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[. Introduction

Many of the studies discussed in this Handbook consider the physics and chemistry of
growth of single crystals. In many different natural and industrial situations, however,
a melt of large volume cools and gradually solidifies simultaneously at many different
sites. In this way, a very large array of crystals are grown. For example, the liquid
outer core of the earth is currently solidifying at a rate of the order of 2 x 10° kgs ™! of
almost pure iron on the surface of the solid inner core. Rather than follow the
interactive growth of each particular crystal, it is often advantageous, if not essential,
to consider bulk models which govern the overall properties of the resultant solid. An
analogy can be drawn here with the many-bodied problem of a large number of
moving gas molecules considered by physicists and the continuum mechanics ap-
proach taken by fluid dynamicists.

This chapter reviews some of the approaches that have been developed to investi-
gate the growth of solid on scales considerably larger than the microscale. Some of the
concepts of microscale solidification, considered elsewhere in this Handbook, will
enter into the discussion in order to support the main aim of this chapter which is to
describe the overall rate of growth of solid and the macroscopic form taken by the
solid product. Fluid-mechanical effects can have a dominant role in solidification
problems and, so, fundamental concepts of fluid mechanics will permeate the dis-
cussion. One of the ways that fluid-mechanical effects are important is a result of the
fact that when a liquid of two or more components solidifies, the composition of the
solid product generally differs from that of the original liquid. For example, salty
water in the polar oceans freezes to form almost pure ice, while semiconductor melts
containing comparable quantities of tin and silicon could be partially solidified to
form almost pure silicon. The difference in composition between liquid and solid
implies that the composition of the liquid in the neighbourhood of the solidification
front can be different from that further away. This difference in composition is
generally associated with a difference in density, which can drive fluid motions,
transport both heat and mass convectively and alter the rate and maybe even the
mode of the solidification processes.

This chapter considers sequentially a series of situations, each of which includes and
illustrates new effects. A number of these have been discussed, from a slightly different
point of view, by Huppert [1] in a publication which includes numerous colour
photographs. In section 2 the uniform cooling from below, of a liquid which is
compositionally identical to its solidified product, is discussed. This one-dimensional
problem is one of the simplest examples of a classical Stefan problem and has no
uid-mechanical ingredient. The stability of this system is briefly reviewed in the next
scction. As we shall describe there, many solidification problems display a range of
instabilities, which result in thermal and compositional convection as well as mor-
phological instability of the resulting, solidifying interface which one might have
supposed to be locally planar. This surface instability often results in the formation of
4 mushy layer, which is a layer of solid dendrites bathed in interstitial liquid. Much
recent research has been devoted to developing equations that describe the macro-
scopic evolution of such mushy layers, which fit comfortably between the purely solid
+nd completely fluid ends of continuum mechanics.
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Section 4 analyses the effects of an unstable thermal field and the convection this
induces when the pure fluid considered in section 2 is cooled from above. These
fundamental situations act as part of the foundation for the main body of the chapter,
which focuses on effects due to compositional differences when a binary alloy is
solidified in various geometries. We indicate that the simple, but paradigm, situations
of cooling an initially homogeneous, two-component melt at a single horizontal
boundary can be divided into a 2 x 3 array of six different regimes, dependent upon
whether the cooling takes place at an upper or lower boundary to the melt, and
whether the density of the fluid released on solidification is the same as, less than or
greater than that of the melt.

We first consider the cooling and crystallizing from below, of a liquid that releases
fluid of greater density upon solidification. In this situation the moving interface
between fluid and solid is generally unstable, which leads to the formation of a mushy
layer. We then develop the concepts and governing equations which describe mushy
layers and demonstrate that predictions can be obtained which agree well with data
from laboratory experiments. The theoretical concepts are then extended to a study of
the solidification that results from cooling from above a liquid which releases less
dense fluid. Assuming first that solidification occurs at thermodynamic equilibrium,
so that the temperature at the solidifying interface is equal to the specified equilibrium
solidification temperature, and that the cooling temperature exceeds the eutectic
temperature, we explain how to determine the rate of growth of the mushy layer that
forms on the roof. The agreement between the theoretical predictions and the
laboratory data is good, but not perfect. The agreement can be improved by the
incorporation of nonequilibrium effects into the model by specifying a relationship
between the rate of growth of the mushy layer and the nonequilibrium undercooling
at the interface between mush and liquid. Effects due to lowering the cooling temper-
ature below the eutectic temperature are then discussed. We describe how this can
lead to compositional stratification in the solid. In addition, we explain how cooling at
the top of a container can lead to solidification at the base — a result relevant to the
cooling of a large magma chamber, or storage chamber of liquid rock, from above.
Global two-dimensional effects, which result from cooling at either a vertical or
a sloping wall, are discussed in sections 6 and 7.

2. Static solidification of a pure substance: the classical Stefan problem

We shall commence the development with a description of the simplest situation in
which a pure melt undergoes a phase change and is transformed into a solid. The
resulting mathematical model is the simplest example of a “Stefan problem”, a name
which commemorates the early work of Stefan, published in 1889 [2]. Consider the
semi-infinite region in z > 0 to consist of material which is initially totally liquid and is
at uniform temperature 7,,. Assume that at ¢t = 0 the temperature at the base of the
fluid (at z = 0) is suddenly lowered to T3 and maintained at that value, which is less
than the solidification temperature of the melt, 7y,. The problem is to determine the
position of the unknown solidifying interface s(t) and the resulting temperature
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Fig. 1. Sketch of the temperature profile, the resulting one-dimensional solid layer and the notation for
a semi-infinite, one-component liquid cooled from below.

distributions 7(z, t) in both the liquid and the solid phases in this solely one-dimen-
sional problem. A sketch of the geometry and temperature field is given in fig. 1.

The analysis commences with the assumption that there is no motion in the melt
and that compositional effects play no role in the resultant solidification. This requires
the constituents of the melt and the solid to be identical. Generally, this means
a one-component, or pure, melt, such as water or liquid gold, for example. However, in
addition, binary melts of a eutectic composition also produce solids that have the
same composition as the original liquid. Throughout the discussion, we shall neglect
any difference in density between solid and liquid, which can often be a small effect.
A brief discussion of such effects is presented by Worster [3].

Mathematically, the problem requires the solution of the heat conduction equa-
tions as outlined in chapter 10. For our purposes these are expressed as

oT o’T
= KS? 0 < z < s(0)), (2.1a)
oT o’T
iy (s(t) < 2), (2.1b)

where k is the thermal diffusivity, with subscripts s and # denoting values in the solid
and liquid, respectively. The regions occupied by the two phases are linked by the
conservation of heat flux at the interface, which can be written as
ds dT dT
de ~ tdz| K&z

w'here Z is the latent heat per unit volume of solid and K is the thermal conductivity.
Finally, there are the boundary conditions on the temperatures

T=Ty (z=0), T=Ty (z=s, T-T, (z—ow ort—0). (23a,b,c)

Because there is no externally imposed length scale in the problem, the solution must

; 2.2)

s+
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be representable in terms of the similarity variable

n=1%z/(kt)"? (2.4)
and the solution must be of the form p
s(t) = 24,5 (k1) V2, (2.5)

with 4, satisfying an eigenvalue relationship of the form

T _TM K K.
Flilg8 —=2—— 2 2 )1=0, 2.6
(2 Ty —Ts K, K/> 26)
where the Stefan number
LA
§m 2.7)
cs(Tu —Tp)

and c, is the specific heat per unit volume of the solid. The Stefan number represents
the ratio of two quantities: the latent heat needed to transform the melt into solid and
the heat needed to cool the solid from its solidification temperature to the temperature
at the boundary. The parameter # = (T,, — Ty)/(Ty — Tg) is sometimes called the
nondimensional superheat because it is a (nondimensional) representation of the
amount by which the melt is heated above its solidification temperature.

Explicit relationships for the temperature field and the function F that appears in
eq. (2.6) are given in Charslaw and Jaeger [4, section 11.2]. One of the simplest cases
to consider is T,, = T; (which corresponds to the melt being initially at the solidifi-
cation temperature and the superheat being zero), K, = K, and k, = k, (the thermal
properties of melt and solid are identical). In this case

TG, t) = Ty + (Tu — Tp) exf n/erf A (2.8)

and
F(4,S)=n'?le* erfA—S~! (2.9a)
=f()—S1, (2.9b)

where erf# is the error function [5]. Figure 2 presents a graph of the monotonically
increasing function f(A) as a function of A, from which it can be seen immediately that
there exists a unique solution for all (positive) values of S.

