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ABSTRACT

The propagation of and the deposition from a turbulent gravity current generated by
the release of a finite volume of a dense particle suspension is described by a box
model. The approximate model consists of a set of simple equations, a
predetermined, depth-dependent leading boundary condition and one
experimentally determined parameter describing the trailing boundary condition. It
yields predictions that agree well with existing laboratory observations and more

complex theoretical models of non-eroding, non-entraining, suspension-driven

flows on horizontal surfaces.

The essential features of gravity-surge behaviour have been observed and are
captured accurately by the box model. These include the increased rate of
downstream loss of flow momentum with increased particle setting velocity, the
existence of maxima in the thickness of proximal deposits, and the downstream
thinning of distal deposits. Our approximation for the final run-out distance, x,, of a
surge in deep water is given by x,~3(g\ga/w2)"'®, where g}, is the initial reduced
gravity of the surge, q, the initial two-dimensional volume, and w, the average
settling velocity of the particles in the suspension. A characteristic thickness of the
resulting deposit is given by ¢,q,/x,, where ¢, is the initial volumetric fraction of

sediment suspended in the surge.

Our analysis provides additional insight into other features of gravity-surge
dynamics and deposits, including the potential for the thickening of currents with
time, the maintenance of inertial conditions and the potential for strong feedback in
the sorting of particle sizes in the downstream direction at travel distances
approaching x,. Box-model approximations for the evolution of gravity surges thus
provide a useful starting point for analyses of some naturally occurring turbidity

surges and their deposits.

INTRODUCTION

A gravity current occurs whenever a density dif-
ference between two fluids gives rise to the lateral
flow of one fluid into the other. The term gravity
surge applies specifically to the density driven
flow of a fluid with finite volume. Turbidity
currents are examples of geologically important
gravity surges in which the excess density is
derived from the presence of particles dispersed
throughout the flow and in which the particles
are suspended within the current by turbulence
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generated by the flow. Suspension-driven gravity
surges ultimately dissipate due to the damping of
turbulence by viscous friction or internal density
stratification, and due to the loss of excess den-
sity through entrainment of ambient fluid or
deposition of suspended particles.

The propagation of and the deposition from
these complicated flows pose challenging prob-
lems for geologists and engineers inieresiad ia
sedimentation on continental margins. Turbiaity
surges in ancient seas have contributed to the
formation of some petroleum reservoirs, for
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example, and modern turbidity surges may inter-
fere with offshore structures designed to tap those
same petroleum resources. Our work is motivated
by a desire to understand suspension-driven
gravity surges and represents an extention of
many studies that have appeared in the geological
literature during the last few decades (e.g.
Middleton 1966a,b, 1967; Riddell, 1969;
Middleton & Neal, 1989).

Bonnecaze et al. (1993), hereafter denoted by
BHL, are among the most recent to analyse the
behaviour of two-dimensional gravity surges
undergoing dissipation due to particle deposition.
They solved numerically the coupled equations
that describe the conservation of mass and
momentum to obtain predictions of the motion of
a suspension-driven gravity flow as it propagates
across a horizontal surface. Their approach incor-
porates no freely adjustable parameters, yet yields
predictions that compare well with their experi-
mental observations on the rate of advance of a
deposit-forming surge and the distribution of the
deposits. Their theory also indicates that a
constant-volume, suspension-driven gravity cur-
rent evolves from a self-similar regime of collapse
that is characteristic of a compositionally driven
(e.g. saline) surge into a bore-like flow. Differ-
ences in thickness along the length of a gravity
surge during early stages of its evolution accom-
pany spatial variation in excess density due to
particle settling. A relatively greater rate of den-
sity loss in the current tail reduces the rearward
pressure gradient that would otherwise inhibit
forward fluid motion in that region. Accumu-
lation of rearward fluid behind the slower
moving current-head ensues, and a dense, bore-
like cloud of suspended particles develops in
time.

Bonnecaze et al. (1993) also found that for an
accurate description of their experimental obser-
vations a two-layer model had to be considered to
accommodate the behaviour of the gravity surge
in shallow-water surroundings. Specifically, a
shallow-water gravity current interacts with the
confined counterflow of the fluid into which it is
issuing. As a consequence the intruding gravity

Modelling suspension-driven gravity surges 455

surge exhibits a boundary condition at the moving
front which is dependent on the ratio of current
thickness to the ambient depth. This behaviour
characterizes a slumping phase observed in the

.early development of many laboratory gravity

currents (Huppert & Simpson, 1980).

Simplifications made by BHL to obtain their
theoretical results include the explicit assump-
tions that both momentum and mass of the invis-
cid, Boussinesq current are distributed uniformly
in the vertical and that both entrainment of
ambient fluid and frictional effects are negligible.
Even with these simplifications, however, the
numerical solution of the equations describing
particle-driven gravity surges becomes unwieldy
for many geological applications.

We present here straightforward analytical
expressions that describe the evolution of the
simplest of slumping, suspension-driven gravity
currents as they intrude into deep or shallow
water. Our approach can be thought of as an
extension to the box model of Huppert & Simpson
(1980), which incorporates the relatively slow
settling of particles uniformly suspended in the
turbulent flow. Evolution of the two-dimensional,
inertial current is then considered to occur
through a series of rectangles of constant area and
uniform composition. The attendant assumption
of uniform depth along the length of the flow at
any instant in time is a reasonable one, as is
shown in Fig. 1 for a ‘base-case’ saline gravity
surge and an analogous suspension-driven cur-
rent. It is for a box-model approach, moreover,
that the empirical moving-front boundary con-
dition used by BHL, and which we again use here,
was originally confirmed.

We provide an analysis for both deep-water
and shallow-water conditions, and focus on the
comparison between our model predictions and
existing observations of slumping gravity surges
generated in the laboratory. Good agreement
between our predictions and the experimental
observations leads us to several important inter-
pretations of suspension-current behaviour.
Among these points of interest, our results are
consistent with the conclusion reached by

Fig. 1. (a) Shadowgraphs at approximately 4-4, 6-8, 9-7 and 17-5 s after release of a two-dimensional, saline gravity
current with h,=10 cm, [,=30 c¢m, and g',=11 cm s ~ . The thin vertical lines are at 10 cm intervals and the end wall
can just be seen on the far left. The gravity current is in the slumping phase in each view. In the first image, the return
flow of the lighter, undyed fluid has not yet reached the trailing wall and the thickness of the intruding gravity
current is variable over its length. In the second view, the current shape is tending towards uniform thickness. It is
clearly box-like in the third and fourth views. Note the thin tail extending toward the trailing wall in the last
shadowgraph. (From Huppert & Simpson, 1980, Fig. 9, plate 1.) (b) Suspension-driven gravity current analogous to

that shown in (a).
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Hallworth et al. (1993) that slumping gravity
currents entrain a little or no ambient fluid. We
also reaffirm the notion introduced by BHL that
suspension currents generated in the laboratory

may propagate in the slumping regime for rela-.

tively longer periods of time than do analogous
saline currents. Laboratory gravity currents are
used frequently as analogues for flows of environ-
mental interest, and the analytical expressions
presented here are simpler to apply to either
laboratory data or field observations than the
complete numerical solution of BHL. In one
application, for example, we show that predic-
tions from our model are in good agreement with
the experimental observations of Middleton &
Neal (1989) regarding the scaling relationships
between the characteristic parameters of a surge
and its deposit. The box-model approach also
provides new insights regarding the evolution of
suspension-driven gravity flows that may be
extended to the analysis of some deposits gener-
ated by natural phenomenon. In another paper,
we explore the model behaviour of a fully devel-
oped, fluid-entraining turbidity surge on a slope
(Dade et al., 1994).

The literature on the underlying anlaysis of
inertial, compositionally driven currents is dis-
cussed briefly by BHL. More detailed discussions
of the broad range of gravity-current behaviour are
available in Simpson (1982, 1987), and a review
of geological aspects of these flows appears in
Allen (1984). A recent summary of experimental
studies designed to examine the behaviour of
suspension—driven currents appears in Middleton
(1993).

In the next section of our paper we describe our
box-model approximations for suspension-driven
gravity surges. The description presents the math-
ematical development and discusses the results of
our analysis. This exposition is followed by a
comparison between the model predictions and
the experimental observations reported by BHL.
In that section we discuss the graphical represen-
tations of our analytical results and show that
these are in good agreement with the experimen-
tal data. We then consider the effects of more than
one grain size on the behaviour of a suspension-
driven surge. In the final section, we discuss
additional ramifications for the behaviour of these
complicated flows both in the laboratory and in
the field. In particular, we demonstrate that the
simple scalings which emerge from our analysis
may be used to reconstruct past events in which
turbidities were deposited on elongate basin
plains.

BOX-MODEL APPROXIMATIONS

The following analysis is based on the assump-
tion that a two-dimensional gravity current is an
inviscid, Boussinesq flow which results from the
release of an initially stationary volume of dense
fluid into less dense surroundings. We make
several additional, simplifying assumptions.
Many of the expressions presented below are thus
approximations only and the =~ sign is used
throughout our analysis to differentiate between
these and exact relations.

As in Huppert & Simpson (1980), gravity-surge
collapse and subsequent motion across a horizon-
tal surface is understood to be controlled primar-
ily by the pressure gradient existing at the current
head. A steady-state balance there then gives rise
to the relationship

uy = Fri(g’h)'?, (1)

where uy is the velocity of the current head, Fry
the Froude number at the current head, and h the
current thickness. In Eq. (1), g, the reduced grav-
ity of currents with density p, propagating into a
fluid of ambient density p,, is given by

gl 57 g(pc R pa)/pa’ (2&)

where g is the acceleration due to gravity, and

Pe= Py — )0 + P (2b)

where p, and ¢ are the density and volumetric
fraction of the particles, respectively. Note that g’
is linearly dependent on ¢, the volumetric frac-
tion of particles, and is thus a function of time in
gravity currents subject to the loss of excess den-
sity through the settling of suspended particles.
Recognition that the temporal evolution of g’ is
very slow relative to the time-scale of the propa-
gation of a surge provides the basis for our small-
perturbation approach to the existing box model
for compositionally driven flows. As we show,
this assumption facilitates the decoupling of the
equations that describe the conservation of
momentum and particulate mass, and leads to the
approximations made below.

To describe the depth dependence of the lead-
ing boundary condition of Eq. (1) for slumping
gravity currents, Huppert & Simpson (1980) found
experimentally that

Fry=1/2(h/d)~"®  0-075 <h/d<1 (3a)
and
Fry=119  h/d<0-075, (3b)

where d is the depth of the ambient surroundings.
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This boundary condition at the moving front
implicitly incorporates the effects of friction and
any small entrainment of ambient fluid.

We assume further that a volume-conserving,
two-dimensional current evolves through a series
of equal-area rectangles such that

Qo = holy = h(xy — x7), (4)

where h, and I, are the initial thickness and
length of the surge, and x\ and x| represent the
positions of the leading and trailing boundaries of
the turbulent current as it propagates down-
stream.

Gravity-surge intrusion into deep-water
surroundings

We begin by considering a flow for which the
thickness h is always less than 0-075d, the con-
centration ¢ is conserved and the position of the
current tail remains fixed at the origin. Then
substitution of uy=dx,/dt into Eq. (1) and integra-
tion of the result using Eqs (3b) and (4) with x.=0
yields a relationship between height h and time ¢
for times greater than the characteristic time-scale
(ho/g’)*’?. This relationship is given by

h =0-68(g2ig) 2t =%" (5a)

and corresponds to the self-similar form for
the height of a compositionally driven surge. The
leading coefficient in Eq. (5a) is related to the
constant Froude number defined in Eq. (3b).

To investigate the evolution of a sediment-
laden, deposit-forming gravity current, we allow
for the slow variation of g’ and the possibility that
x1#0 by substituting Eq. (2) into Eq. (5a) to obtain

h ~ 0-68c,(q2/g5) 3 (plo,) ~ V3t~ %3, (5b)

where g, is the initial value of g’. The newly
introduced coefficient ¢4 is slowly varying and
incorporates the histories of both the particle
concentration and the motion of the current tail,
as is shown in Appendix A. In the following
developments, however, we treat ¢4 as a constant.
It will vary between currents but, in general, is
close to unity, which is the exact value expected
for compositionally driven flows. This coefficient
can be considered as a temporally averaged shape
factor for the evolving current.

This approximation is used to analyse the slow
loss of particulate mass as follows. Particle con-
centration is assumed to be distributed uniformly
throughout the gravity surge, and its conservation
is described by the settling law for a dilute,
non-eroding, turbulent suspension (e.g. Martin &
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Nokes 1988). The rate of change of total particu-
late volume g,¢ is then given by the loss due to
settling over the length of the current.

d(gop)

dt

where w;, is the still-water settling velocity of the
fine particles in dilute aqueous suspension and is
proportional to the square of the particle diameter
for particle sizes corresponding to fine quartz
sand or smaller. The settling law defined in Eq.
(6a) requires that w, be very small relative to the
characteristic velocity of the gravity current and is
consistent with the notion that the gravity current
is slowly varying in general. Total volume is
conserved in non-entraining flows and Eq. (6a)
can be reduced to

= WS(D(XN =1 XT)’ (63]

dp  we
dt h

Substitution of Eq. (5b) into Eq. (6b) and render-
ing the results dimensionless with respect to the
length-scale h,, the time-scale (h,/g,)"’? and the
initial concentration ¢, yields

dj ~ — L¢4/3T2/3’ (7)
dr 0-68 c,Q2"°

: (6b)

where the upper-case symbols represent the
dimensionless forms of their lower-case equiva-
lents. The new parameter f introduced in Eq. (7)
is defined by

B = wl(gho)"'?, (8)

and represents the particle settling velocity made
dimensionless with respect to the characteristic
velocity of the gravity current. Variable f is as-
sumed always to be much less than unity for fine
particles in a well-mixed turbulent suspension.
Equation 7 has the solution for the initial
condition ¢=¢, (i.e. ®=1 at T=0) given by

ﬁ =3

D~ <1+——T5/3> ! (9)
3-4 c,Q%°

The term in parentheses on the right-hand side of

Eq. (9) embodies the effects of the slow settling of

the particles from the driving suspension. For

convenience we abbreviate this term to ¥, given

by

Wd =1+ (O'dT)S/B, (10&]
where
3/5
e i
5 d%<o
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Note that ¥, is a function of time, though by
assumption o, is not. The dimensionless concen-
tration of particles is then given by &~ ¥, ®,
and the effects of particle settling on the dynamics
of the surge become significant as dimension-
less time approaches and exceeds o;'. In
dimensional terms, this corresponds to a charac-
teristic time-scale proportional to (gZ/gw’)"/® on
which the effects of particle settling become
important.

We now retrace our steps and correct current
height h and travel distance xy to include the
newly defined effects of a slowly evolving particle
concentration. Substituting Eqs (9) and (10) into
Eq. (5b), we find that for dimensionless time T>1
the dimensionless thickness of the surge is given
approximately by

H ~ 0-68 c,Q*%,T~ 23, (11)

Substitution of Egs (2), (9), (10) and (11) into
Eq. (1) and non-dimensionalizing yields an esti-
mate of the dimensionless velocity of the surge
front given by

U & 0:98e 20 Pt o (12)

Note that Uy diminishes as T~ ? for large T,
which indicates that integration of Eq. (12) with
respect to time in order to determine the frontal
travel distance Xy=xy/h, will result in a finite
asymptotic limit.

Explicit integration of Eq. (12) to obtain esti-
mates of the travel distance of the surge head as a
function of time is accomplished with the help of
comprehensive tables (e.g. Gradshteyn & Ryzhik,
1980) or mathematics packages for the desk-top
computer (e.g. Mathematica®). In dimensionless
terms the propagation distance Xy of the
suspension-driven surge is given by

Xn ~ (Qy/02)? f4(a4T), (13)

where the origin is taken at the leading edge upon
release and f;(047) is given in Appendix B. The
position of the tail X, which is one surge length
behind the advancing front, can be calculated
from this expression and from the relationship
Xr=Xn — Qo/H (cf. Eq. 4).

