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Howard's technique for examining the stability characteristics of a two- 
dimensional, inviscid, heterogeneous shear flow in the vicinity of a neutral 
curve is considered. Examples are presented for which erroneous conclusions 
would be obtained by a direct interpretation of the results of this technique. 
Examples for which instability would be deduced for a stable region; an example 
for which stability would be deduced for an unstable region; and an example for 
which the technique breaks down altogether are discussed. 

The last example is plane Couette flow between two rigid walls, which is 
shown to be destabilized by the addition of stable stratification. This example 
thus proves that the existence of a relative extremum in the basic vorticityprofile 
is not a necessary condition for the instability of an inviscid, heterogeneous shear 
flow. 

1. Introduction 
The theoretical investigation of the stability of a parallel, two-dimensional, 

inviscid, heterogeneous shear flow to infinitesima 1 disturbances requires the 
solution of the Taylor-Goldstein equation 

a2 $ = 0. 1 JN2(y)  U" 

Here the disturbance is considered to have a stream function $( y) eia(x-ct) in a basic 
flow U (  y )  with buoyancy frequency N ( y )  and (representative) Richardson 
number J .  All variables in (I. 1) have been non-dimensionalized with respect to 
an intrinsic length scale L and velocity scale Y, and the Boussinesq approxima- 
tion has been made. The specification of zero normal velocity at the 
boundaries, y = y1 and yz say, requires further 

9 = 0 (Y = Y1,Yz)-  (1.2a, b )  

Equaticns (1.1) and (1.2) constitute an eigenvalue problem, which is usually 
stated in the following form. Givenreal, non-negative values of a and J ,  determine 
the eigensolutions $(y) and c = cr+ic i ,  if such solutions exist. Curves in the a, J 
plane along which ci= 0 are called neutral curves, and for any point on these 
the disturbance neither grows nor decays. For each value of a and J ,  if there 
exists a solution (9, c) there is a corresponding solution ($*, c"). However, only 
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the solutions with ci 2 0 are appropriate, because only these solutions represent 
the limit of solutions of the viscous equations as the viscosity tends to zero. 
Alternatively, it is only solutions with ci 2 0 which are approached by solutions 
of an inviscidinitial-value problem. Thus, a point (a,  J )  is unstable if there exists 
asoluticn with ci > 0 and stable if either thereexists a solution withci = 0 or there 
is no solution at  all. 

A large majority of the analytically known solutions of the Taylor-Goldstein 
equation are valid only on neutral curves. This is because frequently along such 
zt curve c is constant, often zero. The determination of whether a particular 
neutral curve has contiguous unstable modes or is an isolated neutral curve 
requires additional investigation. Miles (1963) carried out such an investigation 
by examining the solution just off the neutral curve. This required a fairly de- 
tailed perturbation expansion of (I. 1) by it method not applicable to  all profiles 
of U(y) and N(y).t However, stimulated by this work, Howard (1963) developed 
simple, general formulae for calculating the values of acjaa and ac/aJ along a 
neutral curve. By examining the sign of the imaginary parts of these expressions, 
one was to determine the characteristics of the solution on either side of the 
neutral curve. These formulae, once understood, are very easy to use and have 
assisted many an investigation. 

The purpose of this note is to present examples for which the straightforward 
interpretation of the results of applying Howard’s technique leads to erroneous 
conclusions. We present examples for which instability would be deduced for 
a stable region and, conversely, an example for which stability would be deduced 
for an unstable region. We also present an example for which the procedure breaks 
down completely. The explanation for each of these occurrences is different and 
is discussed in detail. 

Although we present only four examples in detail, it is easy to construct 
niaiiy other examples for which application of Howard’s technique leads to 
erroneous conclusions of one of the above types. 

Before examining the particular examples, let us consider the essentials of 
Howard’s technique. Multiplying (1.1) by q5, integrating the result between y1 
and ya and rearranging, we obtain 

{[JN2( U - c ) - ~  - U”( U - c)-l] $a - q5’2}dy 
I (c ,$)  = = a2. (1.3a,b) p w  

Now, for $xed a, J and c, I is stationary with respect to first-order variations 
in $ about a solution of (1 .1))  provided that the variations vanish at  y = yl,ya. 
Thus, using the chain rule to differentiate (1.3 6 )  with respect to a, we obtain 

t It was essential, for example, for U(y) to  be monotonic. 
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Using a subscript s to denote evaluation on a neutral curve, we could, in principle, 
take the limit a + a,, c -+ c,+iO+ in (1.4) to obtain a formula for ac/aa along 
the curve. In  practice, however, the singularities which are generally present in q5 
(Miles 1961) would make eva-luation of the integrals awkward. This is avoided 
by introducing the smooth function H ,  related to q5 by H = (U - c)"-I g3, where 
n is one of the va,lues satisfying n( 1 - n) UI2 = J N 2  at y = yc with U(y,.) = C. 
(Only one of the two solutions will make H smooth.) Equation (1.4) then becomes 

If the neutral curve is one along which c is a constant, then it is described 
by J = J,(a), and appropriate differentiation leads to 

Equations (1.5) and (1.6) are the two Howard formulae. 

2. The specific examples 

2.1. Examples for which the technique implies instability of a stable region 

The profiles U = siny, N 2  = 1, (2 . la ,  b)  

with -yl= y 2 = n  (2 .2~4 b)  

upon substitution in (1.1) and (1.2) yield the neutral eigensolution 

c = 0, = (sin y)(1-a2)', ( 2 . 3 ~ )  b )  

J ~ J ~ ( a ) = ( l - ~ ~ ~ ) a - l + a ~  ( O < a <  1). ( 2 . