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The motion of instantaneous and maintained releases of buoyant fluid through shallow 
permeable layers of large horizontal extent is described by a nonlinear advection- 
diffision equation. This equation admits similarity solutions which describe the 
release of one fluid into a horizontal porous layer initially saturated with a second 
immiscible fluid of different density. Asymptotically, a finite volume of fluid spreads as 
tl/". On an inclined surface, in a layer of uniform permeability, a finite volume of fluid 
propagates steadily alongslope under gravity, and spreads diffusively owing to the 
gravitational acceleration normal to the boundary, as on a horizontal boundary. 
However, if the permeability varies in this cross-slope direction, then, in the moving 
frame, the spreading of the current eventually becomes dominated by the variation in 
speed with depth, and the current length increases as t'l'. Shocks develop either at the 
leading or trailing edge of the flows depending upon whether the permeability increases 
or decreases away from the sloping boundary. Finally we consider the transient and 
steady exchange of fluids of different densities between reservoirs connected by a 
shallow long porous channel. Similarity solutions in a steadily migrating frame 
describe the initial stages of the exchange process. In the final steady state, there is a 
continuum of possible solutions, which may include flow in either one or both layers 
of fluid. The maximal exchange flow between the reservoirs involves motion in one 
layer only. We confirm some of our analysis with analogue laboratory experiments 
using a Hele-Shaw cell. 

1. Introduction 
The motion of water or other fluids through porous layers plays an important role 

in a wide variety of settings. One situation that has begun to receive considerable 
attention is the large-scale motion of fluids in the upper surface of the Earth. 
Sedimentary basins and fractured magmatic intrusions may support a significant flux 
of ground water. The dissolution and precipitation that may result from the motion of 
such ground water is central to our understanding of the chemical alteration which 
may occur in rocks and sediment layers thousands of years after their formation 
(Wood & Hewitt 1982; Phillips 1991). In particular, if an aqueous solution of one 
chemical composition invades the pore spaces of a rock which is in equilibrium with 
an aqueous solution of different composition, then a reaction may ensue, which alters 
the rock chemistry. In many cases the rate of reaction is limited by the gravitational 
exchange of fluid (Phillips 1991). 

In the environmental context, waste fluid containing contaminants may spread 
through the water table. If the density of this fluid is different from that of the 
surrounding ground water, then the contaminant may propagate as a gravity current 
through the porous network of aquifers (Bear 1988; Turcotte & Schubert 1984). In the 
oil industry, the motion of lubricants around well bores is of considerable importance 
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for preservation of drills. As the buoyant lubricant rises around a well bore, it may 
reach an impermeable stratum and spread laterally along the boundary of the stratum 
as a gravity-driven flow (Dussan V. & Auzerais 1993). 

A number of aspects of gravity-driven flows in porous rocks have been well studied 
(Bear 1988), and an overview of some of the geologically important problems is 
presented by Turcotte & Schubert (1984). If the two fluids mix very slowly, then the 
fluids retain their identity for a considerable time and many of the resulting 
gravitationally driven flows admit similarity solutions, some of which, to our 
knowledge, have not been previously described. In particular, we consider here the 
short- and long-term asymptotic evolution of finite releases of fluid as they propagate 
under gravity along horizontal and sloping layers saturated with a second immiscible 
fluid. In our analysis we identify important differences between motion in a layer of 
uniform permeability and one in which the permeability changes in the direction 
normal to the boundary. We present travelling similarity solutions for finite releases of 
material which indicate how the short- and long-term spreading of the currents is 
affected. We also consider the exchange of fluids of different densities between two 
reservoirs of different initial pressure which are connected by a shallow porous channel 
of large lateral extent. In this two-layer generalization of the theory we again find 
travelling similarity solutions for the initial adjustment of the current, and describe a 
range of steady-state exchange flows, including the maximal exchange flow. 