As o4 tends to zero, corresponding to a
buoyancy-conserving density current, ¢, tends to
1 and Eq. (13) can be shown by a series expansion
of £,(T4T) to be equivalent to the expression for a
compositionally driven current, Xn=1-47Q,T?*
(which is consistent with the representation in
Eq. (A4) in Appendix A). On the other hand, as
04T becomes very large, Eq. (13) can be shown to
have the asymptotic limit

X% 3-4%e] 198525030 ilileg T 1) (14a)

for the dimensionless travel distance X, of a
deep-water surge. This result corresponds to the
dimensional limit

x, ~ 3-17 ¢31%(g,q3 /w2)*/® (14b)
at times sufficiently large that
t> 21 c35(q2/gwi) Vo, (14c)

In reality, a surge does not come to an absolute
halt. This result is rather a consequence of the
approximations used in the derivative of Eq. 13.
The distance x, defined in Eq. (14b) nevertheless
provides the scale of the run-out distance of a
non-entraining, deep-water surge. This length-
scale essentially corresponds to the distance
beyond which the propagation speed of the surge
vanishes due to the significant loss of driving
buoyancy through deposition. Note that it differs
from the value determined by Dade et al. (1994)
for a deep-water current that travels down a
uniform slope and entrains ambient fluid. For fine
particles in the Stokes’ settling regime, Eq. (14b)
indicates that the overall run-out distance x,
achieved by a suspension-driven surge on a hori-
zontal surface is proportional to ¢3’°, d, HBL RS
and I¥’®, where d, is the particle diameter.

Gravity-current intrusion into shallow-water
surroundings

We begin again by considering a flow for which
the thickness h of a surge is always greater than
0-075d, but as before the concentration is con-
served and the position of the current tail remains
fixed at the origin. Then proceeding as before,
except using Eq. (3a) rather than (3b), we find that

h ~ 159 (q5/g*d?)"” t "7 (15a)

for times greater than the characteristic time-scale
(ho/g)l/z-

As in the case of deep-water flows, we allow
approximately for the slow variation of g’ and the
possibility that x;#0 in suspension-driven cur-
rents by substituting Eq. (2) into Eq. (15a) to
obtain

h ~ 159 ¢,(¢5/g>d*)"7 (plpy) ¥t %7.  (15b)

The coefficient c, is analogous to ¢, introduced in
Eq. (5b). It is slowly varying and incorporates the
histories of both the particle concentration and
the motion of the current tail, as is shown in
Appendix A. As in our analysis for deep-water
flows we treat ¢, as a constant which may vary
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between currents but in general is close to unity,
the value expected for compositionally driven
flows.

By analogy with the earlier analysis for deep-
water gravity surges, substitution of Eq. (15b) into
Eq. (6) and solving the resulting expression to
match the initial condition p=¢, yields, in dimen-
sionless terms,

/7ﬂ =8

D~ (1 i T13/7> ; (16)

6:9 c,Q5”
where D=d/h,. The term in parentheses on the
right-hand side of Eq. (16) embodies the effects of
the slow settling of particles in a shallow-water

flow. For convenience we abbreviate this term to
¥, given by

Y. =1+ (o, 7)™ (17a)
where
D2/7 7/13
GS=<69—(§6/9> . (17b)
9 CsUo

Thus &~ ¥, 7’® for suspension-driven surges in
shallow-water surroundings and the effects of
particle settling become significant at dimension-
less time approaching and exceeding o, '. In
dimensional terms, this corresponds to a charac-
teristic time-scale (q3/h2g’3w7)"/*® on which the
effects of particle settling become important. This
scaling is different from that found for deep-water
flows.

Again we retrace our steps through the original
approximations for the dimensionless thickness
H and frontal velocity Uy of the gravity surge,
correcting for the slow evolution of excess density
due to particle settling. Substituting Eqs (16) and
(17) into Eqg. (15b), we find that

H=159¢, D 27Q87yw 157, (18)

With this result and Egs (1) and (3a) we then find
that

UN = 1/2D1/3H1/6¢l/2
~ 0-54 C‘;/G(QODZ)1/7¥1; 1T_1/7, (19)

from which we see that the integrated quantity Xy
will be finite because Uy diminishes as T~ for
large T.

Again with the help of mathematical software
packages, integration of this last result with
respect to time yields an approximation for the
dimensionless distance of travel of the surge
front, which is given by

XN ~ [QODZ/GS)1/7 fs(asT)! (20)
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where the origin is at the leading edge of the
current upon release and £ (o,7T) is given in
Appendix B.

As the product o,T becomes infinitely large, Xy
for a surge in shallow water approaches the
asymptotic limit given by

X, ~ 2-24 029/78 D213 ﬂ—6/13 Qg/ls (6. T>1).

(21a)

This result yields a dimensional estimate for the
run-out distance of the surge given by

x, & 2-24 %78 DP'13 (g ql h3 /wh)M/13 (21b)
at times sufficiently large that
t>2.8 6’2/13 D—2/13 (gg/h%g63WZ]1/13. (21C]

If the driving suspension comprises fine particles
in the Stokes settling regime and D is held
constant, Eq. (21b) indicates that the overall
length of run-out of shallow-water surges and
their corresponding deposits are proportional to
03", dy 1%, hy ¥*% and I7/*®. These scalings are
different from those found for a deep-water surge
(cf. Eq. 14).

Gravity currents exhibiting a transition between
slumping and deep-water behaviour can be
described by matching Eq. (12) to Eq. (19) at the
time at which h equals 0-075d, and integrating
forward from that instant.

Distribution of particle deposits

At any point on the bed along the current’s path of
travel, deposition is related to the instanteneous
rate of loss of the total particulate mass per unit
length of the surge, — (xy— x7) " d(gop)/dt. The
accumulation of sediment at the point of interest
can be estimated from the total loss of particle
mass during the approximate time of passage
(xn — x7)/u,, of the current across that location,
where u,,=dx,,/dt is the propagation speed of the
mid-point of the surge at a distance x,, = (xy+x1)/2
from the origin. Thus deposition is described by a
gradient in the particle concentration field,
—(u,,) "' d(gep)/dt= —d(qyp)/dx,,. In order to
calculate deposition at a point along the path of
travel, we need to estimate the propagation speed
.
To obtain this estimate, we note that u,=
(1/2)(dxy/dt+dx,/dt). Using this formulation in
dimensionless terms, the propagation speed U, of
the surge mid-point X, is given, for a deep-water
flow, by

U, =dX,/dT ~ x4Uy, (22a)
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where
xa=[(c¥? +0.75)¥,; — 1-25)/(c3?¥,) (22b)

and the composition of y, reflects the terms

obtained in deriving dx,/dt and dx/dt. In the-

case of a suspension current in shallow-water
surroundings, on the other hand, the propagation
speed U, of the centre of gravity of the surge is
given by

Um ~ XsUN’ (23&)
where

xs = [(cZ® + 0-58) ¥, — 1-08]/(c/° ). (23b)

Both y4 and y, are weak functions of time. Equa-
tions (22) and (23) indicate correctly that in the
initial stages of a flow accelerating from rest, the
tail of the surge remains stationary at the origin,
V. ~¥.~1 and cygze,~1 and thus U, /[Uy~1/2.
At large times, however, the tail has moved from
the origin and the behaviours of y4 and y, are such
that U, /Uy exceeds unity. This result reflects the
tendency of the body to move faster than, and to
supply material to, the head of the current.

Multiplying the right-hand side of Eg. (6a)
by u,,~ ' yields a direct estimate of the deposit
density J (mass per unit of bed area),

0 = ppywsqo9/ (u,h), (24a)

evaluated at the mid-point of the gravity surge
X, =(xn+xr)/2. Expressions for u,, defined in Egs
(22) or (23) and expressions for particle concen-
tration ¢ and height h can be substituted into Eq.
(6a) and rearranged to yield the divergence of the
particulate mass during the time of passage of a
surge.

Equation (24a) can be expressed in dimension-
less terms as

o
Pp(Poho

and is evaluated at X, =X\ — Q,/(2h). A charac-
teristic density of the deposit can be calculated
then in dimensionless terms as

W& QX% 082 VPO, (25)
S

ubstitution of Eqs (9-12) and (22a) into Eq.
(24b), on the other hand, yields

n = 1-5(c3%xg) " BTY;® (26)

as the dimensionless density of deposit # for a
surge in deep water as a function of dimension-
less time T. This expression is zero at T=0, rises
to a maximum and then decays algebraically to
zero as T tends to infinity.

e (24b)

The density (or thickness) of a surge deposit is
maximal in time when

dy/dT = 0. (27)

The solution to this condition when applied to
Eq. (26) with ¢4 assumed to be unity provides an
estimate of the maximal density of deposit #,,,,, in
deep-water surroundings of

Mmax ~ B°Q5"° ~ 3. (28a)

This is laid down at the dimensionless travel time
T,.ax given by

T.ox ~ 06687 3/5Q2°, (28b)

or at a dimensionless distance to the surge mid-
point given by

X, ... ~ 059825035, (28c)

Equations (25) and (28a) can be re-expressed in
dimensional terms to give a characteristic thick-
ness = ~1/3cg ¥*°(p/0,)(w2q2/gi)’® and maxi-
mal thickness 3% of the deposit, where ¢, is the
volumetric fraction of solids in the bed, which
typically takes a value of about 0-5. For fine
particles in the Stokes’ settling regime, we note
that both the characteristic and maximal thick-
ness of a deposit generated by a deep-water surge
must thus scale with ¢¢/®, d&’, h3/®, and I§®. From
Eq. (28c) moreover, we find that the maximum
thickness occurs at a distance x,,..~0-59(g5q5/
w?)'® from the source. Comparing this result with
our estimate given in Eq. (14b) for the run-out
distance of a deep-water surge for which cy3=1, we
note that x_, /x,=0-59/3-17 ~1/5. The deep-water
surge deposit is thus lenticular in shape as
viewed in longitudinal section and exhibits a
maximal thickness that is about three times the
average thickness and at a distance downstream
from the origin of the deposit-forming flow that is
about one-fifth of the overal length of the deposit.

In the case of a surge in shallow-water sur-
roundings, a characteristic density of deposit
generated by a surge in shallow water is given by

7 & Qu/X. ~ 0-4bc; *9/78geM3 P~ 2113 B/3, (29)

Substitution of Eqs (16—29) and (23) into Eq. (24b)
yields an estimate of the dimensionless density of
deposit # as a function of time given by

n =~ 1:2(c7%) BTV, 73, (30)

As for the expression for a deposit generated by a
deep-water current, Eq. (30) is zero at T=0, rises
to a maximum and then decays algebraically to
zero as T tends to infinity. The solution to the
condition described by Eq. (27) when applied to
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Eq. (29) with ¢, assumed to be unity provides an
estimate of the maximal density or thickness of
the deposit given by

fmax & 1:348713D~ 213013 o 37y, (31a)

This maximum is laid down at a dimensionless
time given by

T, .. ~ 1.088~ 713~ 2/13Qg/13 (31b)
or at a dimensionless distance given by
Xmax ~ 0'35ﬂ_6/13D_2/13Q(7)/13- (310)

Equations (30) and (31a) can be re-expressed in
dimensional terms to give a characteristic deposit
thickness % ~0-45D 3(py/p,)(W2q5/ g2 h2)/13
and the maximal deposit thickness 3x% gener-
ated by shallow-water surges. For fine particles in
the Stokes’ settling regime and for shallow-water
conditions in which the surge height is initially
equal to the channel depth (D=1), both the char-
acteristic and maximal thickness of a deposit
generated by a shallow-water surge is propor-
tional to @l%'3, d;2/13, ha S hand B, Thus
deposits generated by shallow-water flows exhibit
power-law relationships that are similar, but not
identical, to the deep-water scalings given above.
Middleton & Neal (1989) found experimentally
that the characteristic thickness of surge deposits
generated by various suspension-driven surges in
a horizontal channel with D=1 was proportional
to g7, d,, hg*, and Ig°. Our predictions of the
shallow-water scalings that relate deposit thick-
ness and surge properties as given above are very
close to these empirical results. As an interesting
aside, our predictions for the characteristic thick-
ness of a deposit generated by a shallow-water
surge with D=1 can also be shown to scale as

Pilgy & [(1/2]12/13(¢0/(pb]2(h3/q0)1/13](ws/u0]12/13,

where u,=1/2(g)h,)"'? is the velocity scale for the
flow at the instant of release, as given by Eq. (3a).
This form is virtually identical to the empirical
one reported by Middleton & Neal (cf. eq. (7) in
their text), and reveals the dependence of the
multiplicative coefficient in their result on the
quantities in brackets: the shallow-water Froude
number at the instant of surge release (=1/2), the
solids concentration in the initial suspension and
in the bed, and the lock geometry.

The maximum in the density or thickness of a
deposit generated by a shallow-water surge occurs
at a distance from the source given from Eq. (31c)
as X ~0-35D %3 (gqihZ/wh)/*3, Comparing
this result with our estimate for the run-out
distance x, given in Eq. (21b), we note that
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Xnax/X,=0-35/2-24, or about 1/6. Thus deposits
generated by shallow-water surges are similar in
gross morphology to, but slightly more elongate
than, their deep-water counterparts.

Maxima in the density (or thickness) of surge
deposits result from two competing factors in the
temporally evolving current. These are the dimin-
ishing rates of deposition and surge speed at a
fixed point along the travel path. At early times,
the rapidly moving body of the turbulent current
passes over a point very quickly and so little mass
is laid down despite high rates of deposition.
During these early times the current is thinning
rapidly and the local deposition rate is thus
increasing dramatically. At large times, duration
of passage of the surge over a fixed point is much
longer, but the slowly moving current has rela-
tively little to deposit. For a gravity current driven
by a monodisperse suspension, Eqs (28c) and
(31c) suggest that downstream displacement of
the maxima in densities of the resulting deposits
increases with increasing initial aspect ratio
Qy=1o/h, and diminishing dimensionless particle
settling velocity f. In the case of shallow-water
gravity currents, downstream distribution of
deposits is weakly dependent on the relative
ambient depth D=d/h,,

The precise descriptions of the propagation of a
surge and the distribution of the resulting particle
deposit are clearly dependent on the experimen-
tally determined coefficients ¢4 or ¢, that were
introduced to accommodate the unknown trailing
boundary conditions of the current. Comparison
of our box-model approximations with experi-
mental observations of both propagation rates
and deposits of particle-driven currents is thus
important for the verification of this approach.

COMPARISON OF BOX-MODEL
APPROXIMATIONS AND EXPERIMENT

Bonnecaze et al. (1993) performed several experi-
ments with suspension-driven gravity currents in
order to validate their numerical model. Both
travel distance as a function of time and areal
density of deposits were determined for a range of
parameters. Their experiments were conducted in
a large glass tank (10 m long by 0-26 m wide by
0-48 m high) which was filled with tap water to a
depth of 0-30 m. The volume of the lock holding
the initial suspension at rest was 1-17 x 10~ > m?,
with D=1 and Q,=0-5. The suspended particles
providing excess density were silicon carbide
(density 3217 kgm ~°), with different particle
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Fig. 2. Travel distance as a function of time for slump-
ing gravity surges generated by the release of either a
suspension of fine particles or a saline solution into a
tank of fresh water. The initial reduced gravity for all
currents was 22-9cm s % The equivalent diameters
of the suspended particles are indicated in the figure.
The symbols represent experimental observations of
Bonnecaze et al. (1993) and the solid lines represent
corresponding shallow-water, box-model predictions
for the parameters listed in Table 1. The poor agree-
ment at large times between the predictions and experi-
mental observations for the shallow-water saline
current is due to the onset of viscous effects (cf. Fig. 3)
and deep-water conditions (cf. Fig. 4).

