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Abstract—We consider a mathematical model for directional solidification of a binary alloy as a periodic
array of three-dimensional needle crystals. Arguing from an analysis of published experimental data for
dendritic growth, we identify a natural separation of characteristic length scales for dendrites. We use these
observed disparities in length scales to define a small parameter for dendritic growth and identify scalings
for all the process parameters in terms of this small parameter. We then solve the resulting free boundary
problem using matched asymptotic expansions. Our analysis results in an integral equation for the shape
of the needle crystal. We suggest that the integral equation contains a mechanism for the unique selection
of the tip radius of the needle crystal independent of surface energy. This is in sharp contrast to previous
studies regarding determination of the tip radius of an isolated, single-component, isothermal dendrite.
Our results suggest that selection of the tip radius is linked to the spacing of the array. © 1997 Acta

Metallurgica Inc.

1. INTRODUCTION

This paper is concerned with the prediction of
dendritic morphologies during the directional solidifi-
cation of a binary alloy. Our approach is to find
smooth, steady-state needle crystal shapes which
form an underlying basis for the more complicated
dendrite morphology. The presence of sidebranches
on the dendrite is presumed to be the result of a
sidebranching instability which develops on the
smooth needle crystal. The description of needle
crystal morphologies thus has two purposes. The first
purpose is for use as a “‘basic state” in the description
of the sidebranching instability. The second purpose,
which is of central concern to us here, is for use in
predicting the morphology characteristics of den-
dritic growth such as the tip radius, array spacing, tip
undercooling and overall dendrite shape. Just as the
Ivantsov isolated needle crystal solution [1] is
sometimes referred to as a ““dendrite”, we shall also
refer to the smooth needle crystal shapes in our array
as “dendrites”. For a further discussion of the
philosophy behind using needle crystals to model
dendritic growth, see Ref. [2].

We shall obtain smooth, needle crystal shapes as a
solution to a mathematical model describing direc-
tional solidification. The mathematical model is a free
boundary problem, and is not very easily solved in

tPresent address: Department of Mathematics; SUNY at
Buffalo; Buffalo, NY 14214-3094, U.S.A.

general. In particular there are three experimental
length scales and four morphological length scales
that conspire to make the full problem very difficult.
Our approach will be to examine the typical values of
these length scales from published experimental
results. By noticing a natural separation in length
scales, we are able to identify a characteristic small
parameter for dendritic growth and determine
consistent scalings for all the parameters. We are then
able to solve the problem using matched asymptotic
expansions. The result of our analysis is an integral
equation for the shape of the dendrite. This equation
and its solutions have a particularly important
implication for dendritic growth: the tip radius of the
dendrite appears to be selected by the array spacing
and not by the surface energy. This is possibly the
most important conclusion of our study.

The paper is organized as follows. In Section 2 we
describe the mathematical model of solidification. In
Section 3 we analyse the different length scales in the
problem, determine appropriate scalings for the
parameters and formulate a set of scaled equations.
In Section 4 we solve the equations using matched
asymptotic expansions to derive an integral equation
for the shape of the dendrite. Finally, in Section 5 we
summarize our results and discuss the ramifications
of the integral equation and -its solutions to the
selection of the dendrite tip characteristics. In a
further paper we determine the numerical solutions of
the integral equation and compare our predictions to
experimental data [3].
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2. THE MODEL

We consider the directional solidification of a
binary alloy with a morphology consisting of an array
of needle crystals. The coordinate system travels with
the solidification front in the — z direction at constant
speed V (see Fig. 1). In the moving frame there is an
imposed temperature gradient with warmer liquid
ahead of the front. The control variables are the alloy
composition C,, the growth speed V, and the
temperature gradient G.

The governing equations for the system are derived
from the one-sided, frozen temperature model for
directional solidification [4]. In this model, there is no
diffusion of solute in the solid, and the imposed
temperature field 7 is linear in z. The linear
temperature profile corresponds to equal thermal
diffusivities in the solid and liquid phases with the
diffusion of heat being much more rapid than the
diffusion of solute. The model further assumes that
there is no fluid flow, no density change upon
solidification, and that the phase diagram is
composed of straight lines (see Fig. 2). The
concentration of solute C(x,y,z, ) satisfies the
following equations in the moving coordinate frame.
First, the concentration satisfies the advection-diffu-
sion equation,
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Fig. 1. Schematic of an array of needle crystals. (a) Side
view, (b) top view.
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Fig. 2. Phase diagram used in the model.

where D is the solute diffusivity in the liquid and &
denotes the liquid region. One boundary condition on
the system is that the solid-liquid interface % is in
local equilibrium, as given by the Gibbs—Thomson
condition,

T=Tw+mC~—~Tx on % )

where T is the temperature, Ty is the melting
temperature of the pure material, m, is the liquidus
slope from the phase diagram, I' is a surface
energy/capillary constant which has units of tempera-
ture/length, and x is the interfacial curvature. A
second boundary condition is conservation of solute
at the solidifying interface, with solute rejection
balanced by the diffusion of solute away from the
interface, as given by

Va=Vn)CA —k)y=—-Dm+-¥VC) onZ (3)

where n is the unit normal vector of 4 pointing into
the liquid, », is the component of n in the +:z
direction, ¥, is the normal velocity of the surface in
the moving frame, and k = (d7./dC)/(dTs/dC) is the
segregation coefficient from the phase diagram. Far
ahead of the solidification front we require that the
solute field decays to the mean alloy composition C,,:

C->C, as z——c0. (@)

Finally, the frozen-temperature approximation pre-
scribes the temperature field everywhere as a linear
variation in the z direction:

T=Ty— Gz (5)

where T is a reference temperature which locates the
origin of the moving coordinate system relative to the
solidification front, and G is the temperature
gradient.

The presence of the eutectic on the phase diagram
means that the liquid domain does not extend to
z = o0. We assume that once the eutectic temperature
is reached the remaining liquid solidifies as the
eutectic phase. Thus, the vertical coordinate at which
the eutectic transformation occurs is given by

ze = (T, - Te)/G (6
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and effectively truncates the liquid domain with the
boundary condition

C=C(Cg at z=zg in ¥ (7)

where Ce is the eutectic composition. In the analysis
that follows, we shall assume that C,, is not too close
to Ck (in a sense to be quantified later).

We seeck a steady-state solution to the free
boundary problem posed by equations (1)~(7) in the
form of a regular array of identical needle crystals
(see Fig. 1). For definiteness we take the array to have
a rectangular planform with spacings 4, and 4,; the
center line of each crystal in the array is located at
(x, ¥) = (iA«, jA,), where i and j each range over all the
integers. In principle it should also be possible to
consider other array planforms such as hexagons.

