increases linearly 
from zero at the tail to the nose velocity at the head, and the height of the current 
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increases quadratically from the tail to the head. The variation of the height of the 
current creates an adverse pressure gradient, which decelerates the flow. This loss of 
momentum throughout the current may be attributed to the nose condition, which 
represents a sink of momentum. As we shall see, when particles settle out the uneven 
loss of sediment in the current prevents this balance from being maintained and a shock 
develops. 

Initially, we tried to match our experimental data for particle-driven gravity currents 
with the numerical solution of (7)-(11) for /3 =k 0. This was not successful, and we 
concluded that, since our experiments were performed in a shallow ambient layer and 
the depth of this layer was comparable to the gravity-current depth, we must include 
the effects of the overlying fluid. While this increases the complexity of the model 
somewhat, it does not change the fundamental hydraulic and particle-transport 
assumptions. Indeed, since the two-layer model describes the experiments well, we 
expect the single-layer model to be applicable for particle-driven gravity currents 
intruding into deep surroundings. In the next section we outline the two-layer shallow- 
water equations and the new nose condition, which account for the overlying fluid in 
our experiments. 

2.2. Two-layer JEuid model 
When a gravity current intrudes into a relatively shallow surrounding fluid, the 
dynamics of the overlying fluid must be considered as well as those of the current. 
Huppert & Simpson (1980) observed experimentally that if the depth of the gravity 
current is greater than 10% of the depth of the ambient fluid, the Froude number at 
the nose depends on the ratio of these depths and is less than the value of the Froude 
number in deep surroundings. In addition, when a fixed volume of fluid is released 
from behind a gate in a lock-exchange-type experiment, Rottman & Simpson (1983) 
observed that when the overlying fluid replacing the slumping gravity current reached 
the endwall, a bore developed and propagated towards the head of the current. These 
effects result in the initial slumping behaviour of a gravity current of fixed volume in 
which the length increases linearly with time. The incorporation of the mass and 
momentum balance for the ambient fluid and slightly modified boundary conditions 
captures both the bore and the slumping behaviour, which affect the particle transport 
and long-time behaviour of a particle-driven current. 

Consider a particle-driven gravity current created by the release of a suspension into 
a body of fluid with a fixed total depth of h,, as illustrated in figure 1 (b). Using the same 
hydraulic assumptions as in the single-layer model, we can derive the dimensionless 
equations of mass conservation for the two layers as 

ah a 
-+-(uh) = 0,  
at ax 

and the dimensionless momentum balance for the two layers as 

-(uh) a +-(U2h a +&hh2) + h- aP = 0, 
at ax ax 

a a ah ap 
- (u, h,) + - (u: h,) -yh, - + hu - = 0, at ax ax ax 

(19) 
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while the equation of particle conservation is again 

where h, and u, are the depth and velocity of the upper or overlying ambient fluid, and 
p is the pressure at the interface between the two fluids. The pressure is non- 
dimensionalized by p,gh h,, and the other variables are scaled as before. 

The depth and velocity of the ambient fluid can be written in terms of the variables 
that describe the gravity current. Because the total depth of the two layers is fixed, the 
dimensionless depths of the current and ambient layers are related by 

(22) 
For a gravity current of fixed volume with no flow at the endwall (x = 0), we can 
deduce from (17), (18) and (22) that 

(23) 

h(x, t )  + h,(x, t )  = 1. 

4x9 t )  0, t )  + uu(x, t )  h,(& t )  = 0, 

which states that there is no net flux across any vertical cross-section. 

interfacial pressure, we can derive the combined two-layer momentum equation 
Using (22) and (23) and adding linear combinations of (19) and (20) to eliminate the 

a a a -(uh)+(l-h)-[U%+;(4-y)hz]+h-[uh(l -h)] = 0. 
at ax ax 

Note that for a gravity current in very deep ambient fluid, h z 0, for which case the 
third term in (24) is negligible and the single-layer shallow-water momentum equation 
is recovered. 

The two-layer model comprises the three equations (17), (21) and (24) for the three 
variables h, u and 4 that describe the gravity current together with appropriate 
boundary conditions. Huppert & Simpson (1980) found that the Froude number at the 
nose varied in relatively shallow surroundings with the ratio of the height of the gravity 
current to the depth of the ambient fluid. Experimentally, they found that the 
dimensionless nose condition is 

uN = Fr[(#N - 7) hNl', 

where Fr = 1.19 (0 < hN < 0.075) (25 4 
= 0Sh$ (0.075 < hN < 1). (25 b) 

This experimental correlation for the Froude number is qualitatively similar but always 
less than Benjamin's (1968) theoretical prediction for the Froude number at the front 
of a current that intrudes into shallow surroundings. The difference between the results 
is due to viscous drag and Reynolds stresses along the head of the current which 
increase the momentum loss at the front, as discussed earlier. The additional boundary 
condition is still zero flow at the endwall. 

Rottman & Simpson (1983) solved similar two-layer shallow-water equations and 
boundary conditions numerically to study the slumping of a fixed-volume homo- 
geneous gravity current and its transition to the long-time similarity solution. They 
were successful in modelling their experiments for initial values of the current depth 
less than or equal to about half that of the total depth. For greater initial depths, they 
were not able to include in their numerical scheme the bore that forms when the 

12-2 
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overlying fluid that replaces the collapsing gravity current reaches the endwall. In the 
next section we briefly describe our method of numerical solution, which includes 
the equation of particle conservation and captures the formation of the bore. 