populations having average diameters between
9um and 53 pm. Each experimental gravity cur-
rent consisted of a relatively monodisperse sus-
pension of particles. The total mass of solids
ranged between 0-1kg and 0-8 kg, with ¢, less
than 0-03 for all runs. These conditions are con-
sistent with the assumptions of both their more
complete model and with those of the box model
described above. Further details of the BHL
experiments are presented in the original study.
These carefully collected data provide a valu-
able basis for model verification. We show in Fig.
2, for example, measurements of the frontal travel
distances as functions of time for gravity currents
of suspended solids with the same initial buoy-
ancy but varying particle size. Shown too are
observations of an analogous saline current for
comparison. Also presented in Fig. 2 are curves
for the corresponding box-model predictions for
shallow-water currents with the parameters given
in Table 1. Only those data for suspension-driven
currents that maintained a current-averaged
Reynolds number, (uyh/v)(h/Xy), in excess of 2-25
were selected from the individual experiments
reported by BHL, as is shown in the calculations
of Fig. 3. Under these conditions, as discussed in
BHL, gravity surges are considered to be relatively
free of viscous effects. Note that the saline current
is subject to viscous effects at times in excess of

Table 1. Parameters for laboratory experiments and
box-model predictions of the slumping of
particle-driven gravity currents: lock volume, 0-30 m
high x 0-26 m wide x 0-15 m long; h,=d=0-3 m;
Pp=3217kgm °; p,=1000 kgm %

=1 X100 S me sy

Particle Initial excess Re,
size (um) mass (kg) (x10%) B c

Effects of particle size (Figs 2—4)

37 0-4 14-3 0-0057 1.7

53 0-4 14-3 0-012 1.7

saline 0-4 14-3 0 1-0
Effects of initial bouyancy (Figs 5-7)

37 0-1 6-7 0-011 2-0

37 0-2 9-4 0-0081 2-0

37 0-4 13-4 0-0057 1.7

37 0-8 18-9 0-0040 1-5
Areal density of final deposit (Fig. 8)

23 0-1 6-7 0-044 1-3

53 0-1 6-7 0-024 1-7

23 0-4 13-4 0-0023 1-2

37 0-4 13-4 0-0057 1.7

53 0-4 13-4 0-012 1.7

1000 —
1\
Re 100
53 um
10
saline 37 pm
T VISCOUSREGIME
il T T T 1

0 50 100 150 200
time (s)

Fig. 3. Reynolds number, Re, as a function of time for
the box-model gravity surges shown in Fig. 2 and for
the parameters summarized in Table 1. The dashed line
indicates the proposed critical value of 2-25 above
which a balance between inertial and buoyancy domi-
nates flow dynamics, and below which viscous effects
become important.

about 50 s. Box-model currents for suspensions of
37 um and 53 pm particles maintained a thickness
in excess of 0-075d, as shown in Fig. 4, which
indicates that shallow-water conditions and
slumping behaviour prevailed over the duration
of those experiments. This is not the case for the
saline current, which achieved deep-water con-
ditions after about 40s. Thus the combined
effects of low Reynolds number and deep-water
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Fig. 4. The relative current thickness, H=h/h,, as a
function of time for the box-model gravity surges
shown in Fig. 2 and for the parameters summarized in
Table 1. The dashed line indicates the relative current

thickness above which currents are in the shallow-
water slumping regime.

conditions rendered the experimental saline cur-
rent unfit for comparison with the predictions
from the shallow-water model at times in excess
of about 50 s.

The box-model approximations described in
Figs 2—4 capture the essential features of gravity-
sure motion. Immediately following release, the
intitially stationary volume collapses and
approaches the self-similar behaviour of compo-
sitionally driven surges described by Eq. (13). In
the shallow-water experiments, slumping-current
behaviour is reflected in the nearly linear increase
in length with time (cf. Huppert & Simpson,
1980). This stage is followed by a regime in which
flow within the gravity surge gives rise to a
gradual thickening with time. The current then
continues to propagate as a decelerating, bore-like
cloud of suspended particles. The loss of excess
density through gravitational settling results in
the loss of surge momentum and reduced speed as
a function of time. The rates of density loss and
flow dissipation through deposition increase with
particle size. We note, too, from Fig. 4 that the box
model indicates that onset and subsequent rates
of current thickening are earlier and greater with
increasing particle size.

Travel distances as functions of time for gravity
currents with constant particle size and a range of
initial particle concentrations are shown in Fig. 5.
Also shown are our corresponding box-model
predictions for shallow-water conditions with
parameters given in Table 1. The initial concen-
trations are large enough to generate current
velocities that maintain an inertia-buoyancy bal-
ance throughout the duration of each run; viscous
effects are thus negligible, as indicated by the
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Fig. 5. Travel distance as a function of time for slump-
ing gravity surges generated by the release of different
suspensions of 37 pm diameter particles into a tank of
fresh water. The initial particle masses for each current
are indicated in the figure. Symbols represent
experimental observations of BHL, and solid lines rep-
resent corresponding box-model predictions for the
parameters listed in Table 1.
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Fig. 6. Reynolds number, Re, as a function of time for
the box-model gravity surges shown in Fig. 5 and the
parameters summarized in Table 1. The dashed line
indicates the proposed critical value of 2:25 above
which a balance between inertial and buoyancy domi-
nates flow dynamics, and below which viscous effects
become important.

calculations shown in Fig. 6. The corresponding
model currents maintained a thickness in excess
of 0-075d, as shown in Fig. 7, indicating that
shallow-water conditions and slumping behav-
iour again prevailed over the duration of each
experimental current. We note, however, that in
currents of a given particle size, the box model, in
agreement with the full numerical model, indi-
cates that the rates of reduction both of Reynolds
numbers and of thickness of gravity currents are
greater with increasing initial solids concen-
tration. With increasing particle loading, the driv-
ing buoyancy is greater and thus rates of thinning
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Fig. 7. The relative current thickness, H=h/h,, as a
function of time for box model gravity surges shown in
Fig. 5 and for the parameters summarized in Table 1.
The dashed line indicates relative current thick-
ness above which the surges are in the shallow-water
slumping regime.

due to current run-out are enhanced during the
early stages of the slumping current.

Representative measurements of the areal den-
sity of deposits resulting from gravity surges are
shown in Fig. 8. Also shown in these figures are
box-model predictions for the deposits with
model parameters listed in Table 1. The con-
ditions for surges with 23 pm particles were
below critical Reynolds number and critical rela-
tive thickness at large times, but agreement
between shallow-water theory and observations is
still good for the earlier times and proximal dis-
tances shown here. We note in particular that
both the observed and predicted deposit profiles
exhibit maxima at approximately 1m down-
stream from the origin, with the displacement of
the density maxima increasing with diminishing
particle size. These features agree with predic-
tions from Eq. (31). Sedimentation from a tail
region that trails the main body of the current,
which is not considered in the box model, con-
tributes to the significant non-zero density of
deposit near the origin of the current.

THE EFFECTS OF MORE THAN ONE
PARTICLE SIZE

Our analysis to this point has been based on the
premise that the size and the settling velocity of
the particles in suspension are each well charac-
terized by a single, central value. This approach is
necessary to delineate properly the effects of par-
ticle size, but clearly limits the analogy with
many natural phenomena. Given the success of

0.03
) /53 ym (2)

&}
©)
0.02 /O\
A\
\
4o \

density of deposit (g cm™)

density of deposit (g cm™®)
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Fig. 8.The areal density of the final deposit as a
function of distance along the travel path for gravity
surges generated by the release of a fine-particle sus-
pension into a tank of fresh water. The initial particle
mass in the 0-30 m high x 0-26 m wide X 0-15 m long
lock volume was 100 g and 400 g for the flows which
generated the deposits shown in (a) and (b), respec-
tively. Diameters of the particles in suspension are
indicated in the figure. Symbols represent experimental
observations of Bonnecaze et al. (1993), and the
solid lines represent box-model predictions for the
parameters listed in Table 1.

our approximate model in describing the evol-
ution of monodisperse suspensions, we consider
here the large-time behaviour of a box model for a
surge driven by a suspension of two distinct grain
sizes. The description of the behaviour of poly-
disperse suspensions becomes unwieldy when
more realistic, continuous distributions of par-
ticle sizes are considered, but we propose that an
analysis accommodating this next level of com-
plexity would yield results that are qualitatively
similar to those summarized below. We focus on
the asymptotic behaviour of the deep-water
model but similar results can be obtained readily
for shallow-water conditions as well.