In addition to the array spacings, there are two
other length scales which specify the array mor-
phology. The first is the tip position z,, which locates
the vertical coordinate of the tips relative to the
origin. Since the temperature gradient is linear, zg,
translates directly to a tip temperature (or tip
undercooling). The second length scale is the tip
radius p, which is related to the two principal radii
of curvature at the tip, p, and p,, by 2/p = 1/p1 + 1/
p2. We want to determine how the morphology length
scales A, 7, ziy, and p vary in response to the
material and control parameters.

We nondimensionalize the system as follows. We
choose the reference temperature T, as the liquidus
temperature at C = C,;:

To=Tw+ m.C.. (8)

Since we expect the rejection of solute to elevate the
liquid concentration at the tip relative to the mean
alloy composition, the phase diagram, together with
equation (5), indicates that the tips will lie in z > 0.
From the phase diagram we also note a characteristic
temperature scale A7, as the equilibrium freezing
range at composition C., given by

From the control variables and material properties,
one can define three fundamental process lengths [S]:
the diffusion length /p = D/V; the thermal length
It = k AT,/G; and the capillary length /c = I'/(k AT,).
We nondimensionalize (x, y, z) with /p, and nondi-
mensionalize time with D%V to obtain

* At 3
5;?* = ¥ — Oac* in % (10)
C* = (bjh)z* — (efloye* on @ (11)

tNote that our definition of /b differs by a factor of 2
from that often used to describe dendritic growth.
Thus our Peclet number differs by a factor of 2 from
the traditional notation. The ratios /ep//rr and /c/ip also
differ by a factor of 2 from the parameters % and .« of
Trivedi [6].
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(VF—n)[l + C*(1 —k)]+ @ FC* =0 on &
(12)
(13)

C*>0 asz*-> -
and

C*=(Ce/Cr — D)/(1 = k) atz*=2ZF in Z. (14)
In the above, starred quantities denote appropriately
nondimensionalized variables where C* = (C — C..)/
[Co(l — k)] and zF = (I/lb)(Ce/Cx — 1})(1 — k). The
system has four nondimensional control/material
parameters: k; Ip/lr; Ic/lp; and Cg/C.. In addition,
there are four nondimensional parameters describing
the morphology of the array: p/lp; A«/lp; A./lp; and
zip/ln. The quantity p/lp is the Peclet number of the
dendrite tipt. Equations (10)-(14) represent the free
boundary problem we need to solve.

3. LENGTH SCALE ANALYSIS

We want to determine how the morphology length
scales vary in response to the control length scales. If
all the nondimensional parameters are of order unity,
the free boundary problem must be solved numeri-
cally. Our approach will be to develop simpler
asymptotic solutions to the problem when one or
more of the parameters is small. We choose our small
parameters and scalings carefully by considering the
size of the nondimensional parameters that are
characteristic of dendtritic growth.

We develop our asymptotic scalings by considering
the experiments of Somboonsuk, Mason and Trivedi
(SMT) [7] on the directional solidification of a binary
mixture of succinonitrile-acetone. The experimental
apparatus consists of two closely spaced parallel
plates with spacing Ay. For the experimental
conditions considered, the array of dendrites formed
a single row between the plates. Thus, the plate
configuration effectively sets one of the dendrite
spacings, A, = Ay. A further discussion can be found
in Warren and Langer [8]. In the experiments, the
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Fig. 3. Log-log plot of fundamental length scales as a
function of growth velocity for the Somboonsuk et al.
experiments [7]. The cell-to-dendrite transition occurs at
about ¥V =1um/js. We base our observations of scale
separation on the data at V' = 10 um/s.
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composition C., was held constant while ¥ and G
were varied. The experimental results include
measurements of p and A,.

We plot the control and morphological length
scales as a function of growth velocity ¥V in Fig. 3.
Since the tip undercooling was not reported in the
experiments, the corresponding value of zy, is not
plotted. From the data on length scales we observe
that, away from the cell-to-dendrite transition at
about V' = 1 umy/s, there is a separation of scales with

(15)

Further, over a wide range of velocities, the dendrite
spacings and diffusion length are of the same order
of magnitude. We interpret this correlation to give
the scaling

le<p<h<h.

Axy A, = ord(lp) (16)

where the notation “ord” denotes ‘“‘the same order
as” as described in Ref. [9]. These observations form
the basis for constructing a set of scalings for the
nondimensional parameters. A unique set of scalings
can be obtained by assuming that the resulting
morphological lengths for the array obey the two
scaling relationships presented in Ref. [5] for
dendritic growth during directional solidification.
These additional relationships are

p oc PR

17
and

Aoc IS

(18)

Finally, we assume that the alloy composition is not
close to the eutectic composition in the sense that C¥
is order (1).

We define a fundamental nondimensional par-
ameter € as the ratio of the diffusion length to the
thermal length:

19

€= ID/IIT.

It thus follows from the separation of scales [equation
(15)] that ¢ is small:

€<l (20)

Then, from a combination of equations (15)—~(18) we
obtain the following scalings for the nondimensional
parameters:

(4, A)/lo = (As, A,) (21)
pllo = €P (22)

and
leflp = €Q (23)

where A, 4,, P, and Q are all ord(1) nondimensional
parameters. While no information about the appro-
priate scaling for zy/lb can be inferred from the
experiments, we can determine a consistent scaling by
considering the behavior of an Ivantsov dendrite [1]
growing into a supersaturated solution at uniform
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temperature. The scaling equation (22) means that
the Peclet number of the tip is ord(¢). For the
Ivantsov dendrite to have a Peclet number of ord(e),
the nondimensional undercooling (Cup — Cs)/
[Cip(1 — k)] must be ord[e In(1/¢)]. Taking Cy, on the
liquidus isotherm, one finds that the tip position must
necessarily scale as zy,/lp = ord[In(l/e)]. We thus
define

zap/lp = Z In(1/¢)

where & = ord(1).

We are now in a position to derive an asymptotic
solution to the free boundary problem in terms of the
small parameter ¢. In terms of the physical
parameters,

24)

Ip DG

LT Vmk— DGy

25)
The parameter ¢ measures the stabilizing effect of the
temperature gradient relative to the destabilizing
effect of the solute boundary layer. For morphologi-
cal instability of an initially planar solidification
front, it is necessary that [10]

Vm,Coo(k — 1)

G !

(26)
which corresponds to €< 1/k. Thus ¢<1 is a
consistent parameter choice to describe dendritic
morphologies. For the SMT experiments, ¢ < 0.1
except for velocities near the cell-to-dendrite tran-
sition.