The solution (2.6) appears to have been first presented by Lamé and Clapeyron in
1831 [6]. It was then discussed in a famous series of (unpublished) lectures given by
Neumann in Konigsberg in the early 1860s and reappeared in Stefan’s article [2],
which gave rise to the general name of Stefan problem being used to describe in
a rather loose way a huge variety of moving-boundary problems, which often, but not
always, involve melting and solidification. Very few exact analytical solutions exist
and, generally, either approximate or numerical methods are required to determine
the solution to a particular problem. The book by Hill [7] presents an admirable
introduction to the subject and further developments can be found in Crank [8].
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Fig. 2. Graph of f(4) = n'/24e** erf i as a function of i. The eigenvalue relationship f(4) = S~ for the
paradigm Stefan problem has a unique solution for all § > 0.

A common, and often useful, simplification employed is to assume that the Stefan
number S is very large. Large values of S, which can be considered to reflect large
values of the latent heat % for fixed values of the undercooling, 7y — Ty, correspond
to small values of ds/dt, and, hence, slow solidification, as indicated by eq. (2.2). In
nondimensional terms, this means that solidification takes place over a timescale that
is large compared to the time taken for the temperature field to adjust by thermal
diffusion. Thus, the temperature field is quasi-stationary and a suitable approximate
solution of eqgs. (2.1a) and (2.3a,b) in the particularly simple paradigm problem
considered above is

T(z,t) = Tg + (T, — Tg) z/s(2). (2.10)
Insertion of eq. (2.10) into eq. (2.2) leads to the solution
s(t) = (2k,1)/S)V2, - [A=(2/8)]1"7, (2.11a,b)

which is identical to the result obtained on letting S — oo in eq. (2.9a). The concept
that for large S the temperature field is linear in z [cf. eq. (2.10)] can be very useful and
a chapter of Hill [7] is devoted to explaining how to exploit techniques based on this
approximation.

Alternatively, in some Stefan problems small values of S can raise great difficulties.
This is because eq. (2.2), when associated with a small value of £, suggests the
occurrence of a singular perturbation problem in which s(t) varies rapidly. An
example is given by the initial-value problem that arises when hot fluid begins to flow
turbulently over a solid basement that can melt. Examples of such behaviour include
the pouring of hot water over cold ice or hot chocolate over cold icecream. A power-
series representation of the resultant position of the interface can be written [9] as

s o]
nT) =Y nu- "3 (2.12)

n=1
\thre n(r) is the nondimensional position of the interface in terms of a nondimen-
sional time 7. The expansion coefficients 7, as a function of the Stefan number are
graphed in fig. 3. For S greater than unity the representation converges rapidly, while
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Fig. 3. Curves of the expansion coefficients 7, for n = 0-7 as functions of the Stefan number S used in
a description of the interaction between a hot, turbulently flowing liquid and a cold soli¢ - ~bhstrate.

for small S the coefficients oscillate rapidly, reflecting the rapid change in motion of
the interface. There are some problems, however, for which ds/dt does not become
large as S — 0. Instead, the right-hand side of eq. (2.2) is approximately zero, the
interpretation of which is that the heat fluxes on either side of the interface approxim-
ately balance without any significant contribution from the latent heat release. The
position of the interface can then be determined by solving a pure conduction problem
and inserting the interface at the position of the isotherm 7' = T,,. No general criteria
seems yet to have been obtained to decide a priori which of these two situations will
occur for small S.

3. Stability

All the analysis has so far been strictly one-dimensional, reflecting the absence of
variations of the cooling and the container geometry in the other two dimensions.
However, it is conceivable that the resulting solutions are unstable, i.e., there are
additional solutions which do have variations in the horizontal plane. Dynamical
systems are awash with such instabilities. Rather than describe a rigorous mathemat-
ical analysis of the appropriate problems, it is more useful for our purposes to conduct
a physical appraisal of the instability and refer the reader to chapter 12 and references
therein for analytical details. Consider a flat solidifying surface to be perturbed and to
take up the two-dimensional shape sketched in fig. 4. The perturbed curves of constant
temperature are also sketched. Near the furthest point A, the isotherms are relatively

<
&
£
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Fig. 4. A sketch of the one-dimensional planar interface between solid and liquid (shown stippled), the

sinusoidal perturbation to it (solid curve) along which the temperature is constant, and the resulting

isotherms (dashed curves), when a relatively warm liquid is solidified. Thermal fluxes are enhanced in

regions where the isotherms are compressed and reduced in regions where they are expanded. The solid is,

thereby, preferentially melted back near A and preferentially deposited near B, resulting in a decrease of the
perturbation.

compressed in the melt and sparse in the solid. Thus, the additional heat flux into the
melt is positive and that from the solid is negative. The perturbation, hence, tends to
melt back solid at A. Using a similar argument, it can be shown easily that the
perturbation tends to solidify material preferentially at B. The overall result is that the
one-dimensional solution is recovered, i.e., it is stable. This physical argument of
stability suggests that it is not necessary to present a rigorous mathematical analysis
at this point.

The result is, however, seemingly at odds with our experience of many natural
solidification processes wherein the solidifying surface is irregular, such as in snow
flakes and solidifying moulds. The explanation is seen immediately with a simple
alteration to the above physical description: the solidification surface is now assumed
to penetrate an undercooled liquid, in which the temperature is less than the solidifi-
cation temperature, Such a situation is a frequent occurrence and gives rise to the
physical sketch of fig. 5. Consider first the simple case, sketched in fig. 5a, in which the
solid is at uniform temperature Ty, the solidification temperature. In this case the
perturbation of the isotherms leads to an increased heat transfer to the melt at A and
a decreased transfer at B, thus accentuating the departure from the flat interface. This
destabilizing effect is countered by the Gibbs—Thomson process, described in
chapter 12, which causes the temperature at A to decrease because of the curvature,
while the temperature at B increases. Heat, thus, flows away from B, which promotes
solidification and counteracts the dominant destabilizing process.

The destabilization, which is due to thermal diffusion, is most effective on the length
scale of thermal diffusion, which is I, = «/V, where V is the velocity of propagation of
the solidifying surface. The stabilization due to the Gibbs—Thomson effect operates
most strongly on the length scale Igr = I'/.%, where I’ is the surface tension divided by
the entropy of fusion and % is the Stefan number PLle(Ty — T, ). A formal linear

e
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stability analysis (chapter 12 and [10]) to determine the perturbation quantities of the
form e*'** 9 where ky is the horizontal wavenumber, indicates that there is a rela-
tionship between ¢ and the magnitude of the wavenumber k = |ky| of the form

g = Vk(l = 21DIGTk2)’ (31)

as sketched in fig. 5Sb. The shape of the curve reflects the fact that the basic solution
must be recovered at k=0 (and, hence, ¢ =0 there) and that stabilizing
Gibbs—-Thomson effects dominate for small wavelengths (k — c0). The maximum
unstable growth rate op. =%x6" 2V (lplgr)”'/? is attained at a wavelength
4 =2x6Y2n(lplgr)** which is proportional to the geometric mean of the length
scales of diffusion and surface tension.

A number of other physical systems have exactly the same stability curve as eq. (3.1).
These include the famous Saffman—Taylor instability which occurs when a fluid forces
out a more viscous fluid in a Hele-Shaw cell [11] and diffusion-limited aggregation
[12], in which random walkers on a square grid remain at a particular site if
a neighbouring site is already occupied. Both these problems, and the solidification
problem, are beautifully drawn together in a review by Couder [13].

COLD LIQUID

CONSTANT TEMPERATURE T

Fig. 5. (a) With the notation of fig. 4, a solid is advancing into a undercooled liquid. The altered thermal

transfers are now such that solid is preferentially deposited near A while near B solid is deposited less

rapidly. Surface tension effects, dominant over small length scales, decrease the temperature at A over

that at B, leading to a heat flow from B to A which stabilizes small-wavelength perturbations. (b) The

dispersion relationship o = Vk(1 — 2l lgrk?) resulting from an analysis of the stability mechanism de-
scribed in the description of (a).
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4. The solidification of a pure melt from above

Inverting the geometry from that considered in section 2, as sketched in fig. 6, leads to
quite a different situation; in particular, strong fluid-mechanical effects are incorpor-
ated. These arise because the resulting temperature in the liquid increases with depth
and, thus, a convective instability in the liquid is possible. A combined experimental
and theoretical investigation of the conditions for which instability is initiated and the
form of convection in the liquid has been carried out by Davis et al. [14] and Dietsche
and Muiller [15]. They held fixed the temperatures 7, and 7y at the lower and upper
boundaries, as depicted in fig. 6a, and determined from the solution of a steady-state
problem the critical value of the Rayleigh number

Ra = ag(Ty — T.)(H —s)°/x,v (4.1)

for the onset of convection as a function of the ratio .o of the depths of solid and liquid
in static equilibrium, with

S Ks T‘S_TB
o = == )28 42a.b
H—s <K,>(TA—TS> thia, )

where a is the coefficient of expansion, g the acceleration due to gravity and H the
total depth of the system. They then employed weakly nonlinear perturbation theory
to predict the form of the convective motions — rolls, hexagons or mixed polygonal
rolls — for Rayleigh numbers just above the critical point. These theoretical predic-
tions were in good qualitative agreement with their experiments using cyclohexane,
which showed picturesque defomations at the interface between solid and melt due to
convection coupled to the melting and freezing.