In the case of a bidisperse suspension the
settling law of Eq. (6) can be partitioned into the
two expressions

d(”c il Wsc¥Pc
dt h

(32a)
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and
dor_ _ Wettr (32b)
dt h

where here and below the subscripts f and c
denote the fine and coarse fractions, respectively.
Dividing Eq. (32a) by Eq. (32b) and integrating the
result, we relate the concentrations of the two size
fractions by

@, = &, (33)

where the upper case symbols indicate the quan-
tities relative to the initial values of each fraction
and y=pf./p;. The non-dimensional total concen-
tration of solids is then given by

o=0egp 0g
Po ?o

Equation (11) for the thickness of currents in
deep water can be cast into the form

He L@~ F22 (34a)

where the initial geometry of the surge is incorpo-
rated into the coefficient 1,. On the assumptions
that f,> f; that is, that the coarse and fine par-
ticles are well separated in size, and that ¢, be
not too much larger than ¢, we find that
D~ ;P4 9, and that

H = Lloplo,) Yod: 3T 22, (34b)

Substituting Eq. (34b) into the dimensionless
version of Eq. (32b), and integrating the result for
large time, we obtain an approximate solution for
the concentration of the fine fraction given by

DAl T " (T >1), (35)

where
hy = (641)%00/ 050

Because these results reflect large-time asymp-
totic behaviour, they do not necessarily match the
initial conditions. A comparison of Eqs (34b) and
(35) with Egs (11) and (9) at large times implies
that the large time evolution of the current and of
the fine-fraction concentration does not depend
on the presence of the coarse fraction. The large
time evolution of the coarse fraction and its con-
tribution to the surge deposit reflect the presence
of the fine fraction, however, as we now show.

By analogy with Eq. (26), we see that the con-
tribution of the coarse fraction #, to the density of
the deposit is given approximately by

77c ~ [(Pco/(Po)ﬁch)c' (363)
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Using the approximation of Eq. (35) and the
relationship defined in Eq. (33), we then find that
Eq. (36a) indicates that the large time evolution of
7. is given approximately by

‘N m AR T, (36b)

where
iy R [)~2(7)3]y (9co/ 90)-

In the case of a single grain size, f.=f=p, y=1,
@ == and thus 7~ (54,)°8 *T *. In the case
of the bidisperse suspension in which f;<p.,
however, the quantity 5y — 1 in the exponent of
the power law relating #., and T in Eq. (36b) is
much greater than 4, the value associated with the
single grain-size case. The implication is that the
rate of decrease of the concentration of the coarse
fraction is enhanced from what it would be if no
fine material were present. As a result, the contri-
bution of the coarse fraction to the deposit dimin-
ishes at a much greater rate than if no fine
material were present. The magnitude of this
effect is dependent on the ratios of the settling
velocities and of the initial concentrations of the
respective size fractions.

The physical mechanism responsible for this
behaviour is the greater degree of surge thinning,
and thus an enhanced deposition rate of the
coarse fraction, due to the relatively rapid run-out
of the surge driven by the longer lived fine-grain
component of the suspension. We conclude that
whereas coarse material may be carried further
than if there were no fine material present, there
is nevertheless a very strong potential for size
grading, which occurs as a function of time dur-
ing the formation of distal deposits by turbidity
surges. If there is sufficient material in the driving
suspension for continued propagation of the surge
at large times, this grading appears in space. If the
late-stage surge is moving only very slowly, how-
ever, then the sorting of grain sizes manifests
itself in a deposit that is vertically graded. The
extent of the sorting along either the horizontal or
vertical axis is dependent on the exact ratios of
the settling velocities and the initial concen-
trations of the respective size fractions. These
interpretations are consistent with the obser-
vations of Middleton (1967) and Middleton &
Neal (1989) regarding the segregation of grain
sizes in deposits generated by lock-release sus-
pensions of varying degree of initial sorting. Thus
Eq. (36) provides the basis for a possible explana-
tion of sorting in distal deposits generated by
turbidity currents on surfaces that are horizontal
or nearly so.
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DISCUSSION

We have developed a box model that approxi-
mates the propagation of and the deposition from
a two-dimensional, particle-driven gravity surge
as it travels across a horizontal surface following
release from a lock. The approach is based on a
small perturbation to the scaling relationships for
the thickness of analogous, compositionally
driven flows in which inertia and buoyancy are in
appropriate balance. This modification leads to a
description of the evolution of particle concen-
tration due to gravitational settling, and this
result, coupled with the modified scaling for
surge thickness, is then used to re-estimate the
front velocity and travel distance of the dissipat-
ing current as functions of time. The distribution
of particle deposits laid down by the surge is
related to the change in particle concentration
that occurs as the surge moves over a fixed point.

The agreement between the predictions of our
analytical model and the experimental obser-
vations reported by Bonnecaze et al. (1993)
for suspension-driven surges in a shallow-water
flume is good. Box-model predictions for the
scaling relationships between the characteristic
thickness of a deposit and the initial solids con-
centration, diameter of particles in suspension,
and geometry of a surge also agree well with the
power-law relationships determined experimen-
tally by Middleton & Neal (1989). Although this
agreement is achieved with the introduction of an
adjustable coefficient, we hasten to point out that
this coefficient is determined experimentally to
be near unity and to vary only by about =+ 25%
(1-6 &+ 0-4) over (at least) a twofold range of par-
ticle diameters, an eightfold range in initial solids
concentration of suspensions, and a sixfold range
of the critical model parameter f without any
discernible trends in our experiments. As f tends
to zero, however, the values of the coefficients cg4
and c, introduced in the respective analyses for
deep- and shallow-water flows must, by their
definition, approach unity.

The validation provided by the comparison of
the model and experimental results thus clearly
suggests that the box model describes the essen-
tial behaviour of slumping, particle-driven gravity
surges observed on experimental time-scales. The
need to adjust the coefficient c, is expected to be
considerably less under deep-water conditions of
natural settings than was required of ¢, for
shallow-water flows generated in the laboratory.
This is so for two reasons. The critical model
parameter f, which provides a measure of the

Il

settling velocity of fine-grain, suspended par-
ticles, is expected to be considerably less than the
values characterizing most laboratory experi-
ments. In addition, the coefficient ¢, essentially
provides a trailing boundary condition that is
strongly affected by the return flow that results
from overall continuity in the shallow-water
flumes. This effect is non-existent in deep-water
flows. For useful estimates pertaining to deep-
water flows we therefore propose that the coef-
ficient c4 be set to unity for approximations of the
dimensionless frontal speed (Eq. 12), frontal
travel distance (Eq. 13), and distribution of par-
ticle deposits (Eqs 13 and 25). We demonstrate
the potential usefulness of these approximations
at the end of our discussion.

There are several deficiencies in the box-model
approach. The two-dimensional gravity current is
assumed to be inviscid and to collapse in a series
of equal-area rectangles. The frontal velocity of
the unsteady current is defined by a steady-state
Froude number. The entrainment of ambient fluid
and friction are not considered explicitly, and
re-entrainment of deposited particles on the bed
is not considered at all. Finally, the scaling for the
current thickness is based initially on instan-
taneous values of particle concentration and posi-
tion of the current tail. Although these arguments
are reasonable for a slowly varying current, accu-
mulated error due to the history of changes in
particle concentration and position of the tail over
the life of a gravity current may ultimately invali-
date box-model predictions at very large times.
Under these far-field conditions, however, the
behaviour of a suspension-driven surge may be
better considered in terms of a fully developed,
fluid-entraining flow (Hallworth et al., 1993; Dade
et al., 1994). The behaviour of the box-model
equations for slumping currents is nevertheless
enlightening, as we demonstrated in obtaining
several scaling relationships between surge char-
acteristics and deposit geometry and in an analy-
sis of the evolution of suspensions characterized
by two particle sizes.

