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Abstract 

We consider the free-boundary problem for the steady-state solidification of a pure undercooled liquid in the 
form of an array of three-dimensional needle crystals. We neglect surface energy, consider the limit of small 
undercooling, and solve for the crystal shape analytically using slender body theory. The solutions have two degrees 
of freedom which determine the growth velocity as a function of the tip radius and the array spacing. For large array 
spacings we recover the Ivantsov similarity solution for an isolated dendrite, while for small array spacings the strong 
interactions between neighboring dendrites cause the Peclet number of the dendrite tip to be determined by an 
array-modified undercooling. Our leading-order results are valid for any space-filling array pattern and apply to 
solidification in channels of various shapes. The results can also be adapted to describe solidification of a 
two-component supersaturated solution at uniform temperature by making the one-sided approximation. 

1. Introduction 

For a number of decades the well-known 
Ivantsov dendrite [1] has been a cornerstone in 
the theory of dendritic growth. The Ivantsov simi- 
larity solution describes the steady-state growth 
of an isolated dendrite from an undercooled 
one-component melt in the absence of surface 
energy. The dendrite shape is that of a three-di- 
mensional paraboloid of revolution which grows 
at constant speed V and tip radius p. The similar- 
ity solution determines the product pV in terms 
of the undercooling but does not provide for the 
selection of a unique velocity. 

Experimental studies of the growth of free 
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dendrites [2] reveal two important facts regarding 
the importance of the Ivantsov solution. Firstly, 
for a given undercooling there is a unique growth 
velocity for the free dendrite. Secondly, in situa- 
tions where convection in the liquid is negligible, 
the dynamics of the dendrite tip are accurately 
described by the Ivantsov solution: the predic- 
tions of pV in terms of the undercooling are in 
excellent agreement with the experimental data 
[2]. Thus, even though there is no provision for 
velocity selection in the Ivantsov solution, it is 
fundamental to the theoretical description of free 
dendrites. 

The prediction of the unique growth velocity 
for the free dendrite is an important problem in 
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crystal growth that has not yet been satisfactorily 
resolved. While it is generally agreed that surface 
energy provides the additional length scale neces- 
sary for the selection of a unique growth velocity 
and tip radius, the actual mechanism by which 
selection occurs is not clear. Among the more 
recent selection theories are marginal stability 
theory [3], microsolvability theory [4,5], and inter- 
facial wave theory [6]. While the details of selec- 
tion in these theories are different, a common 
feature to all is the Ivantsov dendrite. This is 
because the presence of surface energy, although 
responsible for the theoretical selection of a 
unique tip radius, results in only a small correc- 
tion to the shape of the Ivantsov solution in the 
tip region. For this reason, whatever the details 
of the selection mechanism turn out to be, the 
Ivantsov solution will be fundamental to the de- 
scription of free-dendrite growth. 

An important long range goal in studying solid- 
ification, however, is to build a description of an 
array of dendrites, as typically occurs during so- 
lidification processes. The spacing between den- 
drites in these arrays is an important characteris- 
tic of the solidification morphology, and plays a 
large role in determining the mechanical proper- 
ties of the solidified product [7]. The dendrite 
spacing itself is determined as part of the growth 
process by a competitive interaction between the 
dendrites in the array. A useful theory of array 
growth, then, must be able to describe these 
interactions. Clearly the isolated dendrite repre- 
sents the case of infinitely large array spacing. 
When the spacing is finite the dendrites in the 
array must influence one another in some way. 
The purpose of this paper is to determine how 
the Ivantsov dendrite is modified when it is part 
of an array. These modified solutions are a basis 
for the description of the growth of arrays of 
dendrites in the same way as the Ivantsov den- 
drite is the basis for the description of the growth 
of free dendrites. 

While there has not been a theoretical treat- 
ment which describes how the three-dimensional 
Ivantsov dendrite is modified when part of an 
array, there have been two theoretical papers 
which describe how the Ivantsov dendrite is mod- 
ified when growing in an insulated channel [8,10]. 

Solidification in a channel is closely related to 
array growth because the symmetry conditions of 
a spatially-periodic array correspond to the no- 
flux boundary conditions of the insulated chan- 
nel. Pelce and Pumir [8] have studied the solidifi- 
cation of a two-dimensional dendrite in a two-di- 
mensional channel. By considering the limit where 
the channel width is much smaller than the diffu- 
sion length they found that the steady-state shape 
of the needle crystal could be described using the 
theory developed for Saffman-Taylor fingers in 
Hele-Shaw flow [9]. The finger-like shapes for 
the needle crystal were determined analytically 
and had two degrees of freedom - one is the 
unknown velocity as in the Ivantsov solution for 
the free dendrite and the other is the channel 
width. Hunt [10] has studied dendritic growth in 
an axisymmetric cylinder as an approximation to 
a hexagonal channel. The dendrite is thus three- 
dimensional but axisymmetric. The governing 
equations were solved numerically to determine 
the steady-state shape as a function of the cylin- 
der diameter. In the absence of surface energy 
the finger-like solutions have two degrees of free- 
dom which correspond to the cylinder size (den- 
drite spacing) and the growth speed. As the cylin- 
der size approaches infinity the Ivantsov solution 
is recovered. Although the results do not corre- 
spond to an array in a strict sense, the results can 
be thought of as approximating a hexagonal array 
with the degree of approximation given by how 
well a circle approximates a hexagon. 

Warren and Langer [11,12] consider a fully 
three-dimensional array of dendrites during di- 
rectional solidification of a binary alloy. They 
look for steady-state solutions in the form of a 
repeating-square array of identical dendrites. 
They assume that the dendrite shape can be 
described by a paraboloid of revolution and fur- 
ther assume that the dendrite interactions are 
sufficiently weak that the tip radius of each den- 
drite is given by the solvability theory for the free 
dendrite. They then determine numerically a 
one-parameter family of steady-state solutions 
that depends on the dendrite spacing. Their 
steady-state solutions are compatible with experi- 
mentally observed dendritic arrays [13], provided 
that the dendrite spacing A is not too small 
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relative to the diffusion length I. When h < l they 
suggest that the interactions between the den- 
drites lead to deviations from a paraboloidal 
shape. It is precisely these deviations we seek to 
describe. 

Our approach is similar to that of Warren and 
Langer [11] in that we look for steady-state solu- 
tions in which the solidification front consists of a 
regular array of identical dendrites. For definite- 
ness we take the array to have the pattern of 
repeating squares. However, we consider the sim- 
pler problem of solidification of a pure material 
and will neglect surface energy, as is usual for the 
Ivantsov dendrite. We plan to investigate the 
solidification of a two-component system in a 
subsequent paper. The important new ingredient 
here is our incorporation of strong interactions 
between the dendrites. While the numerical solu- 
tions of Hunt  [10] for the axisymmetric dendrite 
capture the flavor of these dendritic interactions, 
there is also a need for an analytic description of 
a fully three-dimensional array. In particular, the 
numerical calculations for the axisymmetric case 
run into difficulties when the undercooling is 
small and the dendrites are slender relative to the 
radius of the cylindrical channel. This discrep- 
ancy in scales, which leads to numerical difficul- 
ties, can be exploited by asymptotic means to 
describe the dendrite shape. Our aim in this 
paper, then, will be to develop an analytic de- 
scription for steady-state arrays of slender, 
strongly interacting dendrites. 