3. Numerical results 
3.1. Numerical method 

When particles settle out of the current, that is for /3 =k 0, there is no analytic solution 
to either the single- or the two-layer equations for a particle-driven gravity current, and 
so the equations must be solved numerically. The numerical method must be able to 
determine the position of the moving front or nose of the current and handle any 
shocks or jumps that occur in the system of hyperbolic equations. 

We need to solve three simultaneous partial differential equations for the 
conservation of mass, momentum and particles in the current. In the single-layer model 
these equations are (7)-(9) subject to the boundary conditions (10) and (11); for the 
two-layer model they are (17), (21) and (24) subject to the two-layer nose and endwall 
boundary conditions. Because the front of the current translates, it is convenient to 
transform the spatial variable x to the new variable y = x/xN(t). The range of this new 
spatial variable is confined to [0,1], and the nose is fixed at y = 1. It is also more 
convenient to solve the equations for the conservative variables h, q = uh and 91 = $h. 
The transformed equations and their boundary conditions in the conservative variables 
for the single-layer model are given in (A 3F(A 7 ) .  

These equations are solved using the two-step Lax-Wendroff method as outlined, 
for example, by Press et al. (1986, pp. 623-625). The method is explicit in its forward 
time integration at the differencing grid points in the interior of the domain, but there 
must be some additions to the method to compute boundary points. The boundary 
conditions provide one relationship at each end of the spatial domain of the flow; but 
clearly there are three dependent variables to be specified at each boundary, and so 
there must be two more equations at each boundary. These additional relationships are 
derived from the characteristic equations for the single- or the two-layer model. This 
technique for determining the end points of an explicit finite-difference scheme using 
the method of characteristics is described, for example, by Abbott & Basco (1989, pp. 
225-234), and is discussed in greater detail in Appendix A. The velocity of the front at 
each time step is then determined by this technique and the length of the current is 
updated with a trapezoidal integrator. This numerical method is accurate to second 
order in both time and space. 

Because the equations are hyperbolic, they can and, as we shall see, do admit shocks, 
and some modifications must be made to account for them. There is some numerical 
dissipation in the Lax-Wendroff method, but to ensure a smoother transition between 
supercritical and subcritical flow regimes, a small amount of extra dissipation is added 
to the momentum equation in the form of a bulk-viscosity term, as shown in (A 16). 
This term only becomes important where the gradients in velocity are very large and, 
other than smoothing out the shocks and decreasing overshoots in transitions, does not 
affect the dynamics of the flow. 

3.2. Profiles for a current in deep surroundings 
The height, velocity and concentration profiles for a particle-driven gravity current 
intruding into a deep ambient fluid are presented in figures 3 and 4. The fixed volume 
of fluid begins at rest and its length is initially one half the starting height. The settling 
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FIGURE 3. The numerically determined profiles of the height h(x, t )  of a collapsing particle-driven 
gravity current of fixed volume at early times intruding into: (a) a very deep body of ambient fluid; 
(b) a shallow body of ambient fluid. In each case the current is initially at rest and has a dimensionless 
volume per unit width g = 0.5 and a settling number p = 5 x The successive times are noted next 
to each profile. 

number p here is 5 x lop3, which is within the range of geological values for this 
parameter; for example, this value would be appropriate for a turbidity current with 
an initial volume fraction 5 YO of 200 pm-diameter sand and initial height of 20 m, for 
which us = 2 cm sP1 and gh = 0.81 m s - ~ .  

The dynamics of the current can be roughly divided into three phases: an initial or 
starting phase, during which the initially stationary fixed volume of fluid collapses and 
approaches the self-similar solution though very few particles have yet settled out of 
the current; a transition phase, in which the particles are preferentially removed from 
the rear of the current and the fluid in the tail decelerates less rapidly than the nose; 
and a travelling shock phase, during which a bore develops within the current and 
separates a particle-free jet region from a relatively particle-rich gravity-current region. 

Figure 3 (a) shows the height profiles in the starting phase of the current. The initially 
stationary fluid collapses from the front of the current, first creating a wave that a short 
time later is reflected from the endwall and travels towards the front. Meanwhile, the 
current lengthens as the front propagates and the height profile approaches the self- 
similar shape depicted in figure 2. During this phase very few particles settle out from 
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the current, as may be seen from the particle concentration profile in figure 4(c) and 
the time trace of the total concentration in figure 8. In this initial phase the current 
behaves very much like a homogeneous current as described by Rottman & Simpson 
(1 983). 

As particles settle out from the current, however, the structure of the current changes 
markedly from the near self-similar form. Figure 4 shows the height, velocity and 
concentration profiles during the transition and travelling-shock phases. The height 
and velocity profiles look like the self-similar form until about t = 15. Shortly 
thereafter, the fluid behind the nose of the current no longer decelerates as rapidly as 
the nose and a maximum in the velocity appears. Meanwhile, during the transition 
phase, the height of the current near the front is increasing and the particle 
concentration is decreasing more rapidly in the rear of the current than near the front. 
Eventually, a distinct travelling shock or bore forms in the current, as seen by the very 
rapid transitions in the height and velocity. The overshoot in the height of the current 
and the small oscillations at the bore are due to the limitations of the numerical method 
in resolving the discontinuity, but do not change its characteristics very much. We note 
that the concentration of particles varies continuously across the shock by virtue of the 
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FIGURE 4. The numerically determined profiles at later times for the current described in 3(a).  
Illustrated are (a) the height h(x, t ) ;  (b) the velocity U ( X ,  t ) ;  and (c)  and (d )  the volume fraction of 
particles $(x, t )  with two different scales. 

conservation of particles and fluid. At this stage the fluid in the rear of the shock is 
effectively particle-free and the fluid in front is relatively particle-rich. 