Thickening of gravity currents with time

At first glance it is not clear why this box model,
or the more complete numerical analysis of BHL,
should be accurate when entrainment of ambient
fluid is explicitly neglected. Hallworth et al.
(1993) reported that turbulent, saline gravity
surges propagating across horizontal surfaces in
the laboratory are subject to significant rates of
entrainment of ambient fluid and even higher
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fluxes of dense solution to a quasi-stagnant tail.
These processes occur at travel distances in
excess of the slumping distance q,/(0-075d), how-
ever, which corresponds to the point in time at
which the initially shallow-water currents begin
to exhibit self-similar behaviour resulting from an
exclusive balance between buoyant and inertial
forces. According to Hallworth et al., no measure-
able exchange of surge and ambient fluid occurs
in the head while a gravity current is in the
slumping regime. The reduced rates of thinning
due to surge run-out followed by gradual thicken-
ing of particle-driven gravity currents shown in
Figs 4 and 7 suggest that some particle-driven
surges generated in the laboratory may stay in
the slumping phase for longer times and thus
exhibit little or no exchange with the ambient
fluid.

The thickening behaviour of a suspension-
driven surge is quite different from that of a
compositionally driven current, and we interpret
it to reflect local conservation of the pressure
gradient existing at the surge head. With the loss
of excess buoyancy through gravitational settling
of suspended particles, the driving pressure gra-
dient at the head is conserved locally by arrival of
faster-moving fluid from behind. Alternatively,
this phenomenon may be thought to reflect the
conservation of total energy of the current through
gains in potential energy via thickening to offset
losses in kinetic energy due to deposition. When
coupled with the conservation of volume, flow
convergence near the head results in the thicken-
ing of a surge and the development of a bore-like
flow.

A related consequence of surge thickening is
the preservation of inertial conditions in
suspension-driven currents for periods longer
than expected for analogous saline flows. Huppert
& Simpson (1980) showed that the dimensionless
time of transition from inertia-dominated to
viscous-dominated regimes in a saline current is
given by

T, = KQ,Red” = KQ'" (g h3/v?)*/14 (37)

in terms of the initial value of the Reynolds
number of the current Re,=(uyh/v)(h/Xy) evalu-
ated at T=1, where K was determined experimen-
tally to be approximately 0-5. Onset of thickening
of a shallow-water surge due to particle deposi-
tion, on the other hand, occurs when dH/dT=0,
which can be applied to Eq. (18) to yield an
estimate of the dimensionless time T} given by

T, % 0:920] 7**~ 2.6D~ (e /)7 Q5. 4(28)
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At times in considerable excess of T} the relative
thickness of the surge grows asymptotically as 7.
If Ty<T, a particle-driven surge will begin to
thicken before reaching the point at which the
-flow begins to exhibit subcritical Reynolds num-
bers. Inasmuch as the relevant Reynolds number
is proportional to some power of the surge height,
a suspension-driven current for which T,<T,
maintains sufficiently high Reynolds numbers to
remain inertial for much longer period than will
an analogous, compositionally driven current.
Upon rearrangement, Eqs (37) and (38) yield the
condition

ﬁ>5'gCSK_13/7D_Z/7Q0_ 1Re(; 39/49 (39]

that must be met to ensure that this effect indeed
takes place. For the experimental conditions con-
sidered here and summarized in Table 1, thicken-
ing of surges begins before onset of low Reynolds
number conditions due to thinning when particle
diameters are 30—40 pm or larger (cf. Figs 3 and 6).
Ironically, the larger the particle size suspended
in a current with given initial conditions, the
longer the current will travel in an inertial regime
even though it is rapidly dissipating due to a
greater rate of deposition.

By similar arguments, we find that the
suspension-driven current released in shallow
water begins to thicken before running out to the
point at which h<0-075d if

f>0-008¢,Q,D°>. (40)

For the experimental conditions considered here,
a surge remains a shallow-water current if the
diameters of the particles in suspension are
30—40 pm or larger (cf. Figs 4 and 7). Equations
(39) and (40) are useful guidelines for the design
of lock-release experiments in horizontal chan-
nels providing analogues for inertial turbidity
currents.

Application to the geological record

Box models describing suspension-driven gravity
currents provide exciting opportunities for the
analysis of the dynamics and deposits of natural
phenomena. Downstream thinning and fining of
gravity-surge deposits are essential features of our
model and correspond to observations of many
naturally occurring surge deposits called turbidi-
ties (Walker, 1967). More precise application of
box models to geophysical gravity currents must
nevertheless await further study of the effects
of topography, entrainment of ambient fluid or
bed sediment, and very dense concentrations of

© 1995 International Association of Sedimentologists, Sedimentology, 42, 453—471



468 W. B. Dade and H. E. Huppert

Table 2. Length- and time-scales for the analysis of a deposit generated by a non-entraining surge.t

Deep-water surge

Shallow-water surge

Length-scales
Maximum deposit thickness, 7,
Characteristic deposit thickness, (¢o/¢)(qo/x.)
Distance from the origin:
to distal end of deposit, x,
to maximal thickness, x,,,.,
Times-scales
Time required for the surge centre to reach x,.,
Time required for the surge to reach x,

3 (8oq0/w2)™"®

07 (go/gow2)""
t>2 (qg/gows)""*

h/d<0-075 h/d>0-075
(9o Pu)(go W2l g0)""° 1.3 D™ *%(po/pp)(go/hiwegs') '™
rmax 3 Tmax 3

250, D2/13 (géaqghg/wg)l/ls
x./5 x,/6

T

-4 D42/13 (qg/hgg(;aWZ)”ls
t>3 D—Z/IS (qg/h§g63W7 1/13

s

1tThese are scaling arguments only: the coefficients reflect the behaviour of a surge driven by a fine-grain suspension
and described by our box model in which the value of the ratio w./(g,'h,)*’? is small. A surge is assumed to be a flow

of high Reynolds number during its entire history.

¢, 1s the initial concentration of solids suspended in the surge; ¢, is the concentration of solids in the bed; g, is
the reduced gravity of the initial suspension; g, is the initial volume per unit width of the surge; h, is the initial
height of the surge; D is the ratio of the ambient depth d to h,; w, is the average settling velocity of the fine

particles in suspension.

suspended sediment. We plan to address aspects
of these problems in the future.

Froude-number conditions at the turbulent cur-
rent head are unlikely to be a strong function of
slope (Hopfinger, 1983), and our present box
model becomes broadly applicable if we limit our
discussion to non-eroding turbidity currents on
low-angle slopes for which the flow is two-
dimensional and the dissipation due to entrain-
ment of ambient fluid is secondary to the effects of
particle deposition. Under these conditions, the
notion of a critical Reynolds number for the onset
of viscous or rheological damping of thinning
gravity currents is consistent with observations
and ideas described by McCave & Jones (1988)
regarding the rapid emplacement of homogeneous
muds in some deep-sea turbidities. If very dense,
cohesive suspensions are involved, as proposed
by McCave & Jones, the following must be con-
sidered. Firstly, the particle settling velocity
would be reduced dramatically (resulting in
behaviour that is more like rapidly thinning
saline currents; cf. Figs 3 and 4). Secondly, the
large initial buoyancy would ensure relatively
rapid run-out (cf. Figs 6 and 7). Finally, the
enhanced viscosity of the dense suspensions may
include both Newtonian and non-Newtonian
effects. Each of these factors contributes to the
damping of an inertial gravity current and the
rapid emplacement of the sediment load.

Our analysis also suggests that under some
conditions the overall thickness of proximal

deposits resulting from particle-driven gravity
surges should exhibit a maximum at a predictable
distance downstream from the source. As a result,
turbidities resulting from supension-driven
surges debouching on flat, basin plains should be
lenticular bodies with basal coarse layers exhibit-
ing upstream maximal thickness and finer layers
exhibiting downstream maxima. Such deposit
geometries have indeed been observed in calcar-
eous turbidities with overall lengths of 15-25 km
laid down in ancient, near-reef basins (Meischner,
1964).