We begin with the governing equations for the 
f ree -boundary  problem that  describes the 
steady-state growth of a regular (square) array of 
identical dendrites with prescribed spacing h (see 
Fig. 1). In the limit of h ~ oo these equations are 
satisfied by the Ivantsov solution. In general the 
governing equations cannot be solved analytically, 
but we are able to make progress by considering 
the limit of small undercooling. In this limit the 
dendrites are thin: if a is a characteristic radius 
of the dendrite, then a << A. We exploit this 
disparity in length scales to construct an analytic 
solution for the array as an asymptotic series in 
the small undercooling. In these solutions the 
degree of interaction between the tip of a given 
dendrite and its neighbors will depend on the size 
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Fig. 1. Schematic of dendrite array: (a) side view, (b) top view. 
The array length scales are the tip radius O, dendrite radius a, 
spacing A and diffusion length I. The roots of the dendrites 
are parallel far behind the tips. 

of the spacing A compared to the diffusion length 
l (=  diffusivity/growth speed). If A is sufficiently 
large the tips of the dendrites are not significantly 
influenced by the array. In contrast, we restrict 
our attention to those spacings for which the tips 
of the dendrites are influenced significantly by 
the array. With this in mind, we are able to 
choose a scaling for A/ l  which captures the 
smooth transition from weakly-interacting tips, 
where the tip dynamics are described by free- 
dendrite theory, to strongly-interacting tips, where 
the tip dynamics are considerably modified by the 
presence of the array. In these scalings the char- 
acteristic lengths are ordered p << a << A << I. A 
consequence of these scalings is that the dendrite 
approaches equilibrium at a distance of O(1) be- 
hind the dendrite tips. The dendrites themselves 
thus appear long and slender. The free-boundary 
problem for the dendrite shape can then be solved 
using slender-body theory [14] to obtain an ana- 
lytic description of the dendrite shape and the 
associated temperature field. This is done by first 
solving the governing equations in the near den- 
drite, inter-dendrite and tip regions (see Fig, 2). 
Then, by matching the three solutions in the 
appropriate overlap regions we establish a uni- 
formly valid solution to the free-boundary prob- 
lem. Our results provide a new analytic solution 
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Fig. 2. Schematic of the three regions in which the equations 
are solved. Inner denotes the near-dendrite region and outer 
denotes the inter-dendrite region. 

for the growth of arrays of interacting needle 
crystals in three dimensions. The effect of the 
array is to generate a modified undercooling at 
the dendrite tips which alters pV from that of the 
Ivantsov solution. 

The rest of the paper is organized as follows. 
In Section 2 we derive the governing equations 
that define the free-boundary problem for the 
steady-state dendritic array. In Section 3 we con- 
sider the limit of small undercooling and intro- 
duce the scalings appropriate for describing slen- 
der, interacting dendrites. We then outline the 
solution procedure and solve the equations in the 
inner (near-dendrite); outer (inter-dendrite); and 
tip regions. Details of matching the solutions 
appear in the Appendices. Our results are pre- 
sented in Section 4 and the main conclusions 
summarized in Section 5. 

2. S t e a d y - s t a t e  d e n d r i t i c  arrays  

Our aim is to develop an analytical description 
of a steady-state solidification front consisting of 
an array of parallel dendrites growing into an 
undercooled liquid. We begin with the usual 
equations describing the solidification of a pure 
material. The major assumptions behind this de- 
scription are: (1) the solid-liquid boundary is 
assumed to be in local thermodynamic equilib- 
rium; (2) the effect of surface energy is negligible; 
(3) there is no volume change upon solidification; 

and (4) the material properties are constant and 
isotropic. Under  these assumptions the tempera- 
ture of the liquid, T(X, }I, Z, t) is governed by 
the diffusion equation 

~T 
- -  = KV2T in the liquid, (2.1) 
0t 

where K is the thermal diffusivity. The solid- 
liquid boundary, denoted by ~ ' ,  is a free bound- 
ary whose location is determined as part of the 
solution. The temperature on ~ '  is given by local 
equilibrium as 

T = T  M o n e ,  (2.2) 

where T M is the melting temperature. In what 
follows we shall concern ourselves exclusively with 
solidification of an undercooled melt. In this case 
the temperature in the solid remains identically 
at the melting temperature with 

T =  T M in the solid. (2.3) 

Conservation of energy at the solid-liquid bound- 
ary gives a balance between the release of latent 
heat and the diffusion of heat away from the 
boundary. This balance takes the form 

LV,= -KCp(n. VT) on ~ ' ,  (2.4) 

where L is the latent heat per unit mass, Cp is the 
heat capacity of the liquid, n is the normal vector 
to ~ '  pointing into the liquid, and V n is the 
velocity of the boundary in the direction of n. We 
take the direction of growth to be + Z. Solidifica- 
tion is driven by an undercooled liquid in the far 
field, 

T ~ T M -- AT as Z ~ oo in the liquid. (2.5) 

Eqs. (2.1)-(2.5) define the free-boundary prob- 
lem for solidification of an undercooled melt. 
The Ivantsov dendrite [1] is a steady-state solu- 
tion in which ~q~ is a paraboloid of revolution 
translating along its axis at speed V in the + Z  
direction. We seek to determine how this steady- 
state solution is modified when it is part of an 
array of dendrites. To this end we use a moving 
coordinate system which translates at constant 
speed V in the + Z direction. We nondimension- 
alize lengths on the diffusion length l = K/V, and 
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introduce the dimensionless coordinates in the 
moving frame as 

1 
( x, y, z) = 7 (  X ,  Y, Z -  Vt). (2.6) 

We choose our coordinate system such that z = 0 
corresponds to the tips of the dendrites in the 
array. At this time it is also convenient to intro- 
duce dimensionless (tilded) versions of the char- 
acteristic array length scales appearing in Fig. 1, 

1 
(t~, 6, ,{) = 7 ( p ,  a, a ) .  (2.7) 

These dimensionless lengths are all Peclet num- 
bers based on different length scales of the mor- 
phology. The dimensionless tip radius t~ is often 
called the Peclet number for dendritic growth. 
We also let 19(x, y, z)  be the dimensionless 
steady-state temperature defined by 

T -  ( T  M - AT) 
19 = AT ' (2.8) 

and define the dimensionless undercooling pa- 
rameter cr (the inverse Stefan number) as 

~r = CpAT/L. (2.9) 

The dimensionless steady-state versions of Eqs. 
(2.1)-(2.5) are then 

a19 
V219 + Oz 0 in the liquid, (2.10) 

19= 1 on ~ ,  (2.11) 

19 = 1 in the solid, (2.12) 

n. + cr(n. VO) = 0 on ~ ' ,  (2.13) 

and 

19 ---, 0 as z ---, oo in the liquid, (2.14) 

where nz is the z component of n. 
For any steady-state array there must exist a 

state of equilibrium far behind the dendrite tips 
in which the solid and liquid are both uniformly 
at the melting temperature.  This means that 

19 --+ 1 as z --+ -oo in the liquid. (2.15) 

A consequence of this equilibrium state is a pre- 
determination of the amount of solid at equilib- 

rium since the originally undercooled liquid can 
only absorb a finite amount of latent heat before 
reaching the equilibrium melting temperature.  An 
energy balance between the heat content of the 
undercooled liquid as z -+ + oo and the heat con- 
tent of the equilibrium solid/liquid mixture as 
z--+ -oo prescribes the equilibrium volume frac- 
tion of solid ~b as 

~b = o'. (2.16) 

Since ~b > 1 is nonphysical and ¢k = 1 corresponds 
to plane-front solidification, steady-state array so- 
lutions are only possible if o" < 1. 