2. The governing equations 
Consider the motion of a two-dimensional current of small aspect ratio (depth/ 

length) c < 1 propagating along a sloping boundary inclined at an angle 8 to the 
horizontal. If the current has Darcy velocity u = (u,u) then the equation for 
conservation of mass 

v-u = 0 (2.1) 

indicates that u - m. Thus to leading order the motion is parallel and along the slope. 
The equation of motion for the current is given by Darcy’s law (Bear 1988; Phillips 
1991 ; Dullien 1992) as 

where ,u is the dynamic viscosity, k is the permeability, which is a function of the void 
fraction $, g is the gravitational acceleration and p is the constant uniform density of 
the current. The current occupies the region 0 < y < h(x, t ) ,  0 < x < L(t), and consists 
of fluid whose density is Ap in excess o f  that of the original fluid in the layer (figure 1). 
We assume that the upper layer is sufficiently deep that any secondary motion induced 
by the current is negligible. The pressure within the layer is hydrostatic and given by 

(2.3) 

(2-4) 

where PI is a constant. We deduce from (2.2) that the alongslope motion in the current 
is given by 

P(x, y ,  t )  = -g  cos 8Apy +P(x, t )  

p ( x ,  t )  = (p - Ap) gx sin 8 + Apgh(x, t )  cos 8 + PI, 

in terms of the hydrostatic pressure on the slope 
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Direction of 

FIGURE 1. Schematic of a gravity current propagating in a tilted porous layer. 

The local equation for the conservation of mass in the current is given by 

By combining (2.5) and (2.6), we obtain the local equation describing the evolution of 
the current 

ah 
k($) dy] = $(h) %. 

h ( x ,  t )  

ax [ ( F c o s  ax 8- sin 8) Jo (2.7) 

The equation describing the global conservation of mass is 

1'Bd.I ~ix" i$ (y )dy)  = [q(t')df' = Q(t), (2.8 a, b)  

where q(t)  is the volume flux at the source and Q(t) the total volume at time t. Typically, 
the permeability may be related to the porosity by a relationship of the form 

k($) = k0$". (2.9) 

In many natural rocks it has been found that 2 < n < 3 (Phillips 1991 ; Dullien 1992). 
If we assume that the porosity varies linearly in the direction normal to the boundary, 
so that 

$ = $O+$lY 

with $o non-zero, (2.7) reduces to 

where R = $;Apgk,/[$,(n+ l)p] and the global conservation of mass may be 
expressed as 

(2.11) 

As the current propagates alongslope and spread, h steadily decreases and the ratio 
typically becomes very small, indicating that the variation in porosity across 

the current is small. In this limit (2.10) and (2.11) have the approximate forms 

ah 
= (1+28h)- 

at  
(2.12) 
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and $o 1:) h( 1 + 6h) dx = Q(t), (2.13) 

where 6 = i$l/$o and S = 4t-l Apgk,/p.  To lowest order 6 may be set equal to zero, 
but additional effects emerge at the next order and so we retain all the terms displayed 
in (2.12) and (2.13). In the next two sections we obtain solutions to this coupled system 
of equations. 

We note that many of the flows described by the above model are ultimately 
influenced by diffusion or mixing of the density-producing agent between the input 
fluid and the ambient fluid, leading to buoyancy-dispersion type flows (e.g. Erdogan & 
Chatwin 1969). The following analyses strictly only apply until such a time. 

3. Horizontal boundaries 
The self-similar propagation of gravity currents along a horizontal boundary 

represents an important limit for the propagation of currents along inclined boundaries. 
On a horizontal boundary, 0 = 0, and (2.12) reduces to the simpler form 

ah 
h(l + d h ) -  = (1 +26h)-. 

ax "I at (3.1) 

If the fluid is supplied at a rate q(t) = q, t-liz, then Q = 2q0 tliz and in this somewhat 
special case the system of equations admits similarity solutions h = HAY)  and L = 
h(Dt)l/', where 7 = x/(Dt)'lZ, H = (q; /S) l l3  and D = (Sq0)2'3. In these similarity 
solutions, f is determined by the equation 

together with boundary conditions 

Ah) = 0 and $,Ifl l+6fH)dy = 2. (3.3a, b) 

This description in terms of similarity variables extends the results of Bear (1988), who 
discussed the case of a layer of uniform permeability. 

To proceed further we consider the limit 6+0, which corresponds to a layer of 
uniform permeability and porosity, and in which limit a much wider class of similarity 
solutions exist. Equations (3.1) and (2.13) then reduce to the simpler forms 

$o 1:) h dx = Q(t). 