The formation of the travelling shock is due to the differential settling of particles 
along the length of the current. We recall that the variation in the height from the head 
to the tail of the current establishes a pressure gradient that decelerates the fluid behind 
the nose. The particles settle out more rapidly towards the rear of the current, due to 
the smaller height there, and consequently the density and pressure gradient in the tail 
is reduced. Thus, the rearward fluid is not decelerated sufficiently rapidly to maintain 
the self-similar profile. As a result, the rearward fluid accumulates behind the head due 
to the slower movement of the nose. The particle concentration in the tail virtually 
vanishes, and the flow there is like a jet, since the motion is due to the momentum of 
the particle-free fluid and the effects of buoyancy are negligible. Near the front, the 
current is still relatively rich in particles, though the concentration is small compared 
to the initial value, and so it continues to behave like a buoyancy-driven flow. The 
travelling shock is a consequence of matching of the jet-like flow in the rear of the 
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current to the buoyancy-driven flow in the front. The shock equations are those for 
the shallow-water equations with the density of the current written as a function of 
the particle concentration. 

The shock propagates forward and eventually comes sufficiently close to the front 
that our numerical method with a fixed number of spatial grid points in y can no longer 
resolve it. A finer discretization near the front could be used to extend the 
computations, but it is not practically worthwhile. The initial suspension of an 
experimental current, as described below, contains some fine particles, and when the 
concentration near the front becomes very low in the shock phase, those fines that 
remain in suspension probably dominate the behaviour of the current but are not 
accounted for in the model. 

While the division of the evolution of the current into three phases is convenient, it 
is also somewhat arbitrary. Depending upon the value of p, the first two phases may 
in fact overlap. For example, if is large the particles settle out rapidly as the current 
collapses, and the shock develops immediately. The values for the settling number in 
our experiments are in the range of lo-* to and estimates for some geological- 
scale particle-driven gravity currents are in a similar range. Thus the sequence of events 
shown here is probably not uncommon for such a current intruding into deep 
surroundings. 

3.3. Profiles for a current in shallow surroundings 
A gravity current of fixed volume can be generated by removing a gate separating a 
volume of dense fluid from lighter ambient fluid. It has been observed that if the initial 
height of the gravity current is more than 70 YO of the depth of the ambient fluid, the 
current does not merely collapse and approach the self-similar flow, but that another 
gravity current comprising the ambient fluid moves over the dense underflow in a lock- 
exchange flow until it reaches the endwall. A bore is then reflected towards the front 
which it eventually overtakes. The underlying current then continues its intrusion into 
the ambient fluid. 

This sequence of events is illustrated both experimentally and numerically in the 
photographs and height profiles in figure 5. The experimental photographs (from 
Rottman & Simpson 1983) and numerical profiles are for a saline current with an initial 
height equal to the ambient fresh water depth of 7 cm, an initial length of 50 cm, and 
a value of the reduced gravity g’ = 47 cm s - ~ .  The sequence of events determined from 
the numerical solution of the two-layer model equations shows almost the same 
quantitative behaviour as seen in the experiment. The distance downstream of the nose 
of the gravity current is predicted quite accurately. The fresh water is predicted to flow 
over the gravity current slightly faster in the lock-exchange phase of the flow than is 
observed experimentally. This is probably because no viscous resistance is included for 
the gravity-current-like flow of the ambient fluid. The bores in the last two numerical 
profiles have propagated slightly further than in the experiments, but this is due to the 
greater speed of the surface current and its earlier reflection in the numerical 
simulation. The distance between the experimental and numerically observed bores, 
however, is about the same. 

Rottman & Simpson (1983) tried to use the two-layer shallow-water equations to 
model this bore formation in a homogeneous gravity current. They used the method 
of characteristics to solve the equations and found it rather difficult to fit the shock into 
the solution since it is necessary to apply the shock equations relating to conjugate 
states (of which there are four for this system!) and match them to the flow. However, 
our method is well adapted for shock resolution since it computes the shock and its 
dynamics as part of the solution. The accurate comparison between the experiment of 
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FIGURE 5. (a) Shadowgraphs of a homogeneous gravity current of salt water collapsing in a shallow 
body of fresh water from Rottman & Simpson (1983). The initial dimensions of the current are 
h, = 7 cm and x, = 50 cm with the reduced gravity g’ = 47 cm ss2. The vertical lines indicate 
positions in the tank and are at 10 cm intervals. (b) Numerically determined profile of the same 
current using the two-layer model. The good agreement between the numerical and experimental 
results is clearly evident. 

Rottman & Simpson and our calculations is one verification of our model and the 
numerical technique. 

For a particle-driven current collapsing into a relatively shallow fluid, the sequence 
of events is initially rather similar to that for the homogeneous current in figure 5. 
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FIGURE 6(a ,  b). For caption see facing page. 

Figures 3(b) and 6 present the height, velocity and concentration profiles for an 
initially stationary fluid with a starting height equal to the depth of the surrounding 
fluid and a settling number p = 5 x Again, the dynamics of this current can be 
conveniently divided into three phases : a slumping phase, during which the current 
collapses and the bore between the ambient and current fluid forms; a transition phase, 
in which the first bore vanishes and the internal bore begins to appear; and finally the 
internal travelling bore phase already noted. 