We now look for specific solutions to the 
steady-state free boundary problem defined by 
Eqs. (2.10)-(2.16) in the form of a periodic array 
of dendrites (see Fig. 1). The solidification front 
is taken to consist of an array of unit cells which 
are periodic in x and y and extend from z = - 
to z = + ~. In the center of each cell is a single 
dendrite, and all the dendrites are identical. The 
cell cross-sections could be any shape that pro- 
duces a repeating pattern, such as squares, rect- 
angles or hexagons. From the cross-sectional area 
of the cell, Aceu, we define the dimensionless 
dendrite spacing A as 

~2 = A c e l l "  (2.17) 

For definiteness we shall take the cells to be 
square in cross section. Each cell is indexed by 
position, with cells centered at x = iX, y = j,~ with 
i and j ranging over all the integers. The surface 
of each dendrite ~ '  is described in cylindrical 
coordinates (r,  z, 0) relative to the center axis of 
its cell by r =/~(z,  0). From the dendrite shape 
comes the dimensionless mean radius of curva- 
ture at the dendrite tip t~ and the characteristic 
dimensionless dendrite radius ~i. Formally, we 
define 6 by the effective cross-sectional radius of 
the equilibrium dendrite, 

rr~ z =  lim f2=fa"'°>r dr  dO. (2.18) 
z--+ --o~J 0 JO 

The conservation of energy condition (2.16) then 
relates the equilibrium radius 6 to the spacing ,{ 
a s  

7'/ 'a 2 = or,~ 2.  (2.19) 
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3. The limit of small undercooling 

The system (2.10)-(2.16) still represents a dif- 
ficult free-boundary problem for the shape 
/~(z, 0). In general the dendrite shape is nonax- 
isymmetric because a given dendrite feels the 
nonaxisymmetric temperature field generated by 
its neighbors. This temperature field varies later- 
ally on the scale of the dendrite spacing ,~. When 
the dendrite radius ti << i ,  however, the asymme- 
try disappears at leading order. In this limit a 
given dendrite only samples the temperature field 
generated by the array along a vertical line. To 
the dendrite, the array modifies the temperature 
field in a way that varies in the vertical direction 
only, and to first approximation the dendrite is 
axisymmetric. This leading order axisymmetry can 
be guaranteed by considering the small under- 
cooling limit o- << 1 which assures ~ << ,~ by (2.19). 

Consider then the limit of small undercooling 
or << 1. We determine the scaling for tip radius 
in terms of o- from the Ivantsov solution at small 
undercooling. The Ivantsov solution satisfies [1] 

or = ( f i /2 )  El( t~/2)  exp(t~/2), (3.1) 

where El(X)= f~(e-S/s) ds is the exponential 
integral. When o-<< 1 it follows from (3.1) that 

o-= O[~ In(i / iS)] .  (3.2) 

While we do not expect that (3.1) will necessarily 
describe array growth (it is only true if ~ = oo), we 
do expect that the scaling (3.2) will be appropri- 
ate as long as ,~ is not too small. How small ,~ can 
be for this scaling to apply will be addressed 
shortly. Now, however, we introduce scalings for 

and cr which preserves relationship (3.2). Since 
this relationship is not easily inverted to find ~ in 
terms of or, we introduce a small parameter E << 1 
to measure the smallness of the undercooling. 
For convenience we define E from 

or = E 2 I n ( l / e ) .  (3.3) 

Having defined E in this way the proper scaling 
for j6 is determined from (3.2) as 

= EEP, (3.4) 

where P = O(1) is a scaled Peclet number. 

At this point the size of the array spacing A is 
still not prescribed. The size of ,~ determines the 
strength of interactions between the dendrite tips. 
For large A the dendrites interact only very weakly 
- the temperature field near a given dendrite tip 
is (to leading order) the same as what it would be 
for an isolated dendrite. If we choose A = O(1) it 
turns out that the interactions are also weak and 
the leading-order dynamics of each dendrite tip 
are described by the Ivantsov solution. In order 
to describe "strong interactions" between den- 
drites it is necessary to consider ,( << 1. The tran- 
sition from weakly-interacting dendrites to 
strongly-interacting dendrites occurs when the tip 
of each dendrite feels the rest of the array as an 
O(1) contribution to the temperature field. The 
scaling for J( that captures this transition can be 
determined as follows. Consider first an array of 
dendrites which are well-separated. In this limit, 
each dendrite behaves as if it were isolated and 
can be described by the Ivantsov dendrite. As 
mentioned by Canright and Davis [15] the Ivantsov 
solution can be generated by a half-line source of 
heat moving steadily along its length. A straight- 
forward calculation shows that in the moving 
frame the Ivantsov solution can be recovered by 
using a stationary half-line source of constant 
strength q0, where q0 = 4zr/El(t~/2), and where 

is related to the undercooling by (3.1). For 
small undercoolings we have ~ = O(E 2) by (3.4) 
and thus the heat source is weak with q0= 
O[1/ln(1/E)]. The magnitude of the temperature 
field generated by an array of these line sources 
is given by the product of the source strength and 
the number of sources per unit area of the array, 
qo/A 2. Thus, for the O(1) temperature field asso- 
ciated with strongly-interacting dendrites we must 
choose h--O([1/ ln(1/e)] l /2) .  The appropriate 
scaling for h is then given by 

A 

= [ In( i /E)]  1/2, (3.5) 

where A = O(1). This scaling also corresponds to 
the lower limit in )t for which (3.2) holds. Other 
choices of scaling for h are of course possible. 
Different scalings will describe different degrees 
of interactions between the dendrites. We have 
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chosen this scaling because it describes the inter- 
esting transition from isolated to array-modified 
tip dynamics. 

Having chosen a scaling for ~ the scaling for t/ 
then follows from the conservation of heat condi- 
tion (2.19) and the definition of e (3.3). We thus 
let 

t /=  cA, (3.6) 

where A = O(1). The conservation of heat condi- 
tion (2.19) then becomes 

"trA 2 = A 2. (3.7) 

The appropriate scaling for describing the den- 
drite shape /~(z, 0) is the same as that for the 
characteristic dendrite radius 5, namely, 

R ( z ,  0) = eR(z ,  0). (3.8) 

It then follows from (2.18) that 

. f 2 ~ f n ( z , o ) _  7rA2= zfim®'o "o r d? dO, (3.9) 

where F = r/e. 
In addition to the characteristic lengths ~, t/ 

and J( there is another length scale, [decay, which 
describes the distance behind the tip over which 
the dendrites approach equilibrium. This "decay 
length" sets the scale for z variations in @ and 
R. For the ~( scaling we have chosen [decay ~ O(1). 
If we had chosen ~ = O(1) then ldecay = 
Olin(I/e)].  For either of these scalings the decay 
length is large relative to the radius of the den- 
drite. This means that the dendrites are slender 
in shape - shape variations OR/Oz along the 
length of the dendrite are gradual except near 
the tip. Because the dendrites are slender we can 
take advantage of slender-body theory [14] to 
describe the gradually varying shape of the den- 
drite. 

We now construct a formal perturbation solu- 
tion to the free-boundary problem in terms of the 
small parameter e using the scalings (3.3)-(3.9) 
for which t~ << ~/<< J( <</decay" Our approach is 
similar to that used by Xu [16] in the analysis of 
an isolated dendrite in the small undercooling 
limit. We focus our attention on the "center" 
dendrite at x = y  = 0 and divide the domain into 
three regions (see Fig. 2). The "inner"  region is 

the near-dendrite region behind the tip and is 
described by r = O(E), and I z I = O(1) with z < 0. 
The "outer"  region is the interdendritic region 
where r = O( i )  and each dendrite appears as a 
line extending from z = 0 to z = - ~ .  The "t ip" 
region describes the small region in the vicinity of 
the dendrite tip where r = O(e 2) and z = o(EE). 
In each of the three regions we solve the govern- 
ing equations as an asymptotic series in the small 
undercooling. Then, by requiring the solutions to 
match in the appropriate overlap regions we de- 
termine a uniformly valid solution for the whole 
domain. 

3.1. Inner solution 

The inner region is the near-dendrite region 
away from the tip. We use cylindrical coordinates 
where ? = r/e and I z l = O(1) with z < 0 to de- 
scribe the inner temperature field Oin(L z, 0). 
The governing equations for {~in a r e  

1 0  

0~ OF ] F 2 002 ~ z  2 + Oz 

= 0  in F>R(z,  0), (3.10) 

with the boundary conditions 

B in = 1 on ?=R(z ,  0), (3.11) 

1 OR 0(~ in 1 OR 0 ~  in 0R 0 ~  in 
2 

In(l/E) 0z OF R 2 00 00 - e  0z 0z 

on F=R(z,  O), (3.12) 

and 

@ i . ~ l  as z ~ - ~ .  (3.13) 

In the inner region the only effect of the neigh- 
boring dendrites is to modify the far-field temper- 
ature which must be matched as F---, ~. The 
equations suggest an expansion in powers of e 2 
and 6 = I / I n ( I / e ) .  We expect that at leading 
order the temperature field and the dendrite 
shape are axisymmetric. In fact it turns out (see 
Appendix C) that asymmetry does not appear 
until O(e4). We thus expand @in and R as 

Bin(s, z, 0) = @~n(F, Z) "~ ~oin(F, Z) + 0 ( 6  2) 

(3.14) 
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and 

R(z,  O) =Ro(z ) + 8Ri(z  ) + O(82).  (3.15) 

Formally the expansions (3.14) and (3.15) contain 
terms which have powers of c 2, however, since 
8 N>> E 2 for all N >  1, the E 2 terms do not ap- 
pear until infinite order in 6. Upon substitution 
of the expansions into the governing equations we 
find the first two terms in the expansion for the 
temperature field to be 

o~n(~, z) = 1 (3.16) 

and 

o ~ n ( r ,  Z)  = n l ( z  ) In . ( 3 . 1 7 )  

In the above equation Ro(z) satisfies the differ- 
ential equation 

dR0 Bl(z) 
- -  = - -  ( 3 . 1 8 )  
dz Ro(z ) 

subject to the boundary condition R0(0) = 0. The 
unknown function Bl(z) must satisfy 

Bl(Z ) ~ 0  as z ~  -oo (3.19) 

and is determined by matching the inner solution 
to the outer solution. 

3.2. Outer solution 

In the outer region x and y are on the scale of 
the dendrite spacing A. Since a << A, each den- 
drite looks like a line source of heat extending 
from z = 0 to z = -oo. The temperature field in 
the outer region can thus be represented as a 
sum over an array of half-line sources, 

oo oo 
• ° U t ( x ,  y, Z)= E E fO ~(Z, ) 

i= --oo j=--oo --no 

G(x, y, z; x', y', z') is the free-space Green's 
function given by 

G( x, y, z; x', y', z') 

1 e x p { - l [ I x - x ' l + ( z - z ' ) ] }  
= 4~r I x - x ' l  , (3.21) 

where x is the vector x = (x, y, z). The solution 
for O °ut given by (3.20) is a formal solution to the 
diffusion equation (2.10) which satisfies the far 
field condition (2.14). It also satisfies the equilib- 
rium condition (2.15) provided the total heat re- 
leased by a single line source is equal to the 
latent heat released by a single dendrite, 

"/Ta2 /(2 A2 
[oj_j(z,) dz' or ln (1 /e )  " (3.22) 

From this heat balance the appropriate scaling 
for q(z')  is 

4 (z ' )  = 6q (z ' ) ,  (3.23) 

which agrees with our earlier scaling arguments. 
The conservation condition for q(z') follows from 
(3.22) and is given by 

f_0q(z,) d z ' =  A 2. (3.24) 

The functional form for the source strength q(z') 
is determined by matching with the inner solu- 
tion. 

To the order that the inner solution has been 
determined, all we require for matching is the 
line source q(z') subject to (3.24). Matching at 
higher orders will require an expansion for q(z') 
in powers of 8 and E 2. In addition, it will also be 
necessary to introduce higher-order line-source 
singularities (like quadrupoles) to account for the 
nonaxisyrnmetric features of the temperature 
field. As will be shown in Appendix C, these 
nonaxisymmetric effects do not appear until at 
least O(e 4) because this is the order at which the 
dendrite feels the pattern of the array. 

xG(x ,  y, z; iA, jA, z') dz', 
(3.20) 

where ~(z')  is the strength of a half-line heat 
source with 4 ( z ' ) = 0  for z ' > 0 ,  and where 

3.3. Tip solution 

In the vicinity of the tip the appropriate scal- 
ings are (x, y, z, r ) =  e2(x+, y+, z÷, r÷) with 
the surface described by r+=R+(z+, O)= 
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e2R(z, 0). The governing equations for the tem- 
perature in the tip region Otip(x+, y+, z+) are 

a2~tip ~2~tip ~2~tip q- E 2 ~tip 

0x----~+ + a--~--~+ + a--~--+ 0z+ = 0  

in the liquid, (3.25) 

with the boundary conditions 

otip = 1 

and 

nz 

In( l /E)  

on r +=R+( z+, 0), (3.26) 

- -  + n • VI9 tip .= 0 on r+=R+(z+, 0). 

(3.27) 

The far field conditions on O tip are that it match 
with the inner and outer solutions. 

We solve for O tip and R+ as expansions in 
6 = i / I n ( I / e )  and e 2. As with the inner solution 
we can assume the leading order terms are ax- 
isyrnmetric, 

Otip(r+, z+, 0) = O~ip(r+, z+) + 3~9~ip(r+, z+) 

+ O(3 z) (3.28) 

and 

R+(z+, O) =Rf f ( z+)  +3R((z+)  + O(32).  