(3.4) 

(3.5) 

If Q(t)  = Q, tY equations (3.4) and (3.5) are satisfied by a family of similarity solutions 
of the form h(x, t )  = HY(DY t)" fY(O and L = hH,,(D, t)!, where [ = x/H,,(D, t ) P ,  HY = 
(Qo/SY)l'(z-Y), D Y = ( S 2 / Q  0 01 = (27 - 1)/3, ,8 = (y + 1)/3 and fY(O is determined 
by the equation 

( 3 . 6 ~ )  
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together with the boundary conditions 

(3.6b, c) 

For the case y = 0, corresponding to a finite release of fluid Q,, (3.6) can be integrated 
analytically to obtain the shape of the interface in the form of the parabola 

where to = (9/q4,)1/3. In this case, the current thickness decreases as (St/Q3-'13 and the 
length of the current increases as (Q, St)ll3. 

Experimental Investigation 
In order to investigate the validity of our theoretical approach, we have carried out a 
series of laboratory experiments using a thin Hele-Shaw cell, arranged so that the 
plane normal to the plates is horizontal. When a viscous fluid flows under gravity 
between two vertical closely spaced plates, sidewall friction is dominant and is 
analogous to the local friction in a porous layer as given by Darcy's Law. The 
dynamical equation describing flow in a Hele-Shaw cell represents a balance between 
the viscous drag and the buoyancy force and leads to the velocity profile 

(3.8) 

where b is the width of the cell (cf. (2.5) with 0 = 0). Combining (3.8) with the local 
continuity equation, we obtain the governing differential equation (Huppert 1986) 

u = - ( 12b2Apg/p) ahlax, 

where R = Apgb2/12p, while the global conservation of mass has the form 

1:"' h dx = [ 4 dt' = Q(t). (3.10) 

These equations are identical in form to (3.4) and (3.5). 

Hele-Shaw cell the current propagates according to 
For the instantaneous release of a finite volume of fluid per unit width, V, in the 

L(t) = (9VRt)l/3 
and takes the shape 

h = :( V2/R)1 /3  (G - c) t-'l3, 

(3.11) 

(3.12) 

where 5 = x/(VRt)l/' and l,, = 91/3. In order to test the theory, a finite volume of 
glycerine was released into an (air-filled) Hele-Shaw cell, 1 cm wide, and the shape and 
location of the leading edge of the current were then monitored with time. The Bond 
number of the flow (Huppert 1982) was large, and so effects of surface tension at the 
interface between the air and the glycerine were unimportant. Figure 2 presents the 
measured shape of a glycerine current (crosses) and compares this to the shape 
predicted by (3.12) (solid line). The comparison was made 150 s after the release of the 
current, which initially had a rectangular cross-section of height 14 cm and length 9 cm. 
The agreement is seen to be quite good, especially given the experimental error in the 
measurement of the height of f 1.0 mm. The leading edge of the actual current lags 
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FIGURE 2. The experimentally measured shape of a current (crosses), of initial height 14 cm and length 
9 cm, 150 s after release. The shape is compared with the theoretical prediction (solid curve, equation 
(3.12)). The glycerine in the experiment had a viscosity of 7 cm2 s-l, and the plates of the Hele-Shaw 
cell were 1 cm apart. Some discrepancies develop near the leading edge of the current as a result of 
the increasing importance of the bottom friction near the nose. 
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t (4 
FIGURE 3. Position of the front of the current as a function of time as it propagates through an 
experimental Hele-Shaw cell. The experimental parameters are as in figure 2. The experimental results 
are compared with the theoretical prediction for the spreading rate given by equation (3.11). 

behind the model prediction owing to the increasing role of the viscous drag from the 
base of the tank as the current thins. Figure 3 shows how the position of the leading 
edge of the current changes with time during an experiment (crosses) and as predicted 
by the theory (solid line). Initially the agreement is quite good, but with time the 
experimental current gradually begins to fall behind the theoretical prediction. Again 
this is due to the fact that as the length of the current increases and the height decreases, 
the current is additionally retarded at the base. This effect is not as pronounced for a 
gravity current driven by a constant flux, as is discussed in the next paragraph. 