4. SOLUTION BY MATCHED ASYMPTOTIC
EXPANSIONS

We now look for steady-state solutions to the free
boundary problem in equations (10)—(14) using the
scalings presented in Section 2. Dropping the stars
from the nondimensional variables as a notational
convenience, we obtain the following equations for a
steady-state array:

VzC—aa—f=0 in & 27
C=ez—¢Qx on % (28)
(1 +(1—-k)C)+ @ PC)=0 on# (29
C—>0 asz—o—oc (30)
and
C=(Ce/Cu — D)1 — k)
at z = (1/e)(Ce/Cr, — 1)1 — k) in £. (31)

For the rest of the paper we shall be concerned with
these scaled variables and equations. We seek the
solution to this nonlinear free boundary problem as
an array of needle crystal dendrites. The array
morphology is characterized by scaled parameters
corresponding to the tip position &, the tip radius P,
and the array spacings A4, and 4,.
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Since we are looking for array solutions in which
all dendrites are identical, we are free to describe the
array relative to a particular “center” dendrite. In our
solution we shall focus on a particular dendrite and
how it behaves in the array. We denote the radial
coordinate r as the distance from the center-axis of
the center dendrite (see Fig. 4). The shape of the
center dendrite can thus be described in terms of
cylindrical coordinates by r = R(0, z).

We solve the free boundary problem using matched
asymptotic expansions (see also Refs [11] and [12] for
applications of matched asymptotic expansions for
dendritic growth of single component materials).
There are four distinct asymptotic regions (see Fig. 4)
for the solute field near the center dendrite. The four
regions are

e Tip region: r = O(e) and z — z, = O(€)

e Inner region: r = O(¢'?) and z — zy, = O(1) with
Z — Zip > 0

e Outer region: r = O(1) and z — z,;, = O(1)

e Tail region: r = O(1) and z — z4, = O(1/e) with
Z — Zip > 0.

We shall solve the governing equations in each of the
four asymptotic regions to obtain four locally valid
solutions. Then, by requiring the solutions to match
in the relevant overlap regions, we generate a
uniformly valid solution to the free boundary
problem. The following subsections detail the
solutions in each region and the matching of
solutions. (A reader interested in the conclusions
but not necessarily the details might now turn to
Section 4.9.)

4.1. Inner solution

In the inner region r = O(¢"?) and z — zz = O(1)
with z — z;, > 0. Relative to this local region, the
neighboring dendrites in the array appear far away.
The composite effect of the individual neighbors
becomes a far-field matching condition on the inner
solution.

For the inner region we use cylindrical coordinates
(7, 6,() where 7 is a scaled radial coordinate given
by

=
61,’2

(32)
0 is the azimuthal angle, and { is the vertical
coordinate measuring the distance along the dendrite
from the dendrite tip:

(33)

{=1z— zyp

In the inner region { > 0. For a roughly parabolic
dendrite with an O(¢) Peclet number, the scaled
dendrite shape 7 = R(0, {) must be given by

R, =R (34)

from which it follows that the curvature K in inner
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Fig. 4. Schematic of different asymptotic regions employed
in the solution by matched asymptotic expansions.

variables is given by
K= ek, (35)

Balancing the magnitude of the largest terms in the
concentration boundary condition (28), we find the
scaling for the inner concentration field C must be
Ct.0,0=2¢0.0,2) (36)
where 6 = 1/In (1/¢). We substitute the inner scalings
(32)(36) into the governing equations (27)—(29).
Equations (30) and (31) are not relevant to the inner
region. The equations for the inner region are

16 (_0C 1 8*°C o*C oC
-zl F=z |+ + € - =0
FOF\ OF

7 00° 0 &

in7> RO, (37)

C=2+08—0"Qk onr=DR®,0) (38

and

¢C 10CéR  .6R @R ~ oC
—f—ﬁ6—ﬁ+5a—g+£a—c<(l—k)c—a—c)

=0 on7=R6,0. (39

In addition to these equations, the inner solution
must also satisfy matching conditions with the
solutions from the other regions. We will first find a
solution to the inner equations above, and then make
the solution match the other solutions in subsequent
sections.

We seek a solution to the system of inner equations
as an expansion in the small parameters § = 1/In(1/¢)
and ¢. Since J is only “logarithmically” small with
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respect to ¢, it follows that all terms of the form "
are necessarily much larger than all terms of the form
€" (for n, m > 0). Thus, a power series expansion in
¢ and ¢ will start out as

C=0C+6C + 8C, +

+ “‘e terms” (40)

where “‘¢ terms” represent all terms in the expansion
containing a factor of the form ¢, m > 0. Our aim
in this paper will be to obtain a solution for the first
part of this expansion—the 6" terms. Since the 6"
terms are formally larger than all the ¢” terms, we can
ignore the “e terms” in determining the 6 expansion.
In principle there is nothing to prevent one from
using our results from the d-expansion to determine
the higher-order € terms in the expansion.

We now determine the d-expansion given by the
first line of equation (40). Dropping the ¢ terms from
the inner equations (37)—(39), we obtain

10 oC 1 82C B
?6_r'( ar)+r—_—2—6—2=0 in7>R(6,0) 4
C=2+03 oni=R@,0) 42)
and
6_6‘_;%6_](4_561{:0 on 7 = R(6,{). (43)

oF RO e Car

The small parameter 6 appearing in the above
equations is only “logarithmically” small; the
numerical value of § for the SMT experiments is in
the range 0.2 < < 2.5 for dendritic growth. The
relatively large size of 6 means that the straightfor-
ward asymptotic expansion in powers of & may
require many terms to give a good approximation to
the solution. In order to get around the slow
convergence of the d-series we shall solve the inner
equations exactly for arbitrary 6. The solution we
obtain is the summation of all the & terms in the
expansion (40).

We look for an inner solution which is axisymmet-
ric to all orders in 4. The axisymmetric solution to
equation (41) is

C=AQ M7+ BQ) 44

where 4({) and B({) are arbitrary functions of {. We
substitute this solution into the boundary condition

(42) to find
B({) =2 + 6{ — A(DIn R().

From the second boundary condition [equation (43)]
we obtain

(45)

A(5)+a_-o

RO (46)
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which can be integrated to give

1R == J A 7

where we have chosen the integration constant so that
R =0 at the dendrite tip { =0. Thus the inner
solution, valid for arbitrary é (but neglecting € terms),
is given by

C=AQFR) + Z + & (48)
where 4({) is an unknown function to be determined
by matching to the outer solution.

4.2. Quter solution

In the outer region, r = O(1) and z — zy, = O(1).
On the scale of the outer region (see Fig. 4) the
dendrites appear as an array of line sources at
x =iA,, y = jd,, extending from z = zy, to z = 0.