(3.29) 

Eqs. (3.25)-(3.27) governing the tip region are 
identical to those describing solidification of an 
isolated dendrite in the small Peclet number limit 
except no far-field condition is prescribed. The 
equations admit an axisymmetric similarity solu- 
tion which corresponds to the Ivantsov solution in 
the limit of small undercooling, 

O tip = 1 - 3 n o  In(q/T0)  + 0 ( 3 2 ) ,  (3.30) 

where the similarity variable is given by 

n = ½[ r~+ + z  2 +z+] .  (3.31) 

The solid boundary is given by ~7 = na (constant) 
with 

nB= To + 371 + 0 (32) .  (3.32) 

The surface is thus given by 

R+(z+)=Z~/rto(no-Z+) + O(3) ,  (3.33) 

where r/0 is related to the scaled Peclet number 
of the dendrite tip by 

To = P / 2 . (3.34) 

The constant P is an unknown. In the isolated 
dendrite problem it is determined by the far-field 
conditions. Here it is determined by matching the 
tip solution to both the inner and outer solutions. 

3.4. Matching of solutions 

The details of matching the inner and outer 
solutions are given in Appendix A. Matching 
requires that the line source strength of the outer 
solution satisfy the integral equation (A.14). The 
solution to this integral equation is 

q(z)  =/~A 2 e gz, (3.35) 

where 

= - 1 / 2  + ~/1/4 + 2 7 r / a  2 . (3 .36)  

The resulting inner solution is 

+6/zA2 ( ~ ) Bin(-~, Y, Z)= 1 ~ e ~'z In 

+ O(a2) ,  (3.37) 

with the leading-order shape of the dendrite given 
by 

A 
Ro(z ) = ~-~ /1  - e ~'z . (3.38) 

Matching the tip solution to the inner and outer 
solutions (see Appendix B) determines the scaled 
Peclet number in terms of the array spacing, 

/~A 2 1 
P = - -  (3.39) 

2~" l + t z  

4. Results 

To leading order the dendrite shape is given 
by (3.38) and (3.36) with the scaled Peclet number 
P given by (3.39). These results describe a family 
of solutions which depend on the dendrite spac- 
ing parameter A. Fig. 3 shows the variation of the 
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Fig. 3. Steady-state dendrite shapes r / e  = Ro(z) for different 
dendrite spacings A. The Ivantsov dendrite is recovered as 
A .-.-~ 0o. 

shape of the needle crystal for different values of 
A. 

In the large spacing limit, A + 0% p ---> 1, and 
we recover the isolated dendrite. The tips behave 
as if they were isolated, growing into an under- 
cooling of A61 = 1. The dendrite shape deviates 
from the Ivantsov shape only when I zl  = O(A 2) 
>> 1. The radius of the dendrite then tends to a 
constant value A/Tr ~/2 as I z I/.4 2 ~ oo. 

For intermediate spacings, A = O(1) and 0 < P 
< 1. The dendrite tip is paraboloidal but the 
Peclet number is smaller than that for an isolated 
dendrite. The Peclet number is smaller because 
the dendrite tips feel the effect of the array as a 
reduced undercooling. In the absence of the ar- 
ray the tip would be growing into a far field with 
61 = 0 and unit undercooling A61 = 1. When the 
array is present it generates a temperature in- 
crease in the vicinity of the tip given by 
61arraY(0, 0, 0 )= /X/ (1  +/~). Thus the tip sees a 
modified undercooling given by 

/z 1 
A61 = 1 (4.1) 

1+/~  1+/.~ 

The Peclet number reflects this modified under- 
cooling. Recall that the Ivantsov solution satisfies 
(3.1). In our scalings the effective undercooling 
which the tip feels is cr -- A61e 2 In ( l / e )  with fi = 
e2P. The Ivantsov relation (3.1) becomes A61 ~ P 
which is precisely that found in Eqs. (3.39) and 
(4.1). The dendrite tip, then, is paraboloidal with 
a Peclet number given by a modified undercool- 

ing due to the presence of the array. Deviations 
from this paraboloidal shape occur for I z I = O(1) 
with the dendrite radius approaching a constant 
value as z ~ - oo. 

In the small spacing limit, A ~ 0, and the 
modified undercooling approaches zero because 
of strong interactions between dendrites. Thus 
the scaled Peclet number also approaches zero. 
On the scale of the diffusion length l the den- 
drites appear to be vanishingly thin cylinders of 
constant radius with a boundary-layer cap of 
thickness I z I = O(A) << 1 in which the transition 
from tip to equilibrium takes place. 

The one-parameter  family of solutions for the 
dendritic array has one more degree of freedom 
than the isolated dendrite. For the isolated den- 
drite there is no unique velocity prescribed, only 
the ratio p / l  o tpV is determined, leaving one 
degree of freedom. Here the array has two de- 
grees of freedom which can be thought of as the 
spacing and the tip radius. Specifying both of 
these prescribes a unique velocity. 

We can isolate the velocity dependence in our 
array solutions by introducing a length scale, say 
the capillary length d o , which is independent of 
F. Then by defining a dimensionless velocity, tip 
radius, and dendrite spacing as 

1 d o 
V' = - -  - -  (4.2) ~4 I ' 

p' = e2~00, (4.3) 

and 

X = e4 [ I n ( I / e ) ]  1/2 --,h (4.4) 
do 

respectively, we obtain 

A = A'V' (4.5) 

and 

P =p 'V ' .  (4.6) 

Using (3.36) and (3.39), we solve for the velocity 
as a function of tip radius p' and dendrite spacing 
g to find 

1 2 (°121 ,47, 
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Fig. 4. Steady-state array velocity V' as a function of the tip 
radius p' and the dendrite spacing X. Contours correspond to 
surfaces of constant velocity. No steady-state solutions exist 
above the line V'  = 0. The lower axis 1 /X = 0 corresponds to 
the Ivantsov dendrite. 

Relation (4.7) is an important result of our 
work. It describes the compatible choices of V', 
p' and A' for steady-state growth in the limit of 
small undercooling. The surface described by (4.7) 
is shown in Fig. 4. Any state selected by the array 
must lie on this surface in the same way that the 
state selected by a free dendrite is described by 
an Ivantsov solution. For a given velocity, the 
effect of a finite spacing is to decrease the tip 
radius from its isolated-dendrite value. The inter- 
section of the solution surface with V '=  0 gives 
the nonphysical limit of an infinite diffusion 
length I which corresponds to A = 0 in our pa- 
rameters. This intersection gives the boundary for 
physically admissible choices of A' and p'. 

The two degrees of freedom present in our 
steady-state solutions are consistent with studies 
of solidification in insulated channels [8,10]. In- 
cluding the effect of surface energy removes one 
of the degrees of freedom. In particular, numeri- 
cal calculations for the one-sided model [17,18] 
indicate that if the surface energy is isotropic 
then there are no solutions. If the surface energy 
is anisotropic then there is a unique velocity for a 
given spacing. We expect that a similar selection 
criterion will apply to our solutions. The other 
degree of freedom corresponds to the dendrite 
spacing. The selection of a dendrite spacing in 

the context of our model would be accomplished 
by a stability analysis of the array using methods 
similar to those of Warren and Langer [11] in the 
study of dendritic arrays in directionally solidified 
two-component melts. In their case it was found 
that a range of spacings are stable for a given 
growth velocity. In directional solidification, how- 
ever, there is an imposed vertical temperature 
gradient which acts to inhibit dendritic growth 
and is responsible for the existence of the range 
of stable spacings. In our case there is no such 
stabilizing influence and we expect that all array 
spacings are unstable. Physically, the instability 
would manifest itself as a "coarsening" of the 
array. This tendency is reflected in Eq. (4.7) and 
Fig. 4. For any fixed tip radius (presumably deter- 
mined by a tip selection criterion) the velocity of 
the dendrites always increases as A increases. 
The growth of perturbations which increase the 
spacing of the array are thus favored by a faster 
growth rate for the array; any perturbation to the 
array which causes the tip of one dendrite to 
advance ahead of the rest would result in the 
dendrite growing out ahead of the array. Thus, in 
the long-time limit we expect the system to tend 
to arrays with very large spacings. 