For the release of a constant flux of fluid per unit width, F, the length of the current 
is given by 

L(t) = 1 .48(FRt2)''3, (3.13) 

where the constant of proportionality is obtained by numerical integration of (3.9) and 
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FIGURE 4. (a) Position of the front of a steady release of fluid as it propagates through an  experimental 
Hele-Shaw cell as a function of time. The experimental results are compared with the theoretical 
spreading rate of equation (3.13). In this experiment, the plates of the Hele-Shaw cell were 0.45 cm 
apart, and the glycerine was supplied at the rate 1 cm3 s-'. (b)  Photograph showing the structure of 
a laboratory gravity current of glycerine supplied at a constant rate 1 cm3 ssl to  a Hele-Shaw cell of 
width 4.5 cm. 

(3.10) expressed in appropriate similarity variables (Huppert 1986). Figure 4(a) shows 
that the theoretical relationship (3.13) is in excellent agreement with the data obtained 
from an experiment in which glycerine was injected into a Hele-Shaw cell, 4.5 mm wide, 
at  a constant rate 1 cm3 sc' (figure 4b). 

4. Gravity currents on slopes 
4.1. Solutions with constant permeability 

On a sloping boundary, we return to the full equations for the current (2.12) and (2.13). 
In the limit of constant permeability 6+0, and (2.12) reduces to 

ah ah 
= Ssin0-+-. 

ax at 

For the release of a finite volume of fluid, Q,, the motion consists of a steady propa- 
gation downslope driven by the alongslope component of gravity, combined with a slow 
difrusive spreading as a result of the cross-slope component of gravity. In the steadily 
moving frame, x = SsinBt, we can adopt the second similarity solution of $3 with 
y := 0, and write h in the form h = (Qi/St  cos 0)'i3f0(w) where w = z / (Qo St cos 0)Ii3 and 
z == x - St sin 0. In the moving frame the spreading due to the component of gravity 
normal to the boundary occurs at a rate proportional to Indeed, an initially 
symmetrical parcel of fluid propagating downslope has the self-similar form fo(o) = 

(wi-w2)/6 for -wo < w < wo where wo = (9/$,Jli3. If the initial length of the current 
is Lo, then it preserves its shape for times shorter than 7 = L,3/Qo Scos 8, and simply 
propagates downslope at  a speed Ssin 0. For times longer than 7, the current spreads 
out alongslope as a result of the component of gravity normal to the slope (figure 5). 
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FIGURE 5. The theoretical evolution of a finite release of fluid down a slope as it slumps under 
gravity. The current position and shape is shown at various times after the initial release. 

For a maintained release of fluid at a point x,, with a fixed flux M say, to leading 
order the current propagates downslope with speed S sin 8 and fixed depth h, = M /  
(Ssin 0) except at the leading edge of the current. At the leading edge, the component 
of gravity normal to the slope allows a smooth adjustment of the current depth from 
h, far upstream to zero. Transforming coordinates to the moving frame of the front, 
x = S sin O t ,  and writing h = h,[ 1 -g(z, t)] we find that g satisfies the diffusion equation 

at = McotOP((1 a2 - g @ .  

This equation admits similarity solutions g(c) in terms of the similarity variable (T = 
z/(Mcot Ot)lI2 with boundary conditions that g +  0 as u+- 00 and j l , g d a  = 0 
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where g(h)  = 1. The full numerical solution (figure 6) identifies that h = 0.5. This 
boundary layer at the head of the current therefore grows in length as (Mcot Ot)liz and 
has the form shown in figure 6. 

4.2. Solutions with variable permeability 
Consider the release of a finite mass of fluid, Q,. Then the equation governing the 
motion along the slope has the approximate form 

ah ah 
= Ssin0(1+2n6h)-+(1+26h)--, 

ax at  (4.3) 

where we have neglected terms in powers of 6'. To leading order, the current 
propagates steadily along the slope, as if the layer were of uniform permeability. 
However, there is a slow evolution of the shape of the current owing to both the 
diffusive spreading of the current, which results from the component of gravity normal 
to the slope, and the steepening of the head of the current (6 > 0) owing to the variation 
of permeability normal to the slope and hence speed alongslope. These two processes 
are important at different stages in the history of the current, and may be understood 
by changing coordinates to the steadily propagating frame z = x - St sin 0. In this 
frame, the governing equation has the leading-order form 

ah ah 
= 2Sn6sinOh-+-, 

a Z  a t  (4.4) 

where h = h(z, t) .  The term on the left-hand side denotes the diffusive influence of the 
component of gravity normal to the slope acting on the current, while the first term on 
the right-hand side denotes the motion produced by the alongslope component of 
gravity as a result of the increase in permeability with position normal to the slope. 