Figure 3 (b) depicts the height profile for the gravity current at early times. As in the 
homogeneous example in figure 5 ,  a bore forms after the overlying gravity current 
composed of ambient fluid reaches the endwall. The bore is similar to the wave 
reflected from the endwall for the current intruding into deep surroundings in figure 
3(a). The height of the current behind the bore, however, is much shallower than the 
depth of the current in the other case. The height of the front also remains constant as 
the bore travels towards the nose of the current, unlike the current collapsing into deep 
surroundings. Eventually the bore reaches the front of the current and, as seen in figure 
6, the rearward fluid begins to catch up with the nose and the height near the front 
begins to increase. An internal travelling shock develops within the current, which, as 
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FIGURE 6. The numerically determined profiles at later times for the current described in 3(b). 
Illustrated are (a) the height h(x, t ) ;  (b) the velocity u(x, t ) ;  and (c) and (d )  the volume fraction of 
particles $(x, t )  with two different scales. 

before, separates a particle-free jet region in the rear from a relatively particle-rich 
region near the front. 

Clearly, the initial collapse of a particle-driven gravity current is very different 
depending on whether it is intruding into relatively shallow or deep surroundings. 
Further, although the transition and travelling-bore phases are qualitatively similar for 
the two conditions, the length of the current as a function of time and the particle 
distribution within the current remain noticeably different. 

Figure 7 compares the lengths of currents as a function of time for the two particle- 
driven gravity currents and two homogeneous currents, with the same initial densities, 
intruding into either deep or shallow surroundings. Not surprisingly, the lengths of the 
particle-driven currents at early times are the same as the equivalent homogeneous 
currents because very few particles have settled out of the suspension. At later times, 
the lengths of the particle-driven currents are less than their homogeneous counterparts 
because the loss of particles reduces the buoyancy driving force at the nose. For flows 
either with or without particles, the length of the current intruding into the deeper 
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FIGURE 7. The numerically determined length as a function of time for homogeneous and particle- 
driven gravity currents. The dimensionless volumes per unit width of the currents are q = 0.5 with an 
initial height of unity and length of one half. The initial reduced gravity for the particle-driven current 
is the same as that of the homogeneous current. The settling number for the particle-driven current 
is p =  5 x The upper pair of curves are for a homogeneous current and the lower pair are for 
a particle-driven gravity current. The solid curves were computed using the single-layer model and 
the dotted curves using the two-layer model. 
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FIGURE 8. The total integrated volume fraction of particles as a function of time for the gravity 
currents described in figure 3. The solid curve is for a current intruding into a deep body of ambient 
fluid and the dotted curve is for a current intruding into a shallow body of ambient fluid. 

surroundings initially increases in proportion to ti while the length of the current in 
shallow surroundings initially increases in proportion to t ,  due to the bore which 
maintains a constant height and velocity at the nose. Subsequently, there is a cross-over 
in the lengths. Once the bore reaches the front of the currents in shallow surroundings, 
the velocities of the currents are about the same, though the lengths of the currents in 
shallow surroundings are greater than their counterparts in deep surroundings. 

The total concentration of particles as a function of time for the two sediment-laden 
currents are compared in figure 8. The differences are rather small, with the current in 
shallow surroundings having a slightly higher concentration of particles. The bore that 
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occurs for the current in shallow surroundings, however, strongly affects the deposition 
pattern of the sediment. This is discussed in the following section, in which we compare 
our numerical predictions with experimental measurements. We also consider the 
effects of the value of the settling number on the length of the current as a function of 
time and on the deposition patterns. 

4. Experiments 
We performed several experiments with particle-driven gravity currents to determine 

both their lengths as a function of time and the resulting areal density of their deposits. 
The experiments were performed in a glass tank 10 m long, 26 cm wide and 48 cm deep. 
The tank was filled to a height of 30 cm with tap water. A Perspex gate with foam seals 
around its edges was placed 15 cm from the endwall, so that the volume of fluid behind 
the gate was 11 700 cm3. 

The suspension for the current was made by mixing fairly monodisperse, non- 
cohesive silicon carbide particles in the water behind the gate. As a precaution, a small 
amount of Calgon was added to ensure the particles would not coagulate. The mean 
particle sizes ranged from 9 to 53 pm and all particles had a density of 3.217 g ~ m - ~ .  
The total mass of solids initially suspended varied from 100 to 800 g while the volume 
fraction of particles in the suspension was always less than 2 YO. This is consistent with 
the assumption in the model that g5 4 1. The initial values of the reduced gravity of the 
currents ranged from 5.7 to 45.8 cm sP2. 

After the suspension of particles had been well-mixed, the gate was lifted to release 
the gravity current. As the current propagated down the tank, the position of its front 
was marked on the glass wall of the tank at 5 or 10 s intervals and the distance from 
the end of the tank was recorded at the conclusion of the experiment. In several cases, 
after the current had reached the end of the tank, the surface density of the deposit was 
measured along the length of the tank. A Perspex cylinder with an internal diameter 
of 9.35 cm was centred on the bottom of the tank at specific locations along the tank, 
and all the sediment within it was ‘vacuumed up’ with a siphon tube. The particles 
were collected in a beaker, the water decanted and the particles dried and weighed to 
determine the mass of deposit per unit area. As a check on the method for collecting 
the sediment, the total mass of sediment was calculated by integrating the measured 
deposition profile. The calculated value was always within 5% of the actual initial 
weight of particles in the suspension, which confirmed the accuracy of the vacuuming 
technique. 