Our results for the steady-state dendritic array 
can also be interpreted in terms of a macroscopic 
description of the average temperature field. This 
average temperature field is a cross-sectional av- 
erage over x and y as a function of z. The 
dominant contribution to this average is due to 
the "outer" field. The "inner" field appears only 
as a small correction to the macroscopic descrip- 
tion since the volume fraction occupied by the 
dendrites is proportional to the small undercool- 
ing. To leading order, the average temperature 
profile is 

[/z e-Z/(/z + 1) for z > 0, 

O = ~ l _ e ~ , Z / ( u + l )  f o r z < 0 ,  
(4.8) 

where the interaction parameter /~ is given in 
terms of physical lengths and the undercooling as 

Ix = 2 7 r p l / o ' A  2. (4.9) 

This representation for the interaction parameter 
allows for an estimation of the dendritic interac- 
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tions as ~r ~ 0 when A << l. These results could 
also be used in a mushy-layer model for dendritic 
growth. They provide a temperature boundary 
condition for the mush/ l iquid interface as well as 
a "decay length" for the temperature field in the 
mushy layer which are linked to the dendrite 
spacing through the parameter  Ix. 

Our results are also directly applicable to crys- 
tal growth from a two-component supersaturated 
solution at a fixed temperature. In the one-sided 
model for alloy solidification (see Refs. [8,19]) the 
release of latent heat is negligible; growth is 
controlled by the diffusion of solute in the liquid 
with no diffusion in the solid. If C is the concen- 
tration field of the liquid, C o is the equilibrium 
liquid concentration, AC is the far-field supersat- 
uration, D is the solute diffusivity, and k is the 
segregation coefficient, then the nondimensional 
equations describing steady-state growth are 
equivalent to (2.10)-(2.15) where l = D / V ,  ~9 = 
( C -  C o - A C ) / A C  and t r -  A C / C o ( 1 -  k). 
These substitutions convert our results to de- 
scribe isothermal crystal growth from a two-com- 
ponent supersaturated solution. 

Finally, an important aspect of our results is 
that to leading order they are independent of the 
pattern chosen for the array. This is because the 
dominant contribution to oarray is from the k = l 
= 0 term in the eigenfunction expansion for 
(see Appendix C). This term is the same for any 
pattern, and depends only on the area of the 
pattern )~2. Thus our leading-order results, which 
are derived explicitly for square arrays, are also 
valid for hexagonal and rectangular arrays. Fur- 
thermore, since our regular array is really nothing 
more than a three-dimensional channel with no- 
flux boundary conditions, our results are also 
applicable to three-dimensional channels with 
various cross-sectional geometries. Among these 
are circular, square, rectangular and hexagonal 
cylinders. Our results can thus be applied to 
channel growth experiments when or --, O, A/I --, 
O. While this in principle poses no difficulty, the 
appearance of 1 / In ( I /E )  in our scaling for A/l  
imposes a practical constraint on how small the 
undercooling needs to be. In particular, for our 
analysis of strong interactions to be relevant in an 
experiment, the undercooling must be small 

enough that 1 / l n ( 1 / e )  << 1. A conservative choice 
of l / I n ( l / e ) =  0.1 requires an extremely small 
undercooling of or = 2 × 10 -8. Even a more gen- 
erous choice of i / I n ( l / E )  = 0.2 requires ~r = 2 × 
10 -4 . To our knowledge, no channel growth ex- 
periments have yet been conducted at small 
enough undercoolings to test the predictions of 
our theory and its range of validity. 

5. Conclusions 

We have considered the steady-state growth of 
a pure material into an undercooled melt as an 
array of identical three-dimensional dendrites in 
the absence of surface energy. We have deter- 
mined analytical solutions to the steady-state 
free-boundary problem as an expansion in the 
small undercooling using slender-body theory 
where each dendrite in the array appears as a 
line source of heat which decays exponentially 
behind the tip. In the limit of small undercooling, 
dendrite interactions are only important at the tip 
if the dendrite spacing is much less than the 
diffusion length. In this case the Peclet number 
of the dendrite tip is determined by the modified 
undercooling due to the presence of the array 
instead of the far-field undercooling. The steady- 
state solutions have two degrees of freedom which 
we use to determine explicitly the dendrite veloc- 
ity as a function of the tip radius and the dendrite 
spacing. In the limit of large spacings we recover 
the dynamics of the Ivantsov dendrite. Our lead- 
ing-order results for the array are valid for any 
space-filling array pattern as well as for solidifica- 
tion in insulated channels of various shapes. From 
our solutions we can describe the macroscopic 
behavior of the temperature field associated with 
the array in terms of the interaction parameter/x.  
These results include the interface temperature 
of the solidification front and the decay length of 
the temperature field behind the tips. The results 
presented here for solidification of a pure melt 
can also be directly converted to describe the 
isothermal solidification of a two-component su- 
persaturated solution by making use of the one- 
sided model. 
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Appendix A: Matching inner and outer solutions 

The outer and inner solutions are matched in an intermediate region defined by 

1 
( x , ,  y , ,  r , )  = ~-g(x, y, r) =el- '~(ff ,  y , r )  f o r 0 < a < l ,  (A.1) 

where z < 0, and x , ,  y , ,  r ,  and I zl  are O(1). The expansion for @in in the intermediate region is 
straightforward, 

@ i n  1 h- (1 -o/)Ol(Z ) -+-O(t~). (A.2) 

The expansion for @out in the intermediate region is more difficult. The derivation is somewhat lengthy 
because it is necessary to find an alternative representation for the double infinite series in (3.20). 