(a) (b)

Liquid

s 7777777777777 777

nsulated

Fig.'é. Slfe-tc?h of the temperature profile and the notation for an initially homogeneous, one-component
liquid of initial depth H cooled from above. Note that in (a) the lower boundary is at a fixed temperature
while in (b) the lower boundary is insulated.
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Because of their analytical tractability, numerous theoretical studies of directional
solidification have been undertaken using the techniques of weakly nonlinear per-
turbation theory (see, e.g., the work of Coriell et al. [16]). There has been some
agreement between the theoretical results of these studies and experimental observa-
tions, but, generally, in natural, industrial and even in most laboratory experimental
situations, the conditions are well away from those for which weakly nonlinear theory
is applicable. When, e.g., in the geometry considered by Davis et al. [14], the Rayleigh
number is very much larger than the critical value and sufficiently high for the
convection in the liquid to be turbulent, a different parameterization to the one they
considered is appropriate. Turner et al. [17] and Huppert and Worster [ 18] examined
the situation depicted in fig. 6b, where the lower boundary is insulated, rather than
being maintained at a fixed temperature. This allows the temperature to evolve with
time and leads eventually to total solidification. The relevant conduction equation in
0 < z < s(t) is again given by eq. (2.1a). In the liquid the heat transfer can be described
by the well-known four-thirds law [19], so that

1/3
—c‘,(H—s)g—(}:FT:;'K,(a—g) 0 — T.)*3, (4.3a,b)
dt K,V
where 6 is the mean temperature of the liquid, F is the thermal flux at the interface
and y is an empirical constant with a value of approximately 0.14. The interfacial
condition [cf. (2.2)] is
dTr

ds
o == —_ ] G e
K, e Fr+[c,(0—-T,)+ %] i (4.4)

109 i
]
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Fig. 7. Typical results of numerical calculations of the resulting nondimensional thickness n = s/H as

a function of the nondimensional time t = x, t/H? due to solidification of a layer of liquid cooled from

above. In the results presented, the dimensionless parameter .  =100. The depth of the solid layer as

a function of time is shown on logarithmic axes to illustrate the different stages of evolution. The vertical

dashed lines indicate the approximate transition times as determined by asymptotic analysis between three
distinct regimes.
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This equation represents a balance of the conductive transfer through the solid with
the convective transfer in the liquid plus the heat released by decreasing the temper-
ature of the melt to the solidification temperature and then solidifying it. Each of these
terms is always positive and, so, in particular, the term on the left-hand side always
contributes in an essential way to the heat balance. Either of the other two terms may
also dominate the heat balance and this leads to three different regimes. Within each
regime, conduction balances either convection, latent heat release, or both, as dis-
cussed at length by Turner et al. [17]. They present both asymptotic and numerical
solutions to the equations as well as data from a variety of experiments which, as far as
they go, support the theoretical predictions. It would be interesting to carry out
further experiments in parameter ranges different from those treated experimentally
by Turner et al. [17] yet falling within the range of their theory.

Huppert and Worster [18] took the investigation one stage further by considering
the analysis for large values of the initial Rayleigh number Ra,. They determined
analytic solutions for each of the three ranges. Their results are summarized in fig. 7,
which presents the nondimensional solid thickness n = s/H as a function of the
nondimensional time t = x,t/H?. Also shown are the approximate transition times
between the three regimes discussed in the previous paragraph, as determined by the

asymptotic analysis, of .42 and .+ %7, where ./ = yRag>.

3. Solidification of a binary alloy
S.1. General framework

When there are two (or more) components in the melt, a whole range of new effects
can take place. Some of these will be described in the next section. Multicomponent
melts occur frequently in both industrial and natural situations. For example, bronze
and brass are mixtures of copper and lead, tin or zinc. In a geological context, molten
rock (magma within the earth and lava once it has been extruded from it) is a silicate
mixture with many components [20,21].

The study of any solidification problem of a two- (or more-) component melt must
commence with a study of the phase diagram. A typical phase diagram for a two-
component melt is presented in fig. 8a and a general description of phase equilibria is
given in chapter 2. Figure 8b indicates the simplification that is often present for
aqueous solutions, for which the solidi are vertical. Incorporation of this fact can
simplify the theoretical analysis considerably. Given, in addition, that laboratory
cxperiments with aqueous solutions are very much easier to handle than either
metallic alloys or binary organic liquids, the building and confirmation of models
using aqueous solutions makes for a very satisfactory scientific procedure.

When there are any fluid-mechanical processes operative in the solidification, the
\changing) density of the melt can play a fundamental role. For this reason, the lines of
constant density have been included in the phase diagrams. Typically, as shown in the
figure, density in the melt is a very much stronger function of composition than of
‘mperature, as measured by the fact that the slopes of lines of constant density are
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Fig. 8. Typical phase diagrams for binary alloys made up of components A and B, which indicate the

phases as functions of the temperature 7 and the concentration of the component B, which is denoted by C.

In (b), which is a special case of (a), the solidi are vertical, reflecting the fact that the concentration in the

solid is constant and independent of the temperature at which it was formed. Almost all aqueous solutions
have phase diagrams of the type (b).

much closer to being vertical (indicating little change with temperature) than are the
slopes of either of the liquidi. This effect can play an important dynamical role as
follows. Consider a melt whose composition is less than the eutectic composition (a
subeutectic melt) which is cooled and solidifies, with component A being preferentially
taken into the solid. As the temperature decreases, the liquid released at the site of
solidification is of a greater density than that far away. Depending upon the geometri-
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Table 1
A summary of the six different regimes that occur when a two-component melt is cooled at a horizontal
boundary. The three different compositional conditions are tabulated in the first column and the effect this
has on the fluid released by the resultant solidification is tabulated in the last column. The two different
thermal conditions are tabulated in the first row and the effect this has on the stability of the resulting
thermal field in the melt is tabulated in the last row. The interior 3 x 2 array summarizes sequentially the
major effect in each situation, as well as indicating in which section of the text it is treated.

Cooling from

Compositional Effect of
constraint Below Above composition
1. C < Cgor 3. Stagnant melt and mushy 6. Convection in melt Relatively heavy fluid
C=Cx layer (section 5.2) driven by both thermal released
and compositional effects
2. C=Cg 1. Classical Stefan problem 2. Thermally driven convec- Fluid density depends
(section 2) tion in liquid possible only on temperature
(section 3)
3. C> Cgor 5. Compositional convec- 4. Thermally driven convec- Relatively light fluid
C=Cg tion in melt (section 5.5) tion in melt beneath a released

stagnant mushy layer
(section 5.4)

Resulting thermal profile in melt

Stable Unstable

cal configuration, to be discussed further below, this density difference can drive
strong convective motions which can influence the rate and mode of solidification.
Similarly, if the initial composition of the melt exceeds that of the eutectic (a
supereutectic melt), the density of the released fluid decreases as the solidification
proceeds. In general, compositional buoyancy greatly exceeds thermal buoyancy, even
though the solidification may be driven by thermal transfers.

Motivated by such possible convective processes, Huppert and Worster [22]
constructed a 3 x 2 array to classify the possible responses when an initially homo-
geneous two-component melt is cooled at a single horizontal boundary. The results
are summarized in table 1, which indicates the relative density of the fluid released
when the initial composition is (1) less than (2) equal to or (3) greater than the eutectic
composition. The distribution of the resulting thermal field is also indicated in
table 1 depending upon whether the liquid is cooled from a lower or an upper
boundary. The array also shows the section in which each situation is discussed.

5.2. Cooling from below a subeutectic binary alloy

Some of the fundamental fluid-mechanical effects due to compositional differences
between melt and solid can now be drawn out in an investigation of the solidification
that results from cooling from below a binary alloy whose initial composition is less
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than the eutectic composition. The fluid released by the solidification is then relatively
dense and, thus, ponds above the solid. For simplicity consider the resultant solid to
be of fixed composition (a vertical solidus) as will result, e.g., if ice is formed from the
cooling of an aqueous solution. Assume also, at least initially, that the interface at
z = s(t) between solid and melt is flat (and horiZontal) so that the problem is totally
one-dimensional. No motion will occur in the melt and the transport of both heat and
chemical components is entirely by molecular diffusion. This leads to profiles of both
temperature and composition that are stably distributed, as sketched in fig. 9.