For the outer region we use a Cartesian coordinate
system (x, y, {) with the origin located at the tip of
the center dendrite, with { =z — z,,. The concen-
tration in the outer region C,, must match with that
of the inner region in an intermediate overlap region.
To achieve this matching, C,, must be related to the
unscaled concentration field C by
C(x, y, 2).

0
Cou!(xa Vs S) = Z (49)

We substitute the outer scalings into the governing
equations (27) and (30), the only equations relevant
to the outer region. The resulting outer equations are

oC, .
2 _ out __
V2Cou 3z 0 in¥ (50)
and
Cou—0 as {——c0. (51)

In addition, the outer solution must match the
solutions from the other asymptotic regions.

The outer solution can be written in terms of an
array of line sources:

Cu= 3 3 fmq<4')GU(x,y,z;C’)dC'. (52)

i=—xj=~xJo

In the above expression ¢({) is the strength of the
vertical line source for each dendrite, the indices i and
j denote the individual dendrites in the array, the
summation is a sum over all the dendrites in the
array, and Gj is related to the Green’s function for the
advection—diffusion equation, with

1 exp{ (1D —idF + 0 —jAF + { —

Gy(x, y,(; "’)—

O+ (C'—C)]}. 53)

V& —iAP + = jAY + (= (P
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The Green’s function G; measures the response
at (x,y,{) to a concentration source at vertical
position {’ on the line source at x =id., and
y=jA,. The source strength g¢({) 1is an
unknown function which is to be determined by
matching to the solutions in the tip, inner, and
tail regions.

4.3. Matching inner and outer solutions

The inner and outer solutions must match
asymptotically in an intermediate “overlap” region.
The intermediate region for the inner and outer

1541

1em{umm—Q+@—M}
S

near(c C )
(60)

and “¢ terms” are terms that contain factors of the
form € (m > 0), and thus do not enter into the
matching process for the -expansion. An asymptotic
expansion of C..y in the intermediate region gives

Caray = ‘r GGy {HAL” + “€ terms”  (61)

where

1 exp{ —(1/2)[/ (A} + (A + ¢

- P+ -0)

Gurnay({; () = ZZ

24 %047'[

(62)

JUAY + AP+ =)

solution is given by ¢? <« r <1 and { = O(1) with
{ > 0. We introduce the intermediate variable
r

r=m

(54

where 0 < a < 1, and seek matching solutions for
arbitrary «. The inner solution is given in terms of
intermediate variables as

o= ”A@+A@m%+z+x (55)
where we have made use of 4 = 1/In(1/¢). To expand
the outer solution in the intermediate region, we
separate C,, into two pieces:

Cou = Cr\ear + Carray (56)

where C,e is the contribution to the solute field made
by the “center” line source and Cim, is the
contribution made by the rest of the line sources in
the array. Thus

Cnear = Jﬁ q(C’)Goo(X, Y, Ca C’) d‘:/ (57)

and

Camy = Y

4220

J qNGy(x, y, ;YA (58)

From an asymptotic analysis of Cu... in the

intermediate region, we find that

+ Jm [4(0") — g(0)]Grear({; £) AT” + € terms™.

(59

In the above equation, yg is Euler’s constant, Guer 18
given by

Thus, the outer solution in the intermediate region is

given by
q(C )
[ <4C> ’ V‘E}

+ J [0 = a(O)Guull; ) AL

ag(f)

Cou = 4 6

7 gt 1)

+ “e terms”. (63)

We now match C to Co. in the arbitrary overlap
region (artibrary o) to all orders in 4. Dropping ‘e
terms” we have

(1—a) F R
75 A(C)+A(C)ln<ﬁ>+£’+oc= s

)

+ f [0 — @Gl ) AT

+ f ) Gum((3 1) AL, (64)

Matching for arbitrary « requires the o terms in
equation (64) to vanish. Thus, the inner function 4(()
and the outer function g({) are related by

A =

q(C ): (65)

We substitute this relationship into the matching
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equation (64) to find an equation for the unknown
source strength ¢({):

p . _9@) 9@ R
LA =5 an |l g ) e

+[ [G) = GONGoell: L) T

1]

+J G(C)Garmay ({3 () AT (66)
0

From relations (47) and (65) we also know the shape
of the inner solution in terms of g({):

ROF = f () de (67)

The coupled system of equations (66) and (67) is the
central result of our analysis. By solving the system
for g({) and R({) we determine the solution to the free
boundary problem which matches the inner and outer
solutions. The remaining asymptotic analysis de-
scribes the solution in the tip and tail regions, and
how the tip and tail solutions match with the inner
and outer solutions.

4.4. Tip region

In the tip region r = O(¢) and z — zy = O(e).
Relative to this local region, the tip appears as an
isolated dendrite with an undercooling determined by
the effect of the rest of the array. We denote the
scaled tip region variables by tildes and use
cylindrical coordinates (7, 8, Z) with 7 and Z given by

7= P (68)
and

z— Zlip

€

7=

(69)

The associated scaled variables for the tip region are

G 86,2 = g C(x,y,z) (70)
R, 2 :%R(@,z) (71)
K =ex (72)
and
& = Oz (73)

Upon substitution of the scalings into the governing
equations, the tip equations are found to be

VZC-e%—S:O in & (74)
C=2 —-06Qk + €02 on A (75)
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and

0 +e(1 —k)Cl+m-¥E)=0 on B. (76)

Following the approach of Section 4.1, we
construct a solution to the free boundary problem
using an expansion in ¢ and ¢, where we neglect “e
terms’” and solve the remaining problem for arbitrary
0. In general, the full solution for the tip shape is not
axially symmetric because of the periodic arrange-
ment of neighboring dendrites in the array. At
leading order, however, these asymmetries are not
present because the dimension of the tip is relatively
small compared to the scale of the dendrite spacing.
We expect that the tip is axisymmetric to all orders
in §, and that departures from axisymmetry appear
only as a higher-order ¢ term.

We drop the € terms from the axisymmetric tip
equations to obtain the following tip problem:

’C=0 in & (7
C=%-0Qr on 4 (78)

and
m-VC)—6n.=0 on A. (79)

The tip equations (77)-(79) represent a nonlinear free
boundary problem for the tip shape. The equations
are similar to those obtained for the isolated thermal
dendrite, the difference being that here we do not
have an advective term in the diffusion equation (77).