At both early and long times, the motion of the finite release of fluid is described by 
self-similar solutions of the form h = H(Dt)" fo(q) where 7 = z/H(Dt>P and :J, dq = 
l/#,, and H and D are defined below. The two solutions are found by balancing either 
(i) the alongslope dispersion of the current which results from the variation in 
permeability normal to the slope or (ii) the diffusive slumping of the current due to the 
gravitational acceleration normal to the slope with the time derivative. The critical time 
at which these solutions predict the same thickness of the current, and hence at which 
the dominant physical balance changes is t* = Qi/(2Sn3S3 tan' B sin 0). 

At short times, t + t*, the dominant motion relative to the moving frame consists of 
the gravitational slumping of the current caused by the component of gravity normal 
to the slope. In this case, ct = - p  = -+, H = Qi/' and D = Scos8/Q;'' and we 
recover the solution described in 84.1. 

However, at longer times, t 9 t*, the tendency for the current to steepen at its leading 
edge (6 > 0) owing to the increase in velocity with depth, becomes dominant and the 
component of gravity normal to the slope becomes negligible. The long-term 
asymptotic behaviour is described with a = - p  = -f, H = Qi/' and D = 2Sn6sin0. 
Therefore, as t -j 00, h - Qi/2(2Sn8t sin 0)-l/' f,(r) where 

The steepening of the current which results from the increasing permeability with 
distance from the slope causes the current to spread out as (Q, S sin Bn6t)li', with the 
current depth decreasing as (Q, SsinBn8t)-1/2. Integrating (4.9, we deduce thatf, = 7 
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and that the current is confined to the interval 0 < 7 < = (2/$,,)'/'. At the front of 
the current there is a rapid adjustment from the maximum depth, T,,, to zero. This 
adjustment occurs in a region of width V o / t l i 2 .  Introducing a boundary layer 
coordinate 5 = (~~-7)(2Sn6sin 0t)li2, it may be shown that (4.3) has the leading-order 
form 

where 

in this boundary layer and r = cot 0/(2n6Q1'2). The current therefore adjusts to zero 
depth at the leading edge (6 > 0) according to 

It is worth noting that if S < 0, then the current tends to steepen at its tail, since this 
corresponds to a decrease in the permeability and flow rate with distance above the 
boundary. A similar analysis carries through in that case also. There is an interesting 
analogy between the above long-time solution and the long-time motion of a viscous 
current on a slope as described by Lister (1992). In the present case the effect of the 
variable permeability causing the alongslope dispersion is analogous to the dispersion 
which occurs in a viscous current as a result of the increase in flow rate with current 
thickness. However, an important difference arises from the absence of a no-slip 
condition in the present case. This allows the current to move downslope as a simple 
wave to leading order. 

5. Exchange flows between adjacent reservoirs 
5.1. The governing equations 

A further problem of importance in geophysical and other contexts concerns the 
exchange of fluids of different densities between two reservoirs connected by a porous 
channel. Analysis of such flows involves a generalization of the previous theory to a 
two-layer system. Amongst other situations, this occurs in coral atolls as a result of 
tidal variations in the level of saline reservoirs and in sedimentary basins as a result of 
long-term climate changes (Byorlykke 1987). Such exchange flows may also have an 
important control upon the rate of mineral replacement reactions (e.g. Davis et al. 
1985; Linz & Woods 1992). 

We consider two reservoirs saturated with fluids of densities p and p-Ap,  which 
become connected by a narrow long porous channel of porosity q5 at time t = 0 (figure 
7). The heavy fluid therefore passes under the light fluid. In a long narrow channel, to 
leading order the velocities in each layer are along channel, and if the channel is of 
uniform permeability the flow in each layer is uniform. Suppose the channel has depth 
H,  the lower layer of dense fluid has depth h(x)  and velocity ul(x), while the upper layer 
has velocity u,(x). 