The equations governing the temperature profiles are exactly as in section 2. These
are the heat conduction equation (2.1), the thermal conservation condition (2.2) and
the thermal boundary conditions (2.3). The compositional profile relative to that in
the solid, C(z, t), is governed in the melt by

2
=3z G0<2) (5
where D is the coefficient of compositional diffusivity, while the (fixed) composition of
the solid is expressed as C = 0. Conservation of solute requires that

s(t)C, =f (C —C,)dz, (5.2)
from which, by differentiating eq. (5.2) and using eq. (5.1), it can be deduced that
d oC
cd—i+DT=o (z = s(t) + ). (5.3)

The initial, or far-field, condition on the composition, to complement that on the
temperature [eq. (2.3¢)], is

C—->C, (z—> o ort—0). (5.4)

Liquid

LS Solid

> TTTTIITTI 7077777777777

Fig. 9. Sketch of the stably distributed temperature and composition profiles for a semi-infinite binary melt
cooled from below to form a stable one-dimensional interface between melt and solid on the release of melt
whose density exceeds that of the original melt.
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In a binary liquid that solidifies at thermodynamic equilibrium, the temperature of
solidification Ty and the composition of the melt at the interface are connected by the
liquidus relationship (see chapter 2). In many situations a linear relationship of the
form

T=-mC, (5.5)

where m_ is a positive constant, is an adequate approximation. Note that the form of
eq. (5.5) assumes a temperature scale whose zero is equal to the melting temperature of
the pure solvent (whose composition is zero).

Because there is no externally imposed length scale, the mathematical system
(2.1)=(2.3), (5.1)—(5.4) and (5.5) applied at z = s(t) admits a similarity solution of the
form

s = 2A4(Dt)Y?, (5.6)

with A, satisfying an eigenvalue relationship of the form

4 "Tao_TL TL Ks KSD
F v ;S,—7_a_a_’_ =Oa 5.7
<’4 Ty Ta 57 x,> il

(see [22-24]), where the modified Stefan number

S = il (5.8)
cs(TL = TB) ‘
and Ty = —m C_ is the liquidus temperature at *he initial concentration. The

resulting temperature and composition fields are dre: 'n in fig. 9.

To test the validity of the predictions embodied in eq. (5.6), Huppert and Worster
[22] carried out a series of experiments in which aqueous solutions of NaNO5, NaCl
and NH,CI were cooled in the apparatus sketched in .g. 10. In each experiment, after
a short initial period, the thickness of the solid block (ice) increased with the square
root of time, as predicted by eq. (5.5). Four typical results for the measured growth
rate eigenvalue 4,4 at different initial compositions C,, of NaNOj are plotted in fig. 11
and compared with the theoretical relationship [eq. (5.7)]. Agreement between the
theoretical prediction and experimental data is seen to be totally absent.

The reason for the disagreement is that, under almost all conditions, the solid, in
this case ice, does not grow with a stable planar interface. During solidification, solute
is removed from the melt and a diffusion profile develops in that part of the melt that
is adjacent to the interface between melt and solid. In the one-dimensional growth
sketched in fig. 9 the relatively slow compositional diffusion, which is governed by the
value of D (< k, or k,), constraints the rate of growth of the interface. Instead, the
interface in the experiments becomes highly irregular. (A photograph of the ice is
reproduced as fig. 7 in Huppert [1].) The initial breakup of a planar interface is known
as morphological instability, and discussed in detail in chapters 12-14. It suffices here
10 summarize the relevant results by stating that morphological stability was first
considered at a qualitative level by Rutter and Chalmers [25]. They suggested that
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Fig. 10. Sketch of the apparatus used by Huppert and Worster [22] to cool and solidify various aqueous
solutions.
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Fig. 11. The nondimensional growth rate 4, as a function of the initial far-field composition C, for stable,

one-dimensional solidification from below of aqueous NaNOj;, with 73 = —17°C and T, = 15°C. The

solid curve represents the theoretical relationship (5.7) and the crosses represent the experimental data. The
agreement is not impressive.

instability occurred whenever

oCc orT
—mg—>—(>0) (z=s(t)+) (5.9

0z Oz
because the temperature and composition fields predicted by the one-dimensional

model on the melt side of the interface would then be below the liquidus, which implies
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(inconsistently) that the melt is in the solid field. Quantitative dynamic calculations
(but neglecting convective motions in the melt) were undertaken some years later by
Mullins and Sekerka [26] to lead to the instability criterion.

—(Ks + K/)mLaa—(Z: . > KSZ_ZT s_ + K,aa—:
if surface tension effects at the interface are ignored. This criterion reverts formally to
eq. (5.9) if either K is set equal to zero or K = K, and .¥ = 0. Because the thermal
and compositional fields are both stably stratified in the case we are currently
considering, no convection can take place in the melt. This is in contrast to the case
where the solidification releases light fluid, although numerical calculations incorpor-
ating the possibility of convection in the melt [27, 28] lead to results which, under
usual conditions, differ little from either eq. (5.9) or eq. (5.10). A nice general review of
the interaction between solidification and linear convection is presented in [29] and
a section in [30] is also devoted to this topic. Further information can also be found in
[31], which includes papers presented at a conference on the interaction between
convection and solidification. All calculations indicate that only for very small values
of both the undercooling Ty, — T and the resulting interfacial velocity ds/d¢ is the
interface stable, as is presented quantitatively by Huppert and Worster [22] in their
fig. 1. Paradoxically, no experiment has yet been performed that distinguishes between
the slightly different predictions embodied in egs. (5.9) and (5.10) and in the numerical
calculations including the effects of linear convection in the melt. This reflects the fact
that only for very special conditions will the planar interface be stable.

A physical explanation of the instability can be understood as an extension of the
arguments already presented in section 3. As indicated in the sketch in fig. 12a, which
presents the perturbed thermal and compositional fields, there are three competing
effects: thermal fluxes, which are stabilizing; compositional fluxes, which are de-
stabilizing; and surface energy effects, which again are stabilizing. The length scales
associated with these are, respectively, I, = k/V, lc = D/V, and Ilgr = I'/AT, where
I, and [ have been defined in section 3 and D is the Fickian diffusion coefficient.
Typically It < [p < I, which gives rise to a stability diagram of the form sketched in
fig. 12b. If ¢ > O for any part of the dispersion relationship, as occurs for the dashed
part of the curve in fig. 12b, the system is unstable to a linear perturbation. Equation
(5.10) represents this condition analytically.

For many systems the inequality expressed in eq. (5.10) is exceeded significantly and
it is not possible to describe the evolution of the system by linear theory or even by
weakly nonlinear perturbations. Laboratory experiments of the sort described above
indicate that the system actually departs significantly from one having a flat stable
interface. Instead, a mushy region is formed in which interconnected solid is bathed in
interstitial liquid. Mushy layers are such ubiquitous entities in solidifying systems that
a considerable amount of the remaining part of this section will be devoted to
determining and presenting the solutions of the governing equations that describe
mushy layers.

Primarily motivated by their experimental results, Huppert and Worster [22]
developed the following simple model for a mushy layer, which highlights many of the

(5.10)

z+
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WARM MELT

Fig. 12. (a) With the notation of fig. 4, a solid is advancing into a relatively warm two-component melt. The
resulting curves of constant concentration in the melt are shown as dot-dashed curves. The enhanced
compositional transfers near A induce extra solidification there, while the reduced compositional transfers
near B induce less solidification there. The perturbed thermal transfers and surface tension effects lead to
the opposite: extra solidification near B and less solidification near A. (b) The three effects which are
discussed in the text and summarized in the caption to (a) lead to three possible dispersion relationships
between the exponential growth rate ¢ and the wavenumber of the perturbation k. Curve 3 is-totally stable;
curve 2 is marginally stable; while for curve 1 a linear perturbation is unstable over the wavenumber range
that is shown dashed.

important features. They postulated that the mush could be described by a constant
solid fraction ¢ and that global conservation equations, consistent with this idea,
could be used to describe the transitions in the mushy layer. The resulting thermal and
compositional fields are sketched in fig. 13. The temperature field satisfies

o*T
%Z:: k@ (0<Z<S(t)), (5113)
oT o*T
T g, 5.11b
=K (<2, (5.11b)
~ds L 0T oT
—=K—| —-K — 5.11c
gd)dt K@z . ‘9z |4 ( )

where an overbar denotes values in the mush. These quantities are evaluated using
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Fig. 13. Sketch of the temperature and composition profiles for a semi-infinite binary melt cooled from
below to form a mushy layer on the release of liquid whose density exceeds that of the original melt.

averages weighted by the volume fraction to obtain

K=¢K,+ (1 —¢)K, =K, (5.12a,b)
where
c=¢dc,+ (1 —P)c,. (5.12¢)

The representation (5.12a) is a good approximation for a random mixture of solid
and liquid and becomes exact if the solid dendrites are of constant width and grow
vertically [32] and is, therefore, a good approximation for diffusion-controlled growth
in one dimension. Equation (5.12c) is always correct. In the mushy layer the composi-
tion is either zero in the solid dendrites or at the local liquidus in the interstitial melt,
that is,

C=—T/m. (0< z< s(t), within the interstitial melt). (5.13)

The composition field in the melt is negligibly influenced by the rapid growth of the

mushy layer because of the relatively small value of the compositional diffusivity, and
SO

C=C, (s(t) < 2) (5.14)

Global conservation of solute requires that

s(t)
(1 —5)j C(z,t)dz = s(t)C,, . (5.15)
0

In the model, conservation of solute is achieved by increasing the concentration of
thc. rpelt within the interstices rather than pushing solute ahead of the advancing
solidification front. The growth of solid is, thus, not constrained by the relatively slow

fnolc;:ular diffusion of composition, which is the cause of the instability of the planar
Interface.
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Fig. 14. The nondimensional growth rates 4, and 74 [determined from eq. (5.17)] and the mean solid
fraction ¢ for solidification from below, with parameters as in fig. 11.