We first note that for (x, y) = e~(x . ,  y .  ) ~ 0 the largest contribution to the sum in (3.20) is due to 
the "center" source i = j  = 0 when x' = y '  = 0. The rest of the line sources (i2 +j2  4: 0) are all much 
farther away from the near-inner intermediate region we are interested in and make significantly smaller 
contributions. We thus separate the sum in (3.20) into two pieces, 

@out = @near + @array, (A.3) 

where @near is the contribution of the nearest line source and @array is the contribution of the rest of the 
line sources in the array. These terms are given explicitly by 

@near(x, y ,  Z) a f° q(z') exp(--l[¢r2+ (z--z')2 '1-(z--z')]) 
= dz'  (A.4) 

- 47r ~ r Z + ( z _ z , ) 2  

and 
o@ o¢ 

oarraY(X, Y, Z) =t~ E E f°  q(z')G(x, Y, z; iX, JA, z')dz'. (A.5) 
i = - ~ j = - ¢ ~  - ~  

i2+j2~0 

For r = ~'~r,, z < 0, the integral in (A.4) is dominated by the contribution from the near-singularity at 
z = z' which generates a factor of ln(1/e~). This behavior can be extracted by adding and subtracting a 
factor involving q(z), 

@near(x, y, Z)=t~  q(Z) fO e x p ( - { [  ~/r2+ (Z--Z')2 + (Z--Z')]} 
4~r _~ ~/r2+ ( z - z ' )  2 dz '  

+ a f@ [q(z')-q(z)] exp(-½[~/r2+ (z -z ' )  2 + (z -z ' ) ] )  dz'. (A.6) 
- 4rr ( r 2 + ( z _ z , ) 2  
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The first term can be integrated explicitly by making the change of variable 

~ ( z ' ) = ½ [ ~ / r Z + ( z - z ' )  z + ( z - z ' ) ] ,  (A.7) 

to find 

[~near(x, y, Z)= 6 q4(-~z) El[~'(0)l 

+afo [q(z,)_q(z) ] e x p { - ½ l ~ r 2 + ( z - z ' )  2 + ( z - z ' ) ] }  dz' ,  (A.8) 

- 4~" ~ r Z + ( z _ z , )  2 

where El(~') is the exponential integral. The asymptotics of (A.8) for r = e~r.,  z < 0 are straightforward. 
The E 1 [~'(0)] gives a factor of ln(1/e~). The integral in the second term is well behaved and O(1). Thus 

z ) 
[~near(15aX,, E~y,, z) 2~" + O(8) .  (A.9) 

Now consider [~array as given by (A.5). For (x, y ) =  e~(x. ,  y.) ,  z < 0, the Green's function can be 
formally expanded in powers of e~/X. The leading term of this expansion is 

oarray(ffaX*,'aY*,Z) ~ E E f ° q ( z ' ) G ( O , O , z ; i X ,  J~ ,z ' )  dz', (A.IO) 
--o0 i = - - ~ j = - - o ~  

i2+j24:0 

which is independent of x .  and y . .  The difficulty with this approach is that this sum converges very 
slowly in i, j because h = 0(61/2) << 1. We need an alternative representation for O array which makes 
advantageous use of h << 1. 

The alternative representation can be found by replacing the sum of sources in (A.5) by an equivalent 
heat flux on the walls of the center cell. The details of this calculation are given in Appendix C. The 
result is 

oarray(ffaX, , Eay,, Z) = " ~  Z0) dz 0 + _ Zo) exp(z 0 -  z) dz 0 + 0 ( 6 ) .  (A.11) 

A consequence of (A.11) is that to leading order O array is independent of x .  and y . ,  varying only in z. 
As indicated in Appendix C, the symmetry of O array means that the inner temperature field is 
axisymmetric until O(e463). 

We can now complete the matching of O in and O °ut in the overlap region. We have O in given by (A.2) 
and 

O °ut aq(z )  + z 
- 

Matching determines 

B,(z)  = - q ( z ) / 2 ~ - ,  

with q(z) determined by the integral equation 

1 (5(zo, .(zo, ex ( o  Zo)- q ( z )  + z 1 
2 - - - - ~  - " 

(A.13) 

(A.14) 
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The solution to the integral equation can be found by differentiating Eq. (A.14) with respect to z, 
substituting for the integral that remains using (A.14), and differentiating again to obtain a homogeneous 
second-order ordinary differential equation with constant coefficients. The two solutions to the differen- 
tial equation are exponentials. One of the exponentials becomes infinite as z ~ - ~  and is discarded. 
The other has the proper decay as z -~  - ~ .  The arbitrary coefficient multiplying the solution to the 
homogeneous differential equation is determined by substitution of the exponential solution into the 
integral equation (A.14). The resulting solution is 

q(z) = ~A 2 e ~z, (A.15) 

where 

/~ = - 1 / 2  + ¢ 1 / 4  + 2 ~ r / A  2 . (A.16)  

Solution (A.15) satisfies the conservation of heat constraint (3.24) automatically. Having determined q(z) 
and Bl(z) from matching, we can now solve explicitly for the shape Ro(z) from (3.18). The result is 

A 
Ro( z ) = - ~  v ~ -  e uz . (A.17) 

The accompanying inner temperature field is given in final form as 

oin( , z)  = e "z in + 0 ( 6 2 ) .  (A.18)  

This solution is valid everywhere near the surface of the dendrite except near the tip where R 0 ~ 0 and 
dRo/dz >> 1. The details of the tip region must be solved for separately and matched to the inner and 
outer solutions. 

Appendix B: Matching the tip to inner and outer solutions 

We first match the tip solution to the inner solution in the intermediate region where 

r=el+~rt for 0 < a  < 1, 

z=E2azt for zt < 0  and 0 </3 < 1 , 

and 

( l . 1 )  

(B.2) 

and 

R~n I t z A 2 1 z * l  = , 8 - ,  + 0 ( 8 , 8 - - ) .  (B.5) 
"1"7 

R(z,  0) = EI+'~R,(z,, 0). (B.3) 

We restrict 2/3 < 1 + a so that r < < l z l  in the intermediate region but otherwise leave a and /3 as 
arbitrary. 

Expanding the inner solution for ~ = e~rt, z = e2t3z, < 0 and R = e~Rt, we find that 

/~A 2 
O in= 1 - -~--Tr (/3 - a )  + 0 ( 8 )  (B.4) 
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Expanding the tip solution for r+=  ri le l-a, z+ = z t / e  20-~) and R+=  R t / e  1-~, we obtain 

O ti° = 1 - 2 - 0 0 ( / 3 -  a )  + 0 ( 6 )  (B.6) 

and 

R~ ip = 2 ~ o I  z,  le t3-~ + O(6et3-'~). (B.7) 

Matching, we determine the constant ~7o as 

% = I~A2/4v. (B.8) 

Repeating the matching procedure in the intermediate region between the tip and the outer regions 
defined by (x , ,  y,,  z , )  where 

(x ,  y, z) = e2"(x,, y,, z ,)  

we obtain 

O tip = 1 -- 2"0o(1 - a )  + O((~) 

and 

for 0 < a < 1, (B.9) 

(B.10) 

otq(0) /., 
Ù °ut - -  + - -  + 0((5) .  (B.11) 

2~- / x + l  

Matching is automatic with '0o given by (B.8) and the three leading-order solutions now match in all the 
overlap regions. 

Appendix C: Temperature field generated by the array 

Here  we determine the alternative representation for O array given by (A.5). The alternative represen- 
tation can be found by noting that ~array is a solution to the sourceless diffusion equation in the center 
cell { x ] < A/2, [ y I < A/2, with an effective heat flux on the cell walls corresponding to the effect of the 
dendrites in the array. This effective heat flux can be calculated explicitly by observing that 
Y:~= _®~/= _~G(x, y, z; iX, jA, z') is the Green's  function for a point source at (x',  y', z ' )  = (0, 0, z ' )  in 
an insulated center cell. If there is a line source in every cell then there is no flux on the walls of the cell 
x = +A/2 ,  y = +A/2 .  The heat flux on the cell walls which is generated by the array of line sources with 
the center source missing must then be exactly that needed to cancel the heat flux on the cell walls due 
to the center source acting by itself. The sum of the "outer"  sources (i2 + j2  ~ 0) can thus be formally 
replaced by a heat flux on the cell boundary which is given by the negative of that generated by a line 
source at the center of the cell. After calculating the heat flux on the boundary we can then solve for the 
temperature field in the cell using the Green's  function for the insulated cell, ~', where we use an 
eigenfunction expansion for ~" which converges rapidly when A << 1. 