The presence of the Q term in equation (78) has
important implications for finding tip solutions. In
the past, the surface energy term Q has been identified
as the physical effect that results in the selection of
a unique tip radius for the isolated dendrite [13-16].
We suggest here that in the growth of alloy dendrite
arrays the selection of the tip radius is not necessarily
determined by the surface energy. We shall claim
that, without the need for surface energy, there is a
unique tip radius which depends on the spacing of the
array. In what follows we shall illustrate this idea by
considering the special case of Q =0. Choosing
Q = 0 is equivalent to saying that surface energy is
negligible at the tip to first approximation. This
choice can be made rigorous by revising our original
scaling in equation (23). Instead of choosing
le/lp = €Q, we can consider the case where [0/l < €%
Given the wide disparity between /- and /; in Fig. 3,
this new scaling is not necessarily inappropriate for
dendritic growth at low-to-moderate velocities.
With the revised scaling for I/l the surface energy
term does not appear in the leading order problem
for the tip and the effect of surface energy on
the solutions will only enter at higher order. We
plan to determine the effect of surface energy in
future work. For now, we have taken Q=0
(I € ¢lp) because it allows us to obtain a
straightforward closed-form solution for the tip,
enabling us to easily match the other solutions. Our
choice of Q =0 also serves to emphasize that it is
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possible for the tip radius to be selected by the array
spacing rather than by surface energy.

Taking Q = 0, we solve the tip region equations in
paraboloidal coordinates (, &, #), where

n=02/P+E—n —(E—ne)]  (80)
C=UD/P+E = +(E—n] (81

and where n* is the distance between the dendrite
tip and the origin of the paraboloidal coordinate
system located inside the dendrite. The tip equations
become

aC € o€ oC .
'7?3?+fa_§2+5+6_¢=0 m £ (82)
C=% on n=N(®) (83)
and
oC ,0CdN dN
Na—q_éﬁd_gJ“é[NJ“éTf}:O
on 7 =N(). (84)
We note that equation (82) has the solution
C=Adlnn+ B (85)

where A and B are constants. We seek a solution for
the shape of the tip as

N() = nx.

Substituting equations (85) and (86) into the
boundary conditions (83) and (84), we obtain two
equations for the constants 4 and B. The solution of
these equations is

(86)

A= —dnu @87

and

B=2% + onylnn,. (88)
From the curvature at the tip, one finds 74 = P/2,
where P is the scaled Peclet number of the
tip.

Incorporating equations (87) and (88) into
equation (85), we determine that the tip solution is
given by

€, &) = —6(P/2)1n<Pi/2> +Z (89

and
N() = P[2. (90)

The constant P is to be determined by matching to
the inner and outer solutions.
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4.5. Matching tip and outer solutions

We match the tip and outer solutions in an
intermediate overlap region where ¢ <r <1 and
€ < |z — 2| € 1. We introduce coordinates for the
intermediate region as ry and z,, where

r = €

on
and

©2)

z = 2y + €fzp.

In the above equations, the exponents o and f are
arbitrary except for the restrictions that (i) 0 <« < 1,
(i) 0 < p <1, and (iii)) f=2x— 1. The first two
restrictions are necessary for the intermediate region
to lie between the inner and outer regions. The last
restriction follows from requiring the matching
region to lie outside the dendrite.

In the intermediate region described above, the tip
solution is given by

C=(—1)(P2)+ Z + 3(P/2)n(P/2)

—0(P/2)In F(ro, zo) + O(¢7) (93)

where the function F(r,, z,) and the constants v and
7 depend on the relative sizes of « and . There are
four cases; the results for each case are summarized
in Table 1.

A representation for the outer solution [equation
(52)] in the intermediate region may be found by
writing

Coux =

near 1 Carray (94)

where C... is the concentration field generated by the
“center” line source and Ci., is the concentration
field generated by the rest of the dendrites in the
array. After adding and subtracting the near-singu-
larity at {' = 0 in C,.,,, an asymptotic analysis of the
integrals in the intermediate region gives

Cnear = %2)‘ El(ﬁ)

+ f ") — qOIGHC) AL’ + e terms”  (95)

where
7=02/r+-{ (96)
and
T _ EXp(=0)

Table 1. Four cases for matching tip to outer sotution

Case v F(ro, zo) T
La=§ ® [(rF + 252 — z9)/2 1 —«
Ma<f a rof2 f—u
ML a>pB,z2<0 B —2z0 1 -8, 20— p)
IV.a>fp,20>0 22— f r3{(4z0) 2(1 —a)
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Expanding Cier in
obtain

intermediate variables, we

,90) _ 9@

Cor =V 45~ “an

[In F(ro, zo) + vel

+ r [9(C") — q(OIGN() dL” + ¢ terms”  (98)

where v and F(r, z;) are as given in Table 1. We
expand C,u.y in the intermediate region to find
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only new information determined by matching the tip
to the outer solution is the relation (102) between the
scaled tip radius and the source strength at the
dendrite tip.

4.6. Matching tip and inner solutions

We match the tip and inner solutions in an
intermediate region where ¢<r<¢'?  and
€<€|z—zy| <1 with z—z,>0. We introduce
coordinates for the intermediate region as r_ and z,
where

o r=er, (104)
Cury = J g(NGAL) AL’ + “e terms”  (99)
o and
where z=1zyp + €z, (105)
1 exp{ ~(1/2)[\/(A) + GAY + ) + {1}
GX() = ZZ \/ . (100)
At dn VOAY + (A7 +
Thus, in the intermediate region, K
In the above equations, the exponents a and f are
q(0)  ¢(9) arbitrary constants except for the restrictions: (i)
Cow =V 5 — == [In F(r, . .
= Vins T dg 0 EC z0) + 7l 12 <a<1; () 0< B <1; (i) = 2a— 1; and (iv)

+ J () — qONGUC) A

+r g({)GA(EHAL + “e terms™.  (101)

We now drop the “¢ terms” and match € to Cyy for
arbitrary o and § to all orders in é. Matching requires
the cancellation of terms with factors of v, which
gives

P90

s (102)

Thus the scaled Peclet number is linked directly to the
source strength at the tip. Upon substitution of this
relationship back into the matching condition, and
after some rearranging, the matching condition

becomes
901,420
P [l 475 ”E}

4 J [4(C) — gONGHL) T’

gy 10
g_4n6

+ f " JOGI) AL (103)

A comparison of equation (103) to the matching
condition (66) reveals that equation (103) is the
limiting version of (66) as { »0. Thus, solutions to the
inner/outer matching condition (66) automatically
satisfy the tip/outer matching condition (103). The

o > B. Restrictions (i) and (ii) follow directly from the
definition of the intermediate region. Restriction (iii)
is necessary for the matching region to lie outside the
dendrite. Restriction (iv) comes from considering the
parabolic nature of the tip. In paraboloidal tip
coordinates (¢, n) [see equations (80)—(81)] we expect
to match the tip solution to the inner solution as
&— oo for y = O(1). To ensure that n remains O(1) as
the tip coordinates 7 — oo and Z— 00, we must require
that 7/Z <1, which translates to a«>f in the
intermediate region.