A series of photographs of a typical particle-driven gravity current is shown in figure 
9(a). In order to photograph the entire current, these were taken in a smaller tank, but 
the behaviour of the current is similar to that in the large tank for all the other 
experiments. The current was composed of 75 g of 53 pm-diameter particles mixed 
behind a gate 8 cm from the back wall of the tank, which was 27 cm wide and filled to 
a depth of 14 cm. The initial value of the reduced gravity was 15.2 cm s-’. After the 
gate was removed, the front propagated downstream and the bore quickly developed 
and moved towards the front. The precise location of the shock is difficult to determine 
since there is some shedding of the dyed interstitial fluid from the back of the bore. 
Figure 9 (b) shows plots of the height of the current from numerical integration of the 
two-layer model. The predicted lengths of the current agree well with the photographs 
though, as already discussed in regard to the saline current in figure 5, the bore is 
predicted to form sooner than observed and thus appears further downstream. The 
weak shock at 21 s shown in the numerical prediction is the beginning of the internal 
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travelling shock that forms in the later stage of the flow of particle-driven gravity 
currents, and such a structure arguably appears in the corresponding photograph. 

Figure 10 presents the lengths as functions of time for particle-driven gravity 
currents with initial loads of sediment of 400 g and particle sizes of 9,23, 37 and 53 pm. 
The length as a function of time is also presented for a saline current with the same 
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FIGURE 10. The length as a function of time for gravity currents composed of suspensions of silicon 
carbide particles or of salt solutions released into a tank of fresh water. The initial dimensions per unit 
width of the currents was 30 cm high x 15 cm long. The depth of the water in the tank was 30 cm and 
the initial reduced gravity for all the currents was 22.9 cm s - ~ .  The symbols are from experimental 
measurements and the curves are from the numerical solution of the two-layer model. The particle 
sizes are listed on the figure. 

initial value of reduced gravity 22.9 cm s-’. At early times the lengths of all these 
currents were identical, because very few particles had settled out of the particle-driven 
currents. In fact the lengths grew linearly with time while they were in the slumping 
phase, as discussed earlier. At later times the lengths of all the currents increased more 
slowly, and the length of the saline current exceeded that of the particle-driven 
currents, which decreased with increasing particle size. The larger particles settled out 
more rapidly, thus reducing the density difference between the current and the ambient 
fluid and hence the driving buoyancy force. 

Also plotted in figure 10 are the theoretical predictions of the two-layer model for 
the lengths of the currents as a function of time. For all but the smallest particle size 
and the saline current, the agreement between the theory and experiments is very good. 
In the cases of the saline current and the current with 9 pm-diameter particles, the 
agreement is initially very good while the inertial forces dominate the viscous forces, 
but at long times the viscous forces are no longer negligible, and this effect is not 
included in our model. 

It is curious that the inertial forces dominate the dynamics of most of the particle- 
driven gravity currents for so much longer than the saline current. To understand this 
and to determine the time limit of validity for the model, we need to know when a 
particle-driven gravity current makes the transition from an inertial-buoyancy balance 
to a viscous-buoyancy balance. 

The time for transition from one regime to the other has been determined 
experimentally by Huppert & Simpson (1980). They found for a homogeneous gravity 
current that the dimensional time, t,, when the current changes from inertial to viscous 
flow is given by 

t ,  = O.5(q4/v3g’’)~, 

where v is the kinematic viscosity and q is the volume per unit width of the current. 
Because the reduced gravity g’ is time-dependent for a particle-driven gravity current, 
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FIGURE 11. The time trace of the Reynolds number Re = (u, h,/v) (h,/x,) computed by the two-layer 
model for the gravity currents in figure 10. When the Reynolds number is greater than the critical 
value of 2.25, the current is dominated by an inertial-buoyancy balance, and below that value viscous 
forces dominate the inertial forces and our models are no longer applicable. 

it is more convenient to have a criterion in terms of a Reynolds number, Re, which 
quantifies the relative importance of inertial to viscous forces in the current. From the 
time of transition we show in Appendix B that the critical Reynolds number, Re,, 
below which the viscous forces dominate is 

Re, = 2.25, (27) 

where Re = (uix ~ I v )  ( h i v I ~ N )  (28) 
in terms of the height and velocity at the nose. 

The values of the Reynolds numbers computed from the model for the currents in 
figure 10 are shown in figure 11. The Reynolds numbers for all the currents are largest 
in the initial phase during which their fronts are moving most rapidly and their lengths 
are shortest. The Reynolds number decreases as the current lengthens and then drops 
dramatically at the time when the initial bore reaches the nose of the current. Until this 
point the height and velocity at the nose are constant and the Reynolds number 
decreases only because the length of the current is growing. After the bore has reached 
the nose, the Reynolds number decreases due to the now decreasing velocity and height 
at the front as well as to the growing length of the current. For particle-driven currents, 
the Reynolds number has a shallow minimum followed by a slightly larger, almost 
plateau, value. The minimum in the Reynolds number reflects the minimum in the 
height at the nose as seen in the profiles in figures 4 and 6. At large times the Reynolds 
number is greater for the particle-driven currents than for the homogeneous current 
due to the relatively larger height at the front and to the shorter length. 

For the saline current and for the current with 9 ym-diameter particles, the Reynolds 
number drops below 2.25 and into the viscous regime after about 50 s. This is also the 
time when the theoretical prediction of the length deviates above the experimental 
value because of this transition. The current with 9 ym-diameter particles effectively 
behaves like the saline current, because the particles have a small settling velocity and 
very few have settled out in the first 200 s. For the other particle-driven currents, the 
Reynolds number is always sufficiently large to ensure that the dynamics of the current 
are dominated by inertial forces rather than by viscous forces. For the current with 
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FIGURE 12. The length as a function of time for particle-driven gravity currents composed of 
suspensions of nominally 37 pm diameter particles with varying initial masses of sediment. The 
symbols are the experimental measurements and the curves are numerical predictions using : (a) the 
single-layer model; (b) the two-layer model. The initial masses are listed on the figure. 