The system comprising egs. (5.11)—(5.15), the boundary and initial conditions on the
temperature field [eq. (2.3)] and the liquidus relationship [eq. (5.5)] applied at the tips
of the dendrites [at z = s(t)] has the solution

s = 24, 1)12, (5.16)
where 1, satisfies an equation of the form
] 7 C/(Too i TL) K
Fl i.: y’ ,— | = 0, 5.17.
<“’ &I, —Ty) x,> g
with
T K
G(¢;—L,i>=0, (5.17b)
Ty K,
while
— oL
= 5.18
¢(Ty — Ts) ( )

is the Stefan number across the mushy layer.

The predictions of the growth rate 7, obtained by this approach are seen to agree
well with the results of laboratory experiments using aqueous solutions, as is shown in
fig. 14 for one particular series of experiments.

5.3. Equations for mushy layers

The good agreement between the data obtained from laboratory experiments and the
simplest formulation of equations describing a mushy layer acted as a spur to develop
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more general, but still easily solvable and interpretable, equations describing a mushy
layer. With the assumption that the solid fraction ¢(x, t) within the mushy layer can
change as a function for both space and time, it is relatively straightforward to derive
conservation equations by considering “infinitesimal” control volumes which contain
representative samples of both solid and liquid phases. With the neglect of density
changes effects on solidification, convection in the interstitial liquid and with the
assumption that the solid phase is fixed, and is not transported by the fluid as a slurry,
the heat budget equation becomes

_oT = 0¢

c 3 =¥ (KVT)+3’6I. (5.19)
This is a nonlinear diffusion equation, forced by the internal release of latent heat,
which is proportional to the rate of change of the solid fraction. The corresponding
compositional budget can be written as

(1 —d))a—C:V-(D(I—d))VTH—Cg?, (5.20)

ot ot

a(nother) nonlinear diffusion equation forced by internal release of solvent as ¢ varies
with time. Further details on the derivation of these governing equations and the
generalizations to allow for volume changes on solidification and convection can be
found in Worster [3, 33].

The boundary conditions needed to solve egs. (5.19) and (5.20) arise in two ways.
The first ones reflect the prescribed conditions at the edge of the solution domain, and
the second the conditions which describe the internal interfaces between either a solid
and a liquid region or a mushy and a liquid region. Integrating egs. (5.19) and (5.20)
over a small pill box enclosing a portion of the interface (which is permissible because
the equations are valid on both sides of the interface) and using the fact that both the
temperature and the composition must be continuous across the interface, we obtain

L[p1V =[Kn-VT] (5.21)
and
ClelV =[D(1 —¢)n-VC(C], (5.22)

where [ ] denotes the jump in the enclosed quantity across the interface, which is
assumed to be moving with normal velocity ¥ and n is the unit normal vector.
The introduction of a first-order spatial derivative of ¢ into the mathematical
model indicates that an additional interfacial condition on ¢ is required. A number of
different conditions have been suggested, with Worster [33] advocating that the
interface is at marginal equilibrium, with the normal derivative of the temperature at
the mush-liquid interface being equal to the normal derivative of the local liquidus
temperature. This condition is identical to the marginal stability criterion deduced by
Rutter and Chalmers [25]. Mathematically, this condition can be expressed as

d7.(C)

[n-VT]=[n-VT_ ] = ac

[n-VC]. (5.23a,b)
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Fig. 15. The nondimensional growth rates 4, A4 and Ay (determined by Worster [33]), with parameters as
in fig. 11.

In most circumstances eq. (5.23) implies that [¢] = 0, or that ¢ = 0 at an interface
between a mushy layer and a liquid.

The validity of these concepts and equations can be partially tested by solving the
equations for the problem outlined in the previous subsection. This was done by
Worster [33], who found that because of the lack of an external length scale, the
nonlinear equations had a solution in terms of a similarity variable n = $z/(k,t)"/?,
and that the top of the mush could, hence, be specified by

§ = Ll 112, (5.24)

where Ay is a function of the nondimensionalized external parameters. Figure 15
graphs the result for one particular set of parametric values and allows a comparison
to be made both with 4, obtained by the simpler method outlined above, and with the
experimental data. The agreement with both is seen to be very good. Indeed, while the
full model is intellectually much more satisfying, it does not seem to fit these particular
observations significantly better than results from the simpler model. This suggests
that such averaged models may have a useful role to play in more complicated
situations.

A further test came from experimental measurements of ¢ by Shirtcliffe et al. [34],
which were interpreted by them. Later, the data were reprocessed by Chiareli and
Worster [35]. Measuring the conductivity of three vertically separated horizontal
wires in a solidifying aqueous solution of sodium nitrate, Shirtcliffe et al. showed that
the results were consistent with a similarity form of the solution and that they agreed
fairly well with the explicit solution just outlined, as shown in fig. 16. Better agreement
between theory and experiment, as also indicated in fig. 16, was found by Chiareli and
Worster [35], who included in their theory the redistribution of solute due to the
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Fig. 16. The volume fraction of solid ¢ in a mushy layer as a function of the relative depth in the layer,
z/h(t), where h(t) is the height of the layer. The data come from the experiments of Shirtcliffe et al. [34], using
aqueous solutions of sodium nitrate. The dashed line is the prediction of a model that neglects changes in
density upon solidification (r = p,/p, = 1), while the solid line, taken from [35], takes full account of the
interactions between solidification and the velocity field induced by shrinkage (r = 0.74).

change of density on solidification. As evident from fig. 16, this expansion introduces
a change of approximately 10% in the prediction of the solid fraction.

There have been a number of approaches to the analysis of mushy layers which
differ from the one outlined above. A very general thermodynamic approach to
investigate the formation of both mushy layers and slurries has been commenced by
Hills et al. [36]. They used the concepts of diffusive mixture theory to develop a set of
rather complicated governing equations which incorporate much of the fundamental
thermodynamics. Too few explicit solutions to the equations have yet been obtained
to enable one to assess how applicable the model and the various approximations
built into it are to the description of mushy layers. An extension to this approach,
directed more explicitly at mobile slurries, has recently been presented by Loper
[37, 38]. A different approach has been suggested by Bennon and Incropera [39] and
the number of articles in Davis et al. [31] obtain numerical results employing their
system of equations.

5.4. Cooling from above a supereutectic binary alloy

The validity of the mushy-layer equations (5.19)—(5.22) can be tested further, and
additional fluid-mechanical effects can be investigated, by considering the solidifi-
cation of a two-component layer of fluid that releases less dense fluid upon being
cooled from above. The temperature will increase monotonically downwards
throughout the solid (or mushy) layer and result in a potentially unstable thermal
gradient in the liquid. Provided that the Rayleigh number of the liquid layer is above
the critical value, the layer will convect. Further, this convection will be quite vigorous
for sufficiently large values of the Rayleigh number. The resulting compositional
gradient will be such that a mushy layer will form. Because the temperature increases
with depth in the mushy layer and the interstitial liquid is assumed to be on the
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Fig. 17. Sketch of the temperature profile for a binary melt of initial depth H cooled from above to release
melt whose density is less than that of the original melt.

liquidus, the density of the interstitial liquid is stably stratified and there are no
convective motions in the mushy layer.

The resulting system is similar in many ways to the single-component system
considered in section 4. The solid region of fig. 6 is replaced by a mushy region in
fig. 17. The region of melt is modelled in the same way and its temperature obeys
eq. (4.3a), with the heat flux given by eq. (4.3b), except that the solidification temper-
ature Ty is replaced by the (unknown) temperature 7; of the interface between the
mushy and liquid regions. If the diffusivity D of solute in the melt is small compared to
the diffusivity x of heat, as is typically the case, then the effects of the compositional
boundary layer ahead of the mush-liquid interface are negligible and the interfacial
temperature is given by

I,=T.(C,) (z=y5), (5.25)

where 77 (C) is the liquidus temperature of the two-component system and C, is the
composition of the melt. Equation (5.25) is the replacement of eq. (2.3b) and is
appropriate under the assumption of local equilibrium. In the next subsection we shall
consider a nonequilibrium growth law and discover important consequences of
dis-equilibrium. For now we use the simpler condition of .equilibrium thermo-
dynamics in order to focus attention on effects related solely to a multicomponent,
rather than a single-component, melt.