In the intermediate region the tip
[equation (89)] is given by

solution

= Qo —f— 1)(P2) + Z + 5(P/2)In(P}2)

— 0(P/2)In(r: /4z ) + “‘e terms”.  (106)

In the intermediate region the inner solution

[equation (48)] is given by

CI(O) g(0)
D+ +50 <4n 5>

_q;_g) In(r%/4z ) + e terms”.  (107)
The matching of € to C for arbitrary « and § for all
orders in & can be guaranteed by choosing
P =g4(0)/2ré as given by equation (102). Thus,
matching of the tip and inner solutions automatically
follows from the matching of inner-to-outer and
tip-to-outer solutions. Our tip, inner, and outer
solutions now match in all three overlap regions. All
that remains is to account for the solution in the tail
region and demonstrate that it matches the inner and
outer solutions.
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4.7. Tail solution

In the tail region r = O(1) and z = O(1/e). On the
scale of the tail region, the dendrite trunk widens
slowly along the length of the dendrite and fills the
interdendrite region. We scale the vertical coordinate
in the tail region as

(108)

z =z,/e

where z, is O(1). All other nondimensional variables
in the original equations (27)—(31) remain O(1) in the
tail region. We define Cu(x,y,z)= C(x,y,z),
R0, z,) = R(0, z), and k(8, z.) = k(0, z), and sub-
stitute these along with the tail scaling of equation
(108) into the unscaled system of equations (27)-(31)
to obtain

°C, | °Cy e@
0x? 0y* 0z, 0z,

2
@sz=0

in% (109)

C,=2z,—Qk, onr=R(0,z) (110
¢C, 1 0C,0R, OR,
or “Ra0 a0 T, 1 TU-RC
_ 20ROC, _ -
S 0 onr=R(0,z) (111)
and
C, = (Cg/Cr — D)/(1 = k)
at z, = (Cg/C — D/(1 — k) in £. (112)

In addition, the symmetry of the periodic array is
equivalent to a no-flux condition on the boundaries
of the periodic cell surrounding the center dendrite.

Thus,
Ny * VC‘v = 0 on x = iAx/29 |J’| g A."/z

and y = +4,/2, |x| < A2 (113)

where n. is the outward unit normal to the
rectangular cell x| < 4,/2, 4,/]y| < 2.

The system of equations (109)—(113) contains the
small parameter ¢ but does not contain the parameter
0. Thus we can solve the tail system with an
expansion in € only. We let

Co=Co+eCi+ - (114)
and
R/, =Ry+eRi+ . (115)

In order to match to our leading-order (5-summed)

solution for the inner and outer regions, we must

determine the leading-order shape R, for the tail.
The O(1) problem for the tail is

PCy | 8°C

e T gp =0 inZ (116)
Co=z, onr=Ryb,z) (117)
0C, 1 8Cy 3R,

F_Kg%ﬁzo 0nr=R0(0,Zv) (118)

1545
Co = (Ce/Cx — D)/(1 — k)
at z, = (Cg/C. — D/(1 — k) in ¥ (119)
and
D" VCo=0 onx=1+A4,/2, |yl <A4,/2
and y = +4,/2, |x| < A/2. (120)

The leading-order problem has a one-dimensional

solution
Co=12z, (121)

with R, undetermined at this order. To determine R,
we proceed to O(e).
The O(¢) problem for the tail is

*C, | PG 090G,

R LR (122)
C,=0 onr=Ryb,z) (123)

%—%%%+%—i’[l + (1 —k)C]=0
on r = Ry(0,z,) (124)

Ci=0 atz,=(Ce/Co— D1 —k) in &
(125)
and
N VG, =0 on x=+A,/2, [yl <A4,/2

and y = +4,/2, |x| < A,/2. (126)

After substituting for the O(1) solution C,, the O(e)
equations can be rewritten as the following
two-dimensional system in the variables x and y,
where the vertical tail coordinate z, appears as a
time-like parameter:

ViCi=1 in &
Ci=0 onr= R[](G, ZV)

1 [0R)\
1 +E§<5_60> (ny - VuC))

(127)
(128)

OR,
oz,

Ci=0 atz =(Ce/Cx— /(1 =k)

-+

[1+(1—k)z]=0 onr=Ryb,z) (129

in % (130)
and
N * VuCi =0 on x= +4,/2, [y| <4,/2

and y = +4,/2, x| < A,/2. (131)

In the above equations Fy is the (horizontal)
two-dimensional gradient operator (d/0x, é/dy) and
ny is the outward normal to the solid in the plane of
the horizontal cross-section.

In general, this free boundary problem for R, does
not have a closed-form solution. We expect that at
z, = 0 the cross-section of the solid vanishes, and as
z, increases the cross-sectional area of the solid
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increases. For small z, we expect the cross-section will
be axisymmetric. As z, increases further, however, the
cross-section of the solid will lose axial symmetry as
it feels the presence of the cell boundary. While we are
not able to find an explicit solution to describe the
development of this asymmetry in the tail region, we
can derive an explicit solution for the variation in the
cross-sectional area of the solid. With this description
of the cross-sectional area as a function of z, we shall
be able to match the inner and outer solutions by
making the reasonable assumption that the cross-sec-
tion is axisymmetric as z,—0.

The description of the 2z, variation in the
cross-sectional area follows from conservation of
solute. Equation (127) states that there is a volumetric
source of solute throughout the liquid. Since there is
no flux through the cell walls by equation (131), all
the solute generated in the volume of the liquid must
be balanced by a solute flux at the solid-liquid
interface. This solute flux at the solid-liquid
boundary thus determines the evolution of the shape
Ry(0, z,) through equation (129).

To determine the explicit dependence of the
cross-sectional area on z, we let /(z,) be the
cross-sectional area, where

o (*Ry(6.2,) 2n
A(z,) = f J rdrdf = J. (1/2)R; d6.
0 0 0

(132)

By Green’s theorem in two dimensions,

J Vlz.[C| dA = —J‘ (nH N VHCI) ds
@ N

+ ‘[ (neer * VuCi) ds  (133)

where % is the liquid region, %s is the surface of the
solid, 4. is the boundary of the cell, and d4 and ds
denote differentials of cross-sectional area and
arclength, respectively. The difference in the signs of
the terms on the right-hand side is due to the fact that
one of the normals (ny) points into the liquid region
and the other (n.) points out of the liquid region. We
use equations (127), (129) and (131) and the fact that
the cross-sectional area of the liquid is 4.4, — 2/(z.)
to rewrite equation (133) as

%[1 + (1 —k)z]

A A, — A(z) = j =

B

1 [6R\ |
X [1 +E§<59>j| ds. (134)
We rewrite the integral on the right-hand side using

_ 1 (aR\]"
ds = [1 +R§<56>] R, df (135)
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and integrate the result using equation (132) to give

A, — (z) = [1 + (1 — k)z,] i—z&i (136)

We solve this first-order, separable, ordinary
differential equation to find

H(z) = A, — o[l + (1 —k)z,]7" =2 (137)

where &/, is a constant of integration. We determine
&y = A:A, by requiring the cross-sectional area to
vanish as z,—0.