23 pm-sized particles, the Reynolds number dips slightly below Re, for a time, which 
is consistent with the small deviation between the theory and the experiment in figure 
10. 

The initial mass of sediment was also varied between 100 and 800 g for a suspension 
of particles that had a nominal diameter of 37 pm. The lengths of the currents as 
functions of time are presented in figure 12 along with the theoretical predictions from 
both the single-layer and two-layer models. Clearly, the two-layer shallow-water 
equations are superior for modelling the experiments, and the agreement between the 
theoretical and experimental points is extremely good. The two-layer model captures 
the initial slumping behaviour and the long-time motion of the front of the current as 
well. 
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FIGURE 14. The final areal density of deposit after the flow of particle-driven gravity currents with an 
initial mass of 400 g 53 pm-diameter particles. The curves are the numerical predictions from the 
single-layer model (dotted line) and the two-layer model (solid line), and the symbols are the 
experimental measurements. 

Typical areal densities of the deposit as a function of the downstream distance are 
presented in figures 13 and 14. The experimental densities of the deposit profile increase 
from the wall to a maximum value and then decrease towards zero. The magnitude of 
the maximum in density depends on the particle size, and the deposits of smaller 
particles have a slightly larger maximum than the deposits with the larger particles. The 
predicted values of the density of deposits from the two-layer model are also illustrated, 
and they match the measured values very closely. 

Also included in figure 14 is the prediction of the deposition from the single-layer 
model. Both theoretical curves show the density of the deposit decreasing downstream, 
but the predictions from the two-layer model are lower at the endwall and decrease less 
rapidly than those of the single-layer model. The difference in the patterns of 
deposition is due to the initial bore and to its effects on the sedimentation rate in the 
two-layer system. When the bore forms, most of the fluid of the current accumulates 
in front of this travelling shock, and so the height of the current near the nose ‘is greater 



Particle-driven gravity currents 363 

than that predicted by the single-layer model. The greater height reduces the settling 
rate so that particles are advected further downstream, as is clearly shown by 
comparison of the two theoretical predictions of the deposition. 

In some cases, there is a maximum in the density at about 100 cm downstream of the 
endwall, which neither model predicts. We suspect that when the current collapses and 
the initial bore appears, the flow may be sufficiently fast and turbulent to sweep 
sedimented particles downstream, but not so vigorous as to lift many particles back 
into the current. The maximum does not appear for the current with initially 100 g of 
53 pm particles (figure 13), probably because the particles are too heavy to be swept 
forward by the flow which is relatively weaker than the current with initially 400 g of 
particles (figure 14). But, despite this unaccounted for transport in the deposit, the 
agreement between the predictions of the two-layer model and the measurements from 
the experiments is remarkably good. 

5. Discussion 
We have presented a successful model for describing the dynamics and deposition of 

a particle-driven gravity current of fixed volume. The dynamics of the current are 
controlled by a balance between the inertial forces of the flowing fluid and the 
buoyancy forces derived from the suspension of dense particles. The flow of the current 
is described with shallow-water equations, which are derived from the usual hydraulic 
assumptions of vertically uniform flow and a hydrostatic pressure distribution within 
the current, and include the contribution from the concentration of particles. 
Entrainment or detrainment of fluid at the top of the current is taken to be negligible. 
The particles are transported within the current by advection, and they settle out 
through a viscous sublayer at the bottom of the current without re-entrainment. At any 
position along the current the concentration of particles is assumed vertically uniform 
due to turbulent mixing. 

The motion of any inertial gravity current is strongly controlled by the front, and we 
expressed this by the relationship between the velocity and the square root of the 
pressure head, uN = Fr(r& h,);. This boundary condition represents the resistance to 
the motion of the head due to the inertia of the ambient fluid and viscous drag and 
turbulent Reynolds stresses on the head of the current. (The effects of drag forces are 
assumed only to be important at the head in so far as they change the value of the 
Froude number, Fr.) The Froude number at the head can vary with the ratio of the 
depth of the current to the depth of the surrounding fluid. 

Our results show that when the depth of the current is comparable to the depth of 
the ambient fluid, such as in our experiments, the dynamics of the fluid overlying the 
current must also be included in the model. The same hydraulic assumptions are 
applied, and the equations of mass and momentum conservation of the overlying fluid 
are now coupled to the flow of the current. The model is only slightly more 
complicated, but the improvement in comparisons between the theoretical predictions 
and our experimental results is substantial. 

The numerical solution of the model equations shows that two types of travelling 
shocks can occur in particle-driven gravity currents. An internal travelling shock 
occurs in the latter stages of the propagation, computed with either the single- or two- 
layer model, which separates a particle-free jet-like flow in the rear of the current from 
a dense, buoyancy-driven flow near the front. The other type of bore occurs only in the 
initial or slumping phase of currents that have an initial height equal to the depth of 
the surrounding fluid. This bore occurs irrespective of whether the current is 
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homogeneous or particle-driven, but it strongly affects the particle transport and the 
dynamics of the current for the latter type. Indeed it is the more important shock for 
modelling the experiments and is particularly critical for the accurate prediction of the 
deposition patterns of the sediment as seen in figure 14. 

The agreement between the theoretical predictions using the two-layer model and the 
experimental measurements for the length of particle-driven currents as functions of 
time and their deposition patterns is very good. The agreement is especially significant 
because our model has no adjustable parameters. The Froude-number condition at the 
nose is determined from previous independent experiments on homogeneous gravity 
currents, and the settling velocity is just that determined from theoretical Stokes flow 
around spherical particles. 