A lenticular geometry for the surge deposit is
also observed in the ‘Black Shell turbidite’ of
Pleistocene age and extending at least 500 km
across the relatively flat and featureless Hatteras
Abyssal Plain. The deposit achieves a maximum
overall thickness of several metres at a distance
approximately 200km downstream from the
inferred point of entry on to the deep-sea plain,
with longitudinal (as well as lateral) displacement
of maximum deposition of basal fine sands and
overlying silt- and clay-rich muds (Elmore et al.,
1979). The width of the surge deposit is about
100200 km and is clearly two-dimensional,
suggesting that the flow of origin was also
two-dimensional.

In Table 2 we summarize the scaling arguments
that have emerged from our analytical box model
for small f=w./(g,h,)"/?. We note from Eq. (28),
for example, that the maximum thickness of a
surge deposit should be about (p,/p,)(W?q2/g)""°
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(where ¢, ~0-5 is the concentration of particles in
the bed) and should occur at a distance down-
stream from the finite-volume source that is given
approximately by 0-6(g,qe/w?)"’®. From Eq. (14b)
we expect that the surge deposit should essen-
tially vanish at downstream distances exceeding
3(g,q3/w?)"® for which the surge took a period of
time in excess of 2(g%/g,w?)*’® to traverse.

We can suggest therefore, in terms of these
scalings, that one likely event leading to the
formation of the Blackshell turbidite is a surge
with an initial height h;~500 m, initial length
I,~10km, and an initial volumetric concen-
tration ¢,~0-05 of suspended particles that are,
on average, 20 pm in diameter and of the same
density as quartz. (The term ‘initial’ refers to the
state of the surge upon entry into the deep-sea
basin, and not necesarily at the upslope point of
current origin due to the catastrophic failure of
the sea-floor.) The value of the critical model
parameter S is of the order 10~ ° and so our
scaling arguments are indeed applicable. Such a
flow would have generated a deposit with a maxi-
mal thickness of about 2 m at a distance of 150 km
from the point of entry on to the abyssal plain.
The overall length of the deposit would be in
excess of 700 km, and the surge would have
traversed and laid down the deposit over this
run-out distance during a period of a few days.
We expect bedforms within the deposit to reflect
the changing sediment concentration and propa-
gation speed. Bedforms should thus evolve from
those due to high rates of fallout of the suspended
load and high flow intensities in the proximal
region to those due to relatively lower rates of
fallout and lower flow intensities in the distal
region (cf. Lowe, 1988). From our analysis of the
effects of more than one grain size we expect that
the grain size of the deposit should diminish and
that the degree of sorting, either in the vertical or
in the horizontal, should increase in the down-
stream direction. These notions are in agreement
with the observations reported by Elmore et al.
(1979). There are, of course, other combinations of
surge properties that could have produced a simi-
lar gross morphology, but our description seems a
likely scenario given the constraint of the grain
size and overall geometry of the silty mud
deposit.

We are moving steadily toward more complete
descriptions of the gravity currents that generate
turbidities. The challenge then remaining will
be to reconstruct with confidence the flows
that shaped these interesting and economically
important features of the geological record.

.
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APPENDIX A
Derivation of the scaling equations for the
height of a gravity surge

Here we derive the main relationships needed to
obtain Egs (5b) and (15b).

Gravity surges in deep-water surroundings

From Egs (1) and (3b) we note that

uy = Xy = 1-19(g’h) V2. (A1)
Using Egs (2) and (4) we can re-express Eq. (A1) as
Xy = 1:19(g590) 20/ po) V20~ V2xg V2, (A2)
where

a=1— xp/xy (A3)

Note that a is only slightly less than unity if the
trailing boundary lags the leading edge by a con-
siderable distance. Integrating Eq. (A2), we see
that one of the solutions is

Xy = 1_47(gaq0]1/3(¢/¢0]1/3t2/3¢v l/3<((p/a]1/2>2/3’
(A4)

where the angle brackets on the right-hand side of
Eq. (A4) indicate a temporally averaged quantity.
Equation (A4) corresponds to the expression for
the self-similar length of a buoyancy-conserving
surge in deep water as a function of time,
expressed in a form that allows for the slow loss
of particles due to settling. Substitution of Eq.
(A4) into Eq. (4) yields the estimate for h, in
agreement with Eq. (5b), given by

h =0-68c4(q3/g6)" *(plo,) ~ V3t 23, (A5a)

where

1/2 2/3
Cq = <——¢ ) 5
a3/2((¢/a)1/2)
Incorporated in the coefficient ¢, are the histories
of both the driving buoyancy and the motion of
the current tail. Our treatment of ¢4 as a constant
reflects the assumptions that a suspension-driven
surge is slowly varying and that for the bulk of the
flow history the tail lags behind the current head
by a considerable distance. Thus the quantity that
has been averaged over time can be approximated
by instantaneous values and c;~a~ ?*~1, which
suggests that the slow variation in a during the
life of a deep-water surge will affect the value of
cq only weakly. The calculation of the frontal
travel distance x5 as a function of time is
achieved by the integration of a modified form of
uy, over time rather than direct substitution into
Eq. (A4). This step ensures that c; is indeed
nearly constant (due to successive integral aver-
aging) and results in the approximation of Eq. (13)
for xy that exhibits the asymptotic limit x,, as

discussed in the text.

(A5Db)

Gravity surges in shallow-water surroundings
From Egs (1) and (3a) we note that

= Xy = 1/2dY3g V2, (AB)
Using Egs (2) and (4) we can re-express Eq. (A1) as
Xy = 1/2d" g (9l )2 q %a ™ Voxy/®. (A7)
A solution to Eq. (A7) is

Xy = 0-63[g{)Sd2q0]1/7(g0/(00)3/7t6/7(/)_ 3/7<(p1/2/a1/6>6/7‘
(A8)

Substitution of Eq. (A8) into Eq. (4) yields an

estimate for h, in agreement with Eq. (15b), given
by

h=1-59¢,(q5/g,d*)" " (plpy) 7t °7, (A9a)
where

¢1/2 6/7
ol <a7/6<¢1/2/a1/6>> ' (A9b)

Our treatment of cg as a constant in our box-
model approximations has the same basis as our
earlier treatment of ¢4. Comparison of Egs (A5b)
and (A9b), however, suggest that whereas
cq~a 22, c,~a” %7, Thus the coefficient c, for
shallow-water flows is slightly more sensitive to a
trailing boundary condition that is weakly
unsteady than is the coefficient ¢, for deep-water
surges. As a result ¢y will be further from unity
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than c,y. The good comparison between laboratory
data and the predictions of our box model with
the assumption that the coefficient c; is a constant
gives us confidence that the model yields good
estimates of the behaviour of a suspension-driven
surge in a deep-water basin for which ¢, is taken
to be a constant very near unity. For surges driven
by suspensions for which f tends to zero, ¢y must
by definition tend to 1.

APPENDIX B

Expressions for the propagation distance Xy

Here we present the complete expressions for
f4(04T) and f (6, T) which appear in Eqs (13) and
(20), respectively, and describe the propagation
distance Xy as a function of time 7. For deep-
water surges, f3(o47) is given by

filoiT=~= o-sgcyz[ln[l + (0,71

3 cos{(zm;ﬂ} In [1 + (0, T)*% = 2(a,T)""?

n=0

COS{(Zn-+1)n}]__ 2228hl{(2n-+1)2n}
5 il 5

(2n + l)n] jl i (41‘1 ", 3]7'[>:|
10

(64T)V — cos {
arctan £
sin{(Zn + 1)71}

5
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For shallow-water flows, f,(c,T) is given by

filo,T) ~ — o-zgcjﬁ[lnn + (o, 11"

5
£S5 cos{@} In [1 + (0,197 = 2(a. TV
n=0 1

mm{&n+1h}}_2§km{2n+1mn}
13 et

it
13

J}_}4n;;1h)}.

(B2)

(2n+ 1)

/
(arctan[(o—ST)1 " —cos { 13

Sin{(Zn]—; 1)71}
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