Thus, the cross-sectional area of the solid in the tail
region is given by

A(z) = AA{1 =1+ (1 =k)z] W9}, (138)

This solution has the property that as z,—oc0,
of - A A,, indicating complete solidification of the
liquid region. In our case, however, the domain is
truncated at z, = (Cg/C, — 1)/(1 — k) by the for-
mation of the eutectic phase.

4.8. Matching the tail to inner and outer solutions

To match the tail solution to the inner and outer
solutions, we consider the behavior of these solutions
in an intermediate region where 1 € z < 1/e. We let
z+ = €’z be the z coordinate in the intermediate region
where 0 < 8 < 1. Consider now the tail solution in
the intermediate region. The cross-sectional area of
the tail is given in terms of z; by

A€ Pzy) ~ € AN, zy. (139)

If we assume that the cross-section .« is axisymmetric
as it vanishes, then we may deduce that the shape of
the tail solution in the intermediate region is given by

R g1 ey
T

zh (140)

We now compare this tail solution to the inner
solution. From the inner solution 47, the scaling (34)
and the matching condition (65), we determine that
the dendrite shape in terms of the intermediate
variable is

¢ Zefeb — 215
2 _ 7’ I
R _—néﬁ g(¢)de. (141)

Matching the tail shape [relation (140)] and the inner
shape [equation (141)] requires that the source
strength ¢({) must decay as

q(0) = dA.A,. (142)

This behavior for g({) is consistent with the integral
equation for ¢({) given by the inner/outer matching
equation (66). As {—oo, the dominant terms of
equation (66) are

ol ~ Jw 4(0)Garay((; 7y AL (143)

After a lengthy and detailed asymptotic analysis of
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the integral on the right-hand side, it is possible to
show that

J 4G ) 0~ HE a5 e,

(144)

Thus, relation (143) gives, as a consequence of
inner/outer matching, the same result as equation
(142) for g(0).

Thus, the solution of the inner/outer equation (66)
requires a particular behavior for the source strength
g(o0). This behavior for the source strength is
precisely that required to match the tail solution, and
the tail, inner and outer solutions match automati-
cally. We have now completed the asymptotic
matching of inner, outer, tip and tail solutions.

4.9. Composite solution

From our matched, locally valid solutions in the
tip, inner, outer and tail regions (see Fig. 4) we can
construct a uniformly valid leading-order solution for
the shape of each dendrite and the concentration field
in its surrounding periodic unit cell.

We have determined the shape of the needle crystal
in cylindrical coordinates (, {, 8) where { = z — zg,
measures the distance behind the dendrite tip. The
composite solution for the dendrite shape is given by
r = Reomp With

Reomp = Rin + Rip — Riigiin + Ruit — Ruivin.  (145)

In the above, the notation Ry, refers to the common
part of the tip and inner solutions, which we matched
in the tip/inner overlap region. Using the results of
our analysis, the composite solution for the shape can
be written as

Reomp((, 0) = €”R + Ruil{, 0) — \/eA Al m
(146)

where R.; is the nonaxisymmetric tail shape that has
a cross-sectional area given by

()= AA{1 =1+ (1 = k)72 (147)

and R({) is the shape of the dendrite in the inner
region. The inner shape R({) is given by

RO = [~ J @) dr

where ¢g({) is a solute line source that extends from
0<{< . The line source ¢({) satisfies the
nonlinear integral equation

s _ 4@ _a@Q|, (R .
L+ =5 " an [ln<4c>+ VE]

4 r [G) — GO)NGoenl(: ) AT

(148)
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+j g({N) Gy (L5 £y AL (149)
0

In the above equation, & is the unknown tip position,
ye is Euler’s constant, and Gher and Gy are given by
equations (60) and (62). The solution to the integral
equation ¢({) is linked to the scaled tip radius P by

_1©
P=7 (150)
and ¢({) is also linked to the tail solution by
g(o0) = 64.4,. 151)

Therefore, to determine R appearing in the composite
solution for the shape, we need to solve the integral
equation (149) subject to the constraints (150) and
(151).

The composite solution for the concentration field
in the unit cell surrounding each dendrite is given by

Ccomp = Cm + Cllp - Clip/in + Cout

- Coul/’m + Ctail - Claﬂ/m' (152)

Using the results of our analysis, we can write Ceomp
as

Canal, 3, 0) = —(eP/znn{% [ 7+ €= PR

¢ —(eP/z))]}+§ )

x r q()Gi(x, y, ;0 Al (153)

0

where G; is the Green’s function given by equation
(53), and g¢({) is the solute line source strength
determined from equations (149)—(151).

Finally, in our model these solutions are truncated
at z = (Cg/C. — 1)/(e(1 — k)) where any remaining
liquid changes to solid eutectic.

5. DISCUSSION

Our analysis of the free boundary problem for a
periodic array of needle crystals included a determi-
nation of locally valid solutions in each of the four
asymptotic regions. By matching the solutions in each
of the overlap regions we were able to determine an
equation describing the shape of the dendrite. This
equation is independent of the surface energy (as we
specifically set the surface energy term to zero to
obtain the tip solution). We shall suggest in this
section that our equation for the shape contains
within it a specific mechanism for selection of the tip
radius, and therefore surface energy considerations
are not required to determine the tip radius of the
dendrite. Thus, for a given set of experimental
conditions, our integral equation has a family of
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solutions parameterized only by the spacing of the
array.