The present model can easily be modified to include concentrated suspensions and 
polydispersity. In our experiments the concentration of the particles was sufficiently 
dilute that the appropriate settling velocity for the model was that of an isolated 
particle. Correlations for the settling velocity of more dense suspensions that depend 
upon the concentration, however, could easily be included in our model. A current with 
a polydisperse suspension could be modelled by a discrete distribution of particle sizes, 
each of whose volume fraction obeys equation (4) for the conservation of particles 
with the appropriate settling velocity. 

There are several phenomena which have not been analysed here that can be 
important in the flow of some natural gravity currents. As mentioned earlier, in 
particle-driven gravity currents with reversing buoyancy, the interstitial fluid is less 
dense than the ambient fluid so that, when sufficient particles have settled out, the bulk 
density of the current becomes less than that of surroundings, and the current rises 
like a buoyant plume. The point of liftoff for these currents has been discussed and 
predicted reasonably well by Sparks et al. (1992) using the model described here with 
a positive value for y and some adjustments to account for the onset of buoyancy 
within the current. 

Other interesting influences on the motion of gravity currents that can be included 
within the framework of our model include the effects of a slope with the additional 
acceleration due to the component of gravity. Indeed, for flows down a slope, the drag 
on the current due to the rigid boundary and the entrainment of ambient fluid can also 
be very important, as has been pointed out by Ellison & Turner (1959). These too can 
easily be included in our model with the friction factors and entrainment correlations 
taken from experimental results of previous studies. The entrainment of particles and 
the other processes mentioned are critical to the dynamics and deposition of, for 
example, ignited turbidity currents (Parker, Fukushima & Pantin 1986) flowing down 
erodable slopes, which occur in marine environments. Our future work on particle- 
driven gravity currents will explore all these effects, which can be incorporated within 
the structure of the model presented here. 
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Appendix A. Numerical techniques 
The equations and boundary conditions describing the dynamics of the flow and the 

transport of sediment in a particle-driven gravity current must be solved numerically 
for both the single-layer and the two-layer models. There are two aspects of the 
problem that make it interesting numerically. First, the front of the current is a moving 
boundary and its position must be determined as a function of time along with the rest 
of the flow field. Second, the equations are hyperbolic and thus admit shocks or 
discontinuities, and some allowances for them must be made in the numerical method. 
Here we address both these issues and outline a method for the numerical solution of 
the equations for the particular case of the single-layer model. The same techniques, 
though, are easily extended to the two-layer model. 

A.l. Moving front and numerical method 
Because the front of the current is moving and the Froude-number condition must be 
applied at the nose, it is more convenient to transform the equations from the (x, t )  to 
a (y, r )  coordinate system, where y = x/xN(t) and r = t. This maps the spatial domain 
to the finite interval [0,1] and the position of the front to the fixed point y = 1. The 
differentials are then given by 

and 

Applying these differential transforms to (7)-( 1 1) in terms of the conservative 
variables h, q = uh and v = $h, we find the equations for the single-layer model are 

with the boundary conditions 
q = o  (Y = O h  

q = Fr@- yh)ih (y = l), 
where r has been replaced by t. 

These equations are solved using the two-step Lax-Wendroff method described by 
Press et al. (1986, pp. 623-625) and Abbott & Basco (1989, pp. 225-234). This is an 
explicit finite-difference method that is accurate to second order in both time and space. 
Briefly, the scheme first uses the Lax method to integrate forward half a time step and 
estimate the variables on a staggered spatial grid that is offset by half a spatial step 
relative to the initial grid. The equations are then integrated a full time step forward, 
back onto the original grid, using a centred time and centred space integrating scheme 
with the points from the Lax method that are half a time step forward and the points 
at the current time step. Because the method is explicit, it requires only the current 
length and velocity at the nose of the gravity current, and not those values at the future 
time. Thus no iterations on the length and velocity at the nose are needed. 
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There are various advantages and disadvantages in using an explicit method rather 
than an implicit method for solving hyperbolic equations, and these are discussed at 
length in Abbott & Basco. We elected to use an explicit method because the 
computational algorithm does not depend upon if or where a shock exists. If it does 
exist, with the inherent or added numerical dissipation, the shock appears simply from 
the integration. This is unlike implicit schemes, for which several algorithms are 
necessary to handle the different regions of flow on either side of the shock. To know 
where to apply these algorithms, the shock velocity and strength must also be 
determined as part of the problem, which is an added complication. An explicit scheme 
has the disadvantage that a small time step is required to ensure numerical stability, but 
it only takes two or three minutes to run a simulation on a SUN IPC, so execution time 
is really not an issue. A difficulty with using explicit schemes for solving hyperbolic 
equations, which is minor compared with the advantage of using them for dealing with 
shocks, is that the points at the boundaries must be computed with an auxiliary 
method. 

The evolution of the interior differencing points is completely specified by the 
Lax-Wendroff method, but this is not so for the end points. There are two boundary 
conditions specified, but six variables must be determined at the end points, so we need 
to specify four more conditions. We note that there can be no more additional 
boundary conditions; one at each end, as we shall see, is exactly the number that may 
be specified. The additional conditions are provided by the characteristic equations at 
each boundary. 