The equation expressing conservation of heat at the mush-liquid interface (4.4) is
replaced by

5 0T ds
K—| =F T, -T;)—, 5.26

az L= T +( Z l)dt ( )
where z = sis the position of the mush-liquid interface. Note that there is no release of
latent heat at this interface since the solid fraction in the mushy layer there is zero
when D/k < 1 and thermodynamic equilibrium is assumed. Instead, the release of

latent heat is distributed throughout the mushy layer as expressed by the nonlinear
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thermal-diffusion equation (5.19), which in this case takes the form

aT 0 oT 6(1)

—| K=— ¥ — 27

‘o " a: < 0z ) ot £}

An additional equation is required to determine how the solid fraction varies within

the mushy layer. Since the microstructure of the mushy layer is so fine and the relative

surface area of phase boundaries within the layer is consequently so large, it is a very
good approximation to assume that

T=T.(C) (5.28)

within the layer, i.e., the mushy region is in local thermodynamic equilibrium. The
concentration C of the interstitial liquid is found, by conservation of solute from
eq. (5.20), to satisfy

oc 3¢
(I=9)==(C-C)3,

= (5.29)

where C; is the (uniform) concentration in the solid phase and we have ignored the
diffusion of solute because D < k.

Appropriately nondimensionalizing these governing equations [ 18, 40] introduces
the parameter

Cy =g

C ===,
Co—Cs

(5.30)
where C, is the initial concentration of the melt and 7, (Cg) = Tg. The parameter
% represents the difference in composition between the solid and liquid phases relative
to the variations in concentration of the liquid phase within the mushy layer. The
value of % is zero for a pure melt and is always positive otherwise. In this system of
equations, the Stefan number #/c,[T.(Co) — Tg] only appears divided by €. Thus
positive values of € serve to reduce the effective value of the Stefan number.

Numerical solutions of the resulting equations were obtained by Kerr et al. [40].
They also carried out a series of experiments with aqueous isopropanol (with C,
around 17 wt% isopropanol), which led to the formation of ice and the release of an
isopropanol-enriched solution. Both the ice and the released solution were less dense
than the original solution. Thus, a relatively light mushy ice layer, bathed in stagnant,
isopropanol-enriched water, formed at the top of the container. This cold layer
maintained turbulent thermal convection in the fluid below.

A comparison between the theoretically and experimentally obtained results is
presented in fig. 18, where the appropriate theoretical curve is the one marked
“equilibrium”. The agreement between the theoretical predictions and the experi-
mental data for both the position of the interface and the temperature of the melt
appears to be good. However, one notices that the measured temperature of the
aqueous isopropanol was always below the predicted temperature, and, after approx-
imately 300 min, was also below the liquidus temperature — and by a fairly significant
amount (~ 1°C). This signifies that the melt must become locally supersaturated in
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Fig. 18. (a) The thickness s(t) of the mushy layer and (b) the temperature 7 of cooled aqueous isopropanol

as functions of time. The dashed curves are the result of a theoretical model based on the assumption of

thermodynamic equilibrium and-the solid curves incorporate the kinetic growth law [eq. (5.31)]. The

symbols represent the data from different experiments in which C, =83.2wt% H,O, T, =4.0°C,
Ty = —17°Cand H = 18.8 cm.

order for solidification to occur. We, thus, describe the incorporation of the concept of
supersaturation into a model which relaxes the assumption that solidification occurs
at thermodynamic equilibrium. Aside from leading to better agreement with the
experimental data, the predictions of the model have far-ranging consequences, which
include the conditions under which large bodies of melt, such as the molten rock
(magma) contained in storage reservoirs within the Earth, can convect when cooled
from above [41].

Nonequilibrium processes of crystal growth can be modelled by incorporating the
concept that, away from thermodynamic equilibrium, the rate of growth of solid is
directly related to the value of the local supersaturation. This concept has a rather
broad and old foundation (see, e.g., [42] for a general survey and [43] for an explicit
application which has some similarities with that presented here). Experiments with
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aqueous isopropanol suggest the simple linear relationship [44]

§=74(TL—Ta) (z = s(t)), (5.31)
de

with T; < T, where T is the liquidus temperature at the interface, 7; is now the
unknown solidification temperature at the interface and % is an empirical constant,
determined for aqueous isopropanol to be 2.2 x 10"*cms™!°C~! [44]. More com-
plicated, nonlinear relationships, for different substances, reflecting the different styles
of growth of individual crystals, have been suggested, but eq. (5.31) represents a good
fit to the experimental data for aqueous isopropanol.

The result of incorporating eq. (5.31) into the numerical simulation of the experi-
ments is shown labelled “kinetic” in fig. 18. The theoretical predictions for the position
of the solidification front are seen to be in excellent agreement with the experimental
data. Those for the temperature of the melt satisfactorily account for the occurrence
and time of initiation of the supersaturation but are slightly less than the observed
temperatures. It is believed that the observed temperatures may have been slightly
increased by heat gains from the laboratory.

The fact that in the interior the melt was at a temperature below its liquidus
temperature, and was, hence, supersaturated suggests that had there been nucleation
sites for crystallization within the melt, there could have been growth additional to
that which occurred in the mushy layer. This was not so in experiments with aqueous
isopropanol because the solid ice crystals were lower in density than the original melt
and nucleation was not observed in the interior of the solution. On the other hand,
experiments with aqueous sodium sulphate formed relatively heavy sodium sulphate
decahydrate crystals, some of which settled to the base of the tank, leading to growth
of solid at the floor. This illustrates the important concept that, under suitable
conditions, cooling at the roof of a container leads to crystallization at the floor
remote from the site of cooling, as observed previously by Turner et al. [17] and
described by Brandeis and Jaupart [45]. A description of the theoretical model we
developed to account for the growth on the floor is presented in the next subsection.

5.5. Compositional stratification in the solid

Stratification of composition in the solid, or zoning as geologists sometimes call it,
that results from solidification of a multicomponent melt is important in many
different situations. For it to result from a two-component melt, it is necessary that
solidification of both component end-members occurs. This can result from variation
of composition along the solidus, although this is generally a small effect. Indeed, for
most aqueous solutions it is totally absent. More generally, compositional stratifica-
tion can arise only if cooling takes place below the eutectic temperature Tg, the
minimum temperature at which the melt can remain liquid, at least at thermodynamic
equilibrium.

.With the geometry considered in the last subsection, compositional stratification
will result if T is maintained below Tg. In this case the thermal profile is as sketched
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Fig. 19. Sketch of the temperature profile for a binary melt of initial depth H cooled from above to release
melt whose density is less than that of the original melt, with the boundary maintained at a temperature that
is below the eutectic temperature.

in fig. 19. Commencing from the roof, the first layer, which occupies 0 < z < sg(t),
consists of a composite solid made up of crystals of the two pure end-members. The
temperature at the boundary sg(¢) is the eutectic temperature 7. Heat is transferred
by conduction through this layer and, once the solid is laid down, the composition is
independent of time. Beneath this solid layer there is a stagnant mushy layer, just as
before, which occupies sg(t) < z < s(t). The layer between z = s(t) and z = s¢(¢) is
occupied by the turbulently convecting melt which transfers heat into the mushy layer.
Finally, in s¢(t) < z < H, secondary crystallization leads to a solid layer growing from
the floor. With time, the eutectic front at z = sg(t) reaches the solid layer growing from
the floor and the solidification is complete.

A series of experiments were conducted by Kerr et al. [46,47] using aqueous
sodium sulphate in order to investigate this situation. The results of the experimental
observations and the theoretical predictions, using the fitted value of
4 =15x10"*cms™'°C™! for aqueous sodium sulphate, are shown for a typical
experiment in fig. 20. Figure 20a indicates that the thickness of each of the three layers
that are either partially or totally solid grew with time, in good agreement with the
theoretical predictions. From fig. 20b we see that there is a good agreement between
the theoretical curves and experimental data for the temperature of the melt as
a function of time. For comparison, we also present the liquidus temperature at the
initial concentration. The mean composition in the composite layer decreased with
depth from the roof, as is depicted in fig. 20c, owing to the gradual decrease in
composition of the melt throughout the experiment. There is a discontinuity in the
mean composition at the height where the downward-growing mushy layer met the
upward-growing crystal layer from the floor. The measured compositional profile was
fairly well predicted by the theory.
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Fig. 20. The predicted results and the experimental data for cooling an aqueous solution of Na,SO, from

above for the same values of the physical parameters as in fig. 19: (a) height of the three interfaces as

functions of time; (b) temperature of the liquid as a function of time; and (c) composition of the final solid
product as a function of depth.