First, we show that for infinite dendrite spacing
and zero temperature gradient we recover the
isolated, isothermal, Ivantsov dendrite with solute
undercooling. For infinite array spacing we set
Ay=A,= © causing G, In equation (149) to
vanish. Further, for infinite array spacing there is no
longer a tail region, so equation (151) no longer
applies and the full composite solution is identically
given by R,. To separate the effects of the
temperature gradient and the tip undercooling we
note that the left-hand side of the integral equation
(149) can be written as

F + 80 = (8/€)0 + GL(DS)/(ck AT, V) (154)

where @ = (T, — Tw)/(k AT,) is the nondimensional
solute undercooling of the tip and the term
proportional to G{ represents the temperature
gradient. We eliminate the temperature gradient by
setting G{ =0 and substitute equation (154) into
equation (149) to obtain an equation for the isolated,
isothermal solute dendrite:

_90 _a@| (B
O =4ns ar [ln<4¢>”5}

+fxm«3—ﬂowmﬁxaa'(wﬂ

[N RN

with ¢(0) =2réP and g¢(oo) unprescribed. This
integral equation and constraint is satisfied by
q({) = 2ndP (constant), where

O = (eP[2)[—In(eP/2) — ] (156)

and R=./2¢P{. This solution is an Ivantsov
paraboloid. The relation (156) corresponds to the first
two terms of the familiar Ivantsov relation

6 = (¢P/2)Ei(eP/2)exp(eP/2) (157)

when expanded for ¢P < 1. Thus, for infinite spacing
and zero temperature gradient we recover the small
Peclet number Ivantsov solution. For this solution,
there is no tip selection. The undercooling determines
p/lb but a family of solutions exist with p/
Ip = constant.

In a subsequent paper we shall solve the integral
equation (149) numerically to determine the dendrite
shape as a function of the process parameters [3]. We
shall show that for a given set of experimental
conditions and dendrite spacings (6, A, and A4,
prescribed) the integral equation (149) has a unique
solution for the tip position & and source strength
¢({). The decay condition (151) is satisfied by the
solutions automatically, and the value of g({) at { =0
determines the tip radius of the dendrite. Thus, a
consequence of our model is that selection of the tip
radius is due to the presence of neighboring dendrites
and does not rely on the effect of surface energy.
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The idea of the tip radius being directly related to
the dendrite spacing has been suggested previously
[2, 17]. In the earlier papers, simple models for the
dendrite shape were proposed, which led to the
spacing being a function of the tip radius. The
emphasis at the time was to use a criterion to select
a unique tip radius that would give a unique spacing
for the array. Our approach is different in that we
have shown explicitly that by considering the
nonlinear interactions between dendrites and solving
for the nontrivial details of the shape we can obtain
a unique solution. Hence, our view is that the
dendrite spacings determine the tip characteristics
and not the other way around.

In the spirit of these earlier papers we present a
simplified explanation as to why the spacing of the
array might select a tip radius. Consider the
directional solidification process with a weak
temperature gradient (/ < /7). Instead of an array of
dendrites, think of a single dendrite growing in the
center of a cylindrical tube of dimensional radius R;.
Here, R; mimics the dendrite spacing A, with the
no-flux boundary conditions on the walls of the tube
corresponding to the symmetry conditions at the
boundary of a periodic unit cell for the array. At the
tip of the dendrite, provided the walls are far enough
away, we can neglect the walls and describe the
dendrite tip in dimensional variables as an Ivantsov
paraboloid:

Ry = 20(z — 2up) (158)

with

Ty — Ty

KAT, = (p/2Io)E\(p/20p)exp(p/20p).

(159)

Now consider the region far behind the tip,
(z — zw) = O(lr). Here, the shape is controlled by the
weak temperature gradient and the nearness of the
tube walls to the dendrite surface. There is a slow
variation of all quantities in the z direction and
uniform concentration in the radial direction. The
Scheil-type solution for the tail region can be
determined from conservation of mass in the tail
region to be

RLi=Ri{1 —[1 + (1 — k)(z — zwp)/r] P}
(160)

The basic idea underlying our analysis is that there is
a self-consistent solution for the shape that satisfies
all the governing equations and describes the
transition from the Ivantsov tip to the Scheil-type
tail. In our full model this transition is accomplished
by the inner solution and requires the solution of the
integral equation (149). For this simplified expla-
nation the analogy requires the Ivantsov tip [equation
(158)] and the Scheil-like tail [equation (160)] to
match in between the tip and tail regions, when
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p < z — zy, < Ir. In this case the tail solution behaves
like

z — an

R~ RE——F (161)
It
so matching to the Ivantsov tip requires
2
R 2p. (162)

T

For the directional solidification geometry we know
Ir, so equation (162) gives a unique p for each
“spacing” R,. References [2] and [17] have similar
relationships between the tip radius and the spacing.
While the above illustrates the idea of what underlies
the tip selection in our theory, relationship (162) is
not correct because the two solution pieces in our
simple model, even when matched, do not solve the
free boundary problem. To determine the correct
relationship between the tip radius and the dendrite
spacing, one must actually solve for the transitional
inner shape R which connects the tip and tail
solutions from equations (148)—(151). This solution
for R necessarily involves the interaction of the shape
with the neighboring dendrites in the array, and is
consequently somewhat complicated, but the idea is
the same.

In a sequel to this paper [3] we compare the
predictions of our theory to the experimental results
on the growth of dendrite arrays during directional
solidification of SCN-acetone [7]. We will show that
when our expansion parameter ¢ = Ip/lr is small, our
theory agrees well with experimental data. It is on the
basis of this correspondence with experiment that we
claim our smooth solutions are relevant when
describing dendrite morphologies. The point of view
of our theory is that the growth of dendrite arrays at
moderate velocitiest is not controlled by surface
energy considerations and can be described well by
ignoring the presence of sidebranches in favor of an
“averaged” needle crystal. The dendrite spacings
would be determined interactively by the growth
process [18], but the tip characteristic would follow
from the dendrite spacings and not criteria based on
surface energy considerations.

We appreciate that in suggesting that the tip radius
of a dendrite is not selected by surface energy we are
departing from the generally accepted view of
dendritic growth [5, 18]. However, since our results
compare favorably with experimental data, we put
the model forward as an alternative description of
dendritic arrays in directional solidification. An
interesting issue yet to be addressed is the effect of

tAt high velocities, when Ic ~ p, surface energy will not be
negligible.
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including surface energy in our model to determine if
spacing-selected and surface-energy-selected states
can be reconciled. A further issue is the confirmation
of the appropriateness of needle crystal solutions to
describing the characteristics of dendritic growth.
While our results suggest that the tip characteristics
of dendrite arrays can be described by ignoring
sidebranches and neglecting surface energy, we must
leave open the possibility that these features are
important to describing dendrite tip characteristics in
some parameter regimes. The presence of side-
branches may effectively remove any necessity to
match to a tail solution, in which case the dendrite
would be free to modify its tip radius in accord with
a local surface-energy-based solvability condition.
We do not claim that this view is necessarily
incorrect, but in the absence of evidence to the
contrary we put our model forward as a viable theory
that corresponds to the experimental observations.
As such, our model is an interesting alternative to the
traditional view, and should be considered further to
understand its relevance and implications for the
growth of dendrite arrays.
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