There are three characteristic velocities in the flow, which are 

dyldt = C+ - = x;'(u -yX, & [($ -7) A]:), 
dyldt = c = x;'(u -yXN) 

(A 8) 
(A 9) 

in the transformed coordinate system, where (A 8) corresponds to the forward- and 
backward-propagating wave speed for shallow-water waves, and (A 9) is the rate that 
particles are advected in the flow. For a hyperbolic system of equations, the number and 
location of specified boundary conditions are the number and location of characteristics 
that propagate into the flow domain. By inspection of (A 8) and (A 9), there is one 
inward-propagating characteristic with velocity c- at y = 1, since u = 2, at y = 1, and 
another with velocity c+ at y = 0. Thus the condition of no flow at y = 0 and the nose 
condition at y = 1 are indeed the most that we can specify. 

The other conditions on the boundaries are determined from the characteristic 
equations that are satisfied along the characteristics that are not inwardly propagating. 
At y = 0 these are 

d$/dt = -P$/h on dyldt = 0, (A 10) 

- 
dt 

u = O  at y=O,  

d$/dt = -P$/h on dyldt = 0, 
and at y = 1 these are 

dt u+2[($-y)h]z ') -- :(f)"t! - - = o  on 9 dt = x~'(u--pli,+[($-~)~]i), (A 14) 

where we have reiterated the boundary conditions for completeness. 
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Here we obtain three equations and three unknowns at each boundary, and these are 
solved using the standard first-order method of characteristics. (Since the variables are 
only known at the grid points, spatial interpolation is used to determine their values 
on the appropriate characteristics that are projected towards the boundaries at the next 
time step.) The height, velocity and volume fraction of particles are then determined 
explicitly at each time step. Once the velocity at the front is known at the new time, the 
length of the gravity current is updated with a trapezoidal integrator, which is accurate 
to second order in time. 

A.2. Numerical dissipation 
The Lax-Wendroff scheme has an inherent numerical dissipation that damps high- 
frequency disturbances. This is sufficient for the resolution of weak shocks in 
hyperbolic systems, but to resolve strong shocks extra dissipation must be added to the 
momentum equations. Using a form suggested by Taylor (see Roache 1972, pp. 
25&254), the momentum equation in (x, t)-coordinates becomes 

ax a ( ::) a a 
-(uh)+-((UhZ+~($-y)hZ) = - a,- , 
at ax 

where a, = b, Ax(lul+ c,) h, (A 17) 
and c, = u + [($ - y )  h]i is the local wave speed. The parameter b, is some constant less 
than unity; a value of 0.3 was used for the simulations in this paper. 

This added numerical dissipation has been shown to be very good at removing or at 
least minimizing high-frequency oscillations and overshoots that occur at shocks 
without changing the strength or velocity of the shock very much from the values one 
would derive analytically with jump conditions. The form of the dissipation is also 
constructed to be negligible except near the shock where the velocity (or height by 
virtue of the continuity equation) changes rapidly. 

In the transformed space the momentum equation for the single-layer model with the 
extra numerical dissipation is 

where au = b, Ay(lul+ c,) h. (A 19) 

The addition of the extra numerical dissipation does not change the size of the time 
steps or the stability of the method unless b, is too large. Because the extra dissipation 
is negligible everywhere except at the shocks, it need not be considered in determining 
the points on the boundaries with the method of characteristics as long as the shocks 
are not near these end points. 

Appendix B. Critical Reynolds number 
Initially, the dynamics of a gravity current of fixed volume are dominated by a 

balance between inertial and buoyancy forces. As the current lengthens and the velocity 
of its front decreases, however, viscous forces become increasingly important and 
eventually are more important than the inertial forces. The transition occurs when the 
ratio of the inertial forces to the viscous forces, the Reynolds number Re, is O( 1). The 
appropriate form of the Reynolds number for a gravity current and an estimate of its 
O(1) value at the transition may be determined as follows. 
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Estimates of the inertial force 4 and the viscous force E; in a gravity current are 

where w is the width of the current and ,u is its viscosity. From the ratio of 4 to F,, we 
find that the Reynolds number is defined by 

Re = (uN h N / v ) ( h N / x N ) ,  (B 3) 
where v is the kinematic viscosity of the gravity current, which is taken to be equal to 
that of the interstitial fluid in the particle-driven gravity current, consistent with the 
Boussinesq approximation used in $2. The critical value of the Reynolds number below 
which the current flows viscously is not known explicitly, but the experimental 
measurements have been made of the time for the transition from inertial to viscous 
flows for homogeneous gravity currents of fixed volume. From these results we may 
infer the critical value of the Reynolds number, Re,. 

For a homogeneous gravity current of fixed volume, the time t ,  for the transition 
from an inertial current to a viscous current can be estimated from its similarity 
solution in the inertial regime. We recall from $2 that for such a current the 
dimensional length, velocity and height at the front of the current as functions of time 
are 

(B 4) 
1 2  

XN = C(g’q)v, 

UN = $C(g’q)ft-f, (B 5)  
hN = qhC-l(g’q)-ft-;, (B 6) 

where C and h are dimensionless constants that depend on the value of the Froude 
number used for the nose condition. If we insert these functions into the expression for 
the Reynolds number, we find Re, as a function of t,: 

Re, = $(h/C)’(q4/u3g’ ‘)it;;, 

or, conversely, the time of transition is 

t ,  = K(q4/v3q’2)$, (B 8) 

where K = (gh2/C2Re,)$. (B 9) 
The time of transition in (B 8) was derived by Huppert & Simpson (1980), who showed 
experimentally that K = 0.5. If we assume that Fr = 1.19 at the front of the current, 
then C = 1.60 and h = 1.31. We can then solve for the critical Reynolds number to find 
that 

When the Reynolds number falls below this value, the flow of the current is dominated 
by a viscous-buoyancy balance. 

Re, = 2.25. (B 10) 
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