If the pressure on the lower boundary of the channel is p(x ,  t )  then the pressure 
within the lower layer, 0 < y < h(x,  t ) ,  is given by 

P(x, Y ,  0 = P ( X ,  t )  - pgy (5.1) 
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FIGURE 7. Schematic of the flow configuration for the exchange flow between two porous 
reservoirs containing fluids of different density and at different pressure. 

and that in the upper layer, h(x, t )  < y < H ,  is given by 

P(X, Y?  0 = P ( X ,  0 - pgy + A p g b  - h(x, 01. 
The equation of motion in the lower layer is therefore 

k aP 
pax’ 

u -_- -  
1 -  

while that in the upper layer is 

Conservation of mass in the lower layer requires that 

( 5 4  

(5-3) 

(5.4a, b) 

while the total mass flux through the channel 

Q = hu, + ( H -  h) U, (5.6) 

is independent of length along the channel. Combining (5.3), (5.4) and (5.6), we find 
that 

which when substituted into (5.5) yields 

(5.7a, b) 

where $ = h / H  is the dimensionless depth of the lower layer and 

A = kApg HIP#. (5.9) 

Integrating (5.7 b) along the channel 0 < x < L and rearranging the result, we find that 

which relates the flux Q to the difference in pressure between the two reservoirs at the 
height of the lower boundary, Ap. 
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Position in channel 

FIGURE 8. The variation in the location of the interface between the two fluid layers as a function of 
time showing that initially the slumping under gravity dominates, but that subsequently the pressure- 
driven flow can dominate the motion. 

5.2. The self-similar transient flow 
During the initial exchange of fluid between the reservoirs, the interface position 
evolves with time as a result of both the overall pressure gradient which drives a net 
flow, and also the density difference which drives a wedge of dense fluid along the 
bottom boundary and a wedge of light fluid along the top boundary. In the moving 
frame described by z = x- Qt/$H,  (5.8) becomes 

= A&(l a --$)g). 
at  

(5.1 1) 

This equation admits a similarity solution of the form $ =f , (Q  with similarity variable 
5 = x / ( A t ) 1 / 2  in the region - A  < < < h which satisfies the boundary conditions 
f,(h) = 1, f,( - A) = 0 where f ,  is given by the equation 

(5.12) 

Equation (5.12) has a solution f , (g  = :( 1 + <) with eigenvalue h = 1. This solution 
is valid until the fluid interface reaches one end of the channel, that is while both 
$(O,  t )  = 0 and $(L, t )  = 1. From (5.10), Q is constant during this time. In figure 8, 
we have plotted the position of the interface between the two fluid layers, relative to 
a stationary frame, as a function of time. It is seen that initially, the self-similar 
spreading under gravity dominates the motion and the two edges propagate in different 
directions. However, as the interface becomes more horizontal, the background 
pressure field begins to dominate the motion, and the whole interface propagates in the 
direction of decreasing pressure. Once the interface between the two layers reaches 
either end of the channel, the above solution breaks down and the flow adjusts to a 
steady state. Bear (1988) reported a numerical solution of equation (5.12) which 
indicated that the current spread as t112. However, we are unaware of any previous 
analytical solutions for this flow and it is an open question as to whether the nonlinear 
eigenvalue problem (5.12) above has any other solutions. 
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FIGURE 9. The variation of the eigenvalue K as a function of the dimensionless flux Q*. Curves are 
shown for $(O) = 0.5 and several values of $(l) = 0.5, 0.6, 0.7, 0.8 and 0.9; the outer curves 
are labelled 0.5 and 0.9. Note the asymmetry in the value of the eigenvalue as Q* changes sign and 
the applied pressure gradient acts with or against the density gradient. 

5.3. Steady-state exchange flows 
Eventually, the initial transient exchange flows will establish a steady-state solution. 
Equation (5.10) is particularly instructive in understanding the range of possible steady 
solutions. In particular, the function (@-f@') ranges in value from 0 to f as @ ranges 
from 0 to 1. Therefore the maximum net flux Q which can be exchanged between the 
reservoirs is given in dimensionless form by 

Q* = f+lAp*l,  (5.13) 

where Ap* = Ap/ApgH and Q* = Q L / H A # .  This solution corresponds to the case in 
which the interface depth ranges from 0 to 1 across the channel. The equation for the 
shape of the interface may be found from (5.7). There are two types of solution, namely 
those in which there is flow in both layers with fluid being exchanged from each 
reservoir to the other, and those in which there is only flow from one reservoir to the 
other. 

Denoting the dimensionless distance along the channel by 2 = x /L ,  we obtain the 
steady version of (5.8) in the form 

(5.14) 

where Kis a constant and here @ = @(a). In the case 0 < @ ( O ) ,  @(1) < 1, corresponding 
to flow in both directions, (5.14) has solution 

(@(a) - ;@(m - ( @ ( O )  - hW2) + K ( @ ( i )  - @.(ON 

-K(1 + K ) l o g ( $ ~ ~ ~ ~  = Q*a, (5.15) 

where K is determined implicitly from (5.15) in terms of @ ( O )  and @(1). For example, 
in figure 9 we show how Kvaries with Q* for @(O) = 0.5 and @(1) = 0.6, 0.7, 0.8 and 
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0.9. This corresponds to the case in which the applied pressure Ap is smaller than the 
change in the gravitational head ApgH. Otherwise steady flow is only possible in one 
of the fluid layers. 

If there is only exchange of fluid in one direction, then either $ = 0 in some 
region 0 < i < i, or $ = 1 in some region iz < i < 1. In the case $ = 0 in the region 
0 < 2 < i,, the upper less-dense layer of fluid is driven through the channel. In order 
that there is no flow in the lower layer, K = 0 (equation (5.14)). Therefore the interface 
has the profile given implicitly by 

I)-;$." = Q*(i--iJ. (5.16) 

If we write 3 = $(l)-f$."(l) > 0 then combining (5.10) and (5.16) evaluated at i = 1, 
we deduce that 

Q* = -Ap*/i, and 3 = -Ap*(l --iI)/il. (5.17a, b) 

For a given value of Ap* and 3 ,  we find that il satisfies the relation il = 
-Ap*/(3-Ap*). Since 0 < il < 1, it follows that such solutions are only possible 
if Ap* < 0. For given pressure difference Ap*, the maximal flux occurs at  the minimum 
value of x, (equation (5.17a)). This occurs when 3 = 0.5 and is given by i, = 

-2Ap*/(1-2Ap*). The maximal flow rate, 0.5- Ap*, is achieved when the fluid in 
the moving layer releases all the available potential energy assoiated with the fluid as 
it enters the channel. 

Similarly, if the pressure gradient in the channel acts to drive the dense lower layer 
along the channel, Ap* > 0, a stagnant layer of upper fluid can penetrate some distance 
into the channel, 0 < i < iz say, such that $(a) = 1 for i > iz. In this case, in order 
that there is no flow in the upper layer, K = - 1, and the shape of the interface is given 

$."(a) = 1 - 2Q*(i - iz) (5.18) 

for i < iz and the maximal flow rate, 0.5 + Ap*, is achieved when the length of the 
intrusion of light fluid is 2Ap*/( 1 + 2Ap*). 

The selection of either the maximal or sub-maximal exchange flows depends upon 
the boundary conditions imposed at  each end of the flow channel. 

by 

6.  Conclusions 
In this contribution we have developed a series of solutions to describe a number of 

gravity-driven flows in porous media. In $3, we presented a series of similarity solutions 
to describe the motion of instantaneous and maintained releases of dense fluid along 
a horizontal one-dimensional channel. Our solution approach may be readily extended 
to the case of axisymmetric geometry. We confirmed our theoretical predictions with 
a series of analogue laboratory experiments using a Hele-Shaw cell in which we 
examined currents produced from both an instantaneous and a continuous release of 
fluid. In $4, we discussed the different situation in which the flow propagates along a 
sloping channel. In this case, we showed that if the porosity increases or decreases with 
distance from the boundary, then, in the long-time asymptotic limit, a discrete release 
of fluid will tend to generate a discontinuity at the nose or tail of the flow respectively. 
In $5, we discussed both the initial transient and final steady-state flows which develop 
when a flow channel between two reservoirs of different density and pressure is opened. 
The transient exchange flow involves the self-similar motion of both fluids relative to 
a steadily migrating frame. In steady state there is a maximal exchange flow, involving 
motion in only one of the fluid layers, with a stagnant wedge of the other fluid layer 
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penetrating partially into the channel. If the pressure difference across the channel is 
sufficiently small, then fluid may be exchanged in both directions, at a sub-maximal 
flow rate. 
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