Since ~afray has the symmetries x ~ - x ,  y ~ - y  and (x, y ) ~  (y, x), we only need to solve for 
O array in one quarter of the center cell, 0 < x  < A/2  and 0 < y  < ,~/2, where 

~oarray 
V2{~ array + - -  0. (C.1) 

az 
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The boundary conditions for (C.1) are 
i}~array 

= f ( y , z )  on x=A/2 ,  (C.2a) 
an 

i l l ,  array 
=f(x ,  z) on y =A/2 ,  (C.2b) 

an 
03{~array 
- - = 0  o n x = O a n d y = O ,  (C.2c) 

an 
~}oarray 

, 0  as Izl ~o~, (C.2d) 
az 

oarray--'~O as z--*~. (C.2e) 

In the above boundary conditions alan denotes the gradient in the direction of the outward normal to 
the cell boundary. The function f(x, z) is the heat flux on y = A/2 due to a line sink at x = y = 0 given 
by 

0{~near y=A/2 [ ~ g  dz '  _ . _ _  = - ~  o q ( z , )  oy ( x ,  y ,  z;  O, O, z , )  (C.3) f ( x ,  z) = ay -~ y=•/2 

The solution to (C.1) and (C.2) is given in terms of a Green's function 3" as 

x, z)=f= dzof x/~ ago [~(x ,  x, z; Xo, Yo, oarraY(X, Z0) 
" 0  

+$'(x, y, z; Yo, Xo, Zo)]f(xo, Zo) ,o=X/2, (C.4) 

where $'(x; x o) is the Green's function for an insulated box 0 < x < ~/2,  0 < y < ~ /2  which satisfies 

as" 
- v ~ -  oz a(x-x0) (c.5) 

with 

and 

an 

Og" 

az 

- - = 0  on x = 0 ,  x = A / 2 ,  y = 0 ,  and y = A / 2 ,  (C.6) 

- - - * 0  aslz-zol  ~oo, (C.7) 

~--,0 as (Z-Zo)--,~. 
The eigenfunction expansion for ~" is 

~ 4 cos (2~o /X)  cos(2~yo/X) cos(2~kx/~) ¢os(2~yA) 
~(X;Xo)= E E 

,~2~/1" + (47r/,~)2(k 2 +/2) k= I= 

(c.8) 

(C.9) 
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where + ,  - is understood to apply for z < z 0, z > z o, respectively. Thus, after some rearranging, 

sL So' o oar raY(X,  y ,  z) = D dz 0 ds s, zo) f dz' q ( z ' )G(s ,  Zo, z ') ,  (C.10) 

where 

1 ( 1  1 )  
G(s ,  z 0, z ' ) =  ~-~exp{-½[d  + ( z 0 - z ' ) ]  } -~ff  + ~-g , (C.11) 

and 

o~ ~ ( - 1)' cos(zrks) 
~ ( x ,  s, Zo) = E E , ~bkt(X, Y) 

-~  l = - ~  ~/1 + (4"n'/,{)2(k 2 + 12) k= 

x e x p ( l ( z - Z o ) [ - l + 7 1 + ( g r r / X ) 2 ( k 2 + 1 2 ) ] } .  (C.12) 

In the above expressions 

d = 7 ( i / 2 ) 2 ( 1  + s 2) + ( z o - z ' )  2 (C.13) 

and Ckt(X, y) is the symmetric sum of the eigenfunctions given by 

6kt(X, y) = cos(27rkx/ i )  cos(2~-ly/ i )  + cos(2~rb¢/i) cos(2rrky/,~). (C.14) 

The integral representation (C.10) is an exact representation for the sum in (A.5). It contains an infinite 
sum as part of ~', but this sum converges rapidly because A << 1. In fact, the k = l = 0 term of the sum 
turns out to be asymptotically larger than the sum of the remaining terms, and the leading-order 
behavior of the integral requires only one term from the sum. 

We are now in a position to determine the matching behavior of O array for (x, y) = e"(x , ,  y ,  ), z < 0. 
To match with the inner solution we need the O(1) approximation to O arr"y. We let 

= ~0 + ~sum, (C.15) 

where ~o is the k = l = 0 term of ~', and "~sum is the remaining terms for which k 2 + l 2 ~ 0. Since the z' 
integral is dominated by the contribution from G when z' = z 0 and z' < 0, we split the z 0 integral into 
two pieces, 

fo fo I ]fo oarraY(X, y, Z) =~ dz o ds [~:'o(X, s, Zo) + ~'sum(X, s, Zo) dz '  q(z ' )G(s ,  z o, z ' )  

+ 8£  c° dzof01 ds [f~'0(x, s, z0) +,~'sum(X, s, z0) ] ]0o dz' q ( z ' ) a ( s ,  z0, z'). 

(C.16) 

In the second term all the functions are O(1) and well behaved, resulting in an overall 0(6)  contribution. 
In the first term the dominant contribution to the z' integral occurs at the near-singularity in G at 
z' = z o which generates a factor of I n ( l / e )  = 6 -1. By the same approach used for determining (A.8) we 
find for z 0 < 0 that 

f°o~ dz' q( z ' )G( s, z o z') q( z°) e-~° _ ' 4rr ~2o+(~2/16)(1+s2) + f ° - ~ o d z ' [ q ( z ' ) - q ( z ° ) ] C r ( s ' z ° ' z ' ) '  

(C.17) 
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where  

~'o = 1 [~/(~.2/4)(1 + s 2) + Zo 2 + Z o ] .  (C.18)  

Further ,  ~o is O(1) while the terms in ~sum are exponentially small except when I z - z o I = O( , ( ) ,when  
the terms are OG() and decay rapidly in k, I. Thus  the action o f  ~o is O(1) and the action of  "~'sum is  
0 (8 ) .  Expanding (C.17) for ~2 = AZ/ln ( l / e ) ,  substituting the result into (C.16) and integrating against fro 
as given by 

2 for z 0 > z,  (C.19)  
~'o(X'S 'Zo)  = 2 e x p ( Z o _ Z )  f o r z o < Z ,  

we obtain the desired leading-order  result for ~array 
1 

°q(Zo) d z o +  q ( Z o )  e x p ( Z o - Z  ) d z  o + 0 ( 8 ) .  (C.20)  oarray(~?aX. , E'~y.,  z )  = ~-2 

Finally, Eq. (C.20) indicates that  near  the center  dendri te  the array generates  a t empera tu re  field that  
to leading order  is independent  of  x ,  and y , ,  varying only in z. The  x , ,  y ,  dependence  appears  at 
0 ( 3 )  th rough  the eigenfunctions ~bkt(X, y)  in ~sum" A n  evaluation of  these eigenfunctions in the 
matching region indicates that  the appearance  of  nonaxisyrnmetry in O a=ay is of  the form e4~63r 4 
× sin(40). Thus  the inner  t empera tu re  field does not  require a nonaxisymmetric  term until O(e483). 
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