. A more complicated situation arises and new concepts are introduced on considera-
tion of the cooling from below of a melt that releases less dense fluid on solidification.
If the appropriate compositional Rayleigh number is sufficiently large, as we shall
assume, compositional effects in this case lead to vigorous mixing of the melt. Aside
from the compositional transfers associated with this mixing, there are important
lhf:rmal transfers to which the compositional transfers are coupled. The coupling
anses because the compositional flux determines the intensity of the convective
motions in the melt, which in turn determines the thermal flux. This flux regulates the
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Insulated

Fig. 21. Sketch of the temperature and composition profiles for a binary melt of initial depth H cooled from
below to release melt whose density is less than that of the original melt with the boundary maintained at
below the eutectic temperature.

solidification rate and, thus, the rate at which less dense fluid is released, i.e., the
compositional flux. Part of the aim of an investigation by Woods and Huppert [49]
was to study the relationship between the compositional flux from, and the thermal
flux towards, the interface between melt and solid.

The geometry of their model and the generated profiles of temperature and
composition are depicted in fig. 21. For the sake of simplicity, they neglected all effects
due to nonequilibrium thermodynamics and to the formation of a mushy layer at the
top of the crystal pile. Neglecting the latter was an outcome of experiments with
aqueous Na,COj,, for which the observed mushy layer was only of order 1 mm thick.
An investigation of the structure of such a mushy layer, the conditions under which it
will form and the convection induced within it is presented in [3, 48].

The compositional flux F, was determined by assuming that the four-thirds law of
turbulent thermal convection [cf. eq. (4.3)] can be suitably modified to cover turbulent
compositional convection by writing

Fc = y:.c(gBD*/v)'PAC*?3, (5.32)

where f is the fractional increase in melt density per unit increase in composition, AC
the compositional change across the compositional boundary layer on top of the solid
layer and y. an empirical constant which may be different from y because of the
different boundary conditions on heat and composition. Since the turbulent intensity
drives both the thermal and compositional transfers, the nondimensional heat flux, or
thermal Nusselt number, F; H/ckAT, associated with the compositional flux, will be
linearly proportional to the compositional Nusselt number F-H/cDAC. The func-
tional relationship, however, may possibly involve the Prandtl number and the ratio
of the thermal and compositional diffusivities as well as whether the melt is under-
saturated or saturated, since for the latter the temperature and composition in the
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melt are coupled by the liquidus relationship. Mathematically, this means that

Ik, v \{AT
FT=.I<%,%><KE>FC, (5.33)

where fmay depend not only on the explicit parameters displayed but also on whether
the melt is saturated or undersaturated. When the melt is saturated AT = m; AC if the
liquidus relationship is assumed to be linear. Woods and Huppert [49] also present
three tentative physical models of the behaviour of the boundary layer at the interface
which suggest explicit formulae for f.

The governing equations can then be formulated as follows. Within the solid, the
temperature field satisfies the linear equation of heat conduction. However, in order to
simplify the analysis, they replaced this with the linear temperature profile [c.f. eq.
(2.10)].

T(z,t) =Ty + (Tg — Tg)z/s(t). (5.34)

This is a good approximation to the full solution of the heat conduction equation
provided that effects due to thermal conduction propagate more rapidly than does the
interface between melt and solid. That is, provided s < (k,t)*/2. This inequality is
generally well satisfied (see, e.g., [17, 50]). The incorporation of eq. (5.34) greatly
simplifies the analysis because the remaining equations are then all ordinary differen-
tial equations in time and no partial differential equations need be solved. At the
interface between the melt and the solid, conservation of heat requires that [cf. eq.
(4.4)]

ki(Te — Ts)/s = fJc(0 — Te)(y — Ce)'"® + [c,(0 — Tg) + 313, (5.35)

where  and Cg are the composition of the melt and the eutectic, respectively, and
J. = y.(gBD?*/v)}3, while conservation of matter requires that

(Cs—¢)$=Jc(l/1 ~ Cg)*5, (5.36)

where C; is the composition of the solid. Within the melt, the thermal balance can be
written as [cf. eq. (4.3)]

de
(H_S)Ez —fJe(0 — Te)(§ — Ce)'?, (5.37)
while conservation of matter requires that
d
(H — s)d—‘f = —J(¥ — Ce)*". 5

The. system for the four unknowns 6, Y, C, and s represented by egs. (5.35)—(5.38) is
subject to the initial conditions

0=T, yYy=Co C,=Cp s=0 (t=0), (5.39)
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where T, and C, are, respectively, the initial temperature and concentration of the
melt. Equations (5.35)—(5.39), with the one free parameter f, can be integrated
numerically (either with or without suitable nondimensionalization) to lead to theor-
etical predictions against which laboratory data can be compared.

Experiments with aqueous sodium carbonate, with a fixed value of k,,,/D and v/k,,,
indicated that the data were best fitted by taking f= 3 when the melt was under-
saturated and f= 1 when saturated. The results of a particular integration of egs.
(5.35)—(5.39) are graphed in fig. 22 and compared there with laboratory data. In fig.
22a, b, which present comparisons for temperature and composition in the melt and
the height of the solid as functions of time, the agreement between theory and
experiment is quite good. The agreement in fig. 22¢, which presents the composition of
the solid as a function of depth, is not as good, but still quite reasonable. The various
segments in the theoretical curve indicate the different fluid regimes under which the
solid was formed. For s < 2.4 cm (¢t < 150 min) the melt was predicted to be under-
saturated. Beyond these limits, saturation was predicted. The various segments of the
theoretical curve of fig. 22¢ took up different shapes, depending upon the relative
balance between the convective and latent heat terms on the right-hand side of eq.
(5.35). For most of the segment labelled 1, latent heat was dominant. With time, its
relative effect weakened, which lead to the decrease of the composition of the solid
with height as convective effects became dominant along the segment marked 2. At the
end of this, the melt became saturated, at which point the model (discontinuously)
reduced f from 3 to 1 along the segment marked 3. In reality, f will change more
gradually and nonequilibrium effects will also occur, which explains the lack of
agreement between theory and experiment at this point. The concentration of the
solid thereafter adjusted rather rapidly at first to accommodate the discontinuity in
the model. Subsequently, along the rest of the segment marked 4, the concentration in
the solid decreased slowly as the temperature and concentration of the melt decreased.

6. Solidification from a vertical wall

Cooling and crystallizing a melt from a vertical side-wall requires a second spatial
dimension to be considered because horizontal thermal and compositional gradients
interact with the predominantly vertical flow of released fluid due to the vertical
orientation of gravity. The situation of pure cooling (or heating) without crystalliza-
tion at a semi-infinite wall is by now a classical problem in fluid mechanics (see, e.g.,
[51,52]). The inclusion of crystallization adds two new effects. One is due to the
presence of compositional influences in addition to thermal influences, and the other is
due to the moving boundary between solid and melt. The incorporation of both these
effects together has so far resisted analytical investigation, although a number of
numerical investigations have considered this situation. On the assumption that the
effects of crystallization can be treated by specifying a thermal and compositional
anomaly at the (fixed) wall, and, hence, neglecting the solid regime that is formed,

a number of authors have presented boundary layer analyses of flow past a vertical
wall in an infinite fluid [53-56].
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All these studies have focused on the situation for which the density anomaly at the
wall due to temperature, Apr, is positive, which corresponds to a cooled wall and by
itself would induce downwards motion, while the density anomaly at the wall due to
composition, Ap¢, is negative, which corresponds to the release of less dense fluid and
by itself induces upwards motion. Part of the reason that this situation has received
maximum attention is because it is the one most relevant to a geological context. It is
also the one that arouses most fluid-mechanical interest because of the inherent
possibility of a bidirectional boundary layer. In the limit D < k < v, three separate
boundary layer regions can be discerned. In the inner region, which is closest to the
wall, compositional buoyancy forces due to compositional differences balance viscous
forces. Beyond this, in an intermediate region, buoyancy forces due to thermal
differences balance viscous forces. Finally, in the furthest region, the inner and
intermediate motions are responded to by viscous coupling with the inertia forces.
The flow and relative strengths of the boundary layers depend on only three external
parameters: the Prandtl number Pr = v/k; the ratio of the diffusivities t = D/k; and
the (positive) ratio r = — Apr/Apc. For sufficiently small r, compositional effects
overpower thermal effects and the entire flow is predicted to be upwards. For
sufficiently large r thermal effects dominate and the entire flow is downwards. For
intermediate values of r, a bidirectional motion results, with an upwards inner flow
and a downwards intermediate flow. For large Pr, Nilson [55] showed that the
bidirectional flow occurred whenever 0.62t < r < 1.09t'/. On the further assumption
that t < 1, as is typically the case, Nilson used asymptotic expansions to match the
inner upwards-flowing boundary layer, whose width increased as x!/#, where x is the
distance from the base of the wall, to the very much thicker downwards-flowing
boundary layer, whose width increased as (L — x)'/*, where L is the total length of the
wall. A typical example of the resulting self-similar vertical velocity, adapted from
Nilson et al. [56], is drawn in fig. 23.

Vertical velocity

P | P | r | o )
1 10 102 102 10* 10°

Distance from the wall (arbitrary units)

Fig. 23. The self-similar vertical velocity as a function of distance from a wall which is maintained at
a decreased temperature and an increased composition over the far-field value.
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A similar calculation, assuming that the flow takes place in a porous medium, has
been conducted by Lowell [57], who also suggests that the value of r determines
whether the flow is all upwards or all downwards or takes place in a bidirectional
boundary layer. Such bidirectional boundary layer flows are fairly easy to set up and
to visualize in a laboratory experiment.

These analytical calculations have all assumed that the ambient conditions far from
the wall are constant. If the wall is part of a container, the boundary layer flows alter
the environment and, in turn, are altered by it. This brings about new phenomena.
Some of these have been investigated from an experimental point of view (see, e.g.,
[58-63]), while the work of Thompson and Szekely [64, 65], was one of the first
theoretical studies. The latter authors also conducted laboratory experiments with

y (cm)

o O
25 [

20

y (cm)
o
|

10 =

60 50

z (cm)

Fig. 24, Numerically calculated two-dimensional streamlines and liquid composition after 24 h for the

partial crystallization of a stratified supereutectic aqueous solution of sodium carbonate for (a), (c) a tank

60 x 30 cm high, and (b), (d) a smaller tank 20 x 30 cm high. The cold boundary at x = 0 was maintained at

a tcmpgrature of —21.5°C. The initially uniform temperature in both tanks was 15.5°C and the initial

composition varied linearly from 13.0 wt% Na,COj; at the base to 6.2 wt% Na,COj; at the top in accord
with experiments reported in [74]. The calculations are further explained in [71].




778 H.E. Huppert

(a) Insulated (h)

Cold wall

10 cm

Fig. 25. The distribution of composition, in units of kg of Na,COj; - l10H,O per m? of solution, in the solid

product obtained by cooling an initially homogeneous aqueous solution of Na,COj at a vertical wall. The

initial composition was 111 kg of Na,COj5 - 10H,O per m? of solution: (a) concentration in the middle plane

of the tank, parallel to two insulated sides; (b) concentration in half the transverse section at the insulated
end of (a).

which to compare their numerical calculations. Further numerical calculations have
been summarized by Amberg [66], who has tried to identify the important external
parameters and use these to collapse in a systematic way the output from different
calculations and experiments. Reviews of some of these calculations are presented in
the papers by Amberg, Voller and Schneider and Beckermann that appear in [31].

The major conclusion of all these studies is that solidification from the side of an
initially homogeneous solution results in the formation of a vertical composition
gradient in the melt. The gradient results from the convection driven by the fluid
released on solidification, whether it be more or less dense than the original fluid.
Cooling a vertical compositional gradient from the side leads to an array of nearly
horizontal double-diffusive layers separated by sharp interfaces, as described by
Huppert and Turner [67] and by Huppert et al. [68]. (Interested readers will find
a description of the fundamental processes of double-diffusive convection, or ther-
mosolutal convection as it is sometimes called, in [69, 70] and the references therein.)
Figure 24 is one of the results of the extensive numerical calculations, performed by
Jarvis [71]. The initial development of double-diffusive layers in the calculations is
becoming evident, but more computer time would be needed to simulate the further
evolution.

Aside from the stratification set up in the fluid, there is also compositional stratifica-
tion in the resulting solid product. In her dissertation, Leitch [62] extended the earlier
pioneering work of Turner and Gustafson [60] to discuss experiments in which
initially uniform solutions of aqueous sodium carbonate were cooled from a sidewall
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of a tank 16 x 20 x 15 cm high. The refrigeration unit that provided the coolant was
operated at its maximum power; thus, the temperature of the cold wall was not
controlled (although it was recorded). The resulting distribution of composition in the
solid, measured at the end of the experiment for which the initial concentration of
Na,COj; was less than the eutectic value, is shown in fig. 25. Considerable spatial
variations in composition, both in the horizontal and in the vertical directions, are
clearly evident, although these variations are not yet quantitatively understood.
Similar variations in the resulting solid composition were reported by Hebditch [72],
who solidified melts composed of lead and tin by cooling them at a vertical wall. The
broad similarity between the results of these two sets of experiments indicate that the
phenomena seen in aqueous salt solutions are replicated in other fluids with widely
different properties.

7. Crystallization on a slope

Many of the principles enunciated in the previous sections are displayed in the study
of crystallization resulting from cooling at a slope. In a series of experiments Huppert
et al. [73, 74] inserted a cooling plate at an angle to the vertical into the interior of an
aqueous solution. A particularly illustrative case is that in which the slope is at 45° to
the vertical and is inserted symmetrically into the container. The slope then divides
the fluid into two geometrically indentical regions. If convective effects were absent,
solidification would proceed identically in the two regions. However, the influence of
convection was observed to be dominant, although different, in the two regions.

Some of the experiments used an initially homogeneous solution of sodium carbon-
ate whose concentration was greater than the eutectic value. In both regions, less
dense fluid was released by the crystallization on the upper and lower surfaces of the
cooling plate. Above the plate, the released fluid was free to rise and did so in a series
of plumes, which mixed with the environment to produce a complicated large-scale
flow.

Part of the flow consisted of strong motions up the slope of fluid from the interior
entrained into the boundary layer and drawn towards the sites of crystallization.
Another part of the flow was driven by the horizontal density gradients set up by the
different heights of the plumes and, hence, different amounts of mixing along the slope.
The released fluid which formed below the plate, on the other hand, was not free to
rise because of the constraint of the overlying plate. The fluid slowly migrated through
the crystal mush and was deposited at the top of the layer. Because of the cooling, the
temperature of the interior decreased with time and, so, the density of the released
fluid decreased also, in accord with the phase diagram of fig. 8b. Thus, newly released
fluid flowed to the top of the region and displaced downwards the fluid previously
d_cposited there, just as in the now classical “filling-box” situation [75-77]. As in that
Situation, the sharp interface between the released fluid and the initial fluid
Propagated downwards and a quite strongly stratified, virtually stagnant fluid region
e¢volved above the interface. The macroscopic crystal structure took three forms:
above the slope there was a very smooth interface between the crystals and the fluid




780 H.E. Huppert

due to the strong up-slope motions in the latter; in the lower part of the downwards-
facing surface, the interface was fairly convoluted owing to the fluid being irregularly
crystallized at randomly oriented nucleation sites, while in the upper part of the
surface there were much longer crystals and a more convoluted interface. With time,
the interface in the region below the slope reached the bottom and eventually all the
remaining fluid was at the eutectic composition. In the region above the slope,
horizontal thermal and compositional gradients induced the ubiquitous double-
diffusive layering and strong velocity gradients.

Experiments which commenced with a vertical gradient of composition [74]
showed again that vertical density gradients have a strong restraining influence on
compositional convection. A series of double-diffusive layers evolved, with thin
plumes only occasionally penetrating one of the interfaces. Owing to the large
molecular diffusivity of heat in comparison with that of composition, the circulation
in the double-diffusive layers was controlled by thermal effects, even in regions where
the plume motion due to compositional convection partially opposed the sense of
motion. The compositional variations in the solid resulting from one experiment are
shown in fig. 26.

10 cm

Fig. 26. The distribution of composition, reproduced from Huppert et al. [72], in units of wt% Na,COj3, in

the solid product obtained by cooling an initially stratified aqueous solution of Na,COj at a 45° slope. The

initial composition increased linearly from 6 wt% at the top of the tank to 13 wt% at the bottom. The
solidification front after 55 h is indicated by (- - -) and after 73 h by (—-—-— ).
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8. Conclusions

Much further work remains to be done in this exciting field with its many applica-
tions. This chapter has developed a series of models which act as a firm foundation for
the investigation of many macroscopic solidification effects. Future research will
undoubtedly concentrate on the effects of convection within the mushy layer and the
change in the rate of solidification that results. Preliminary analyses along this line
have already been undertaken by Worster [3,48]. Additional attention will also be
given to the effects of different container geometries, initial stratification in the melt
and the presence of three (or more) components about which very little is known — not
even the form of the phase diagram in most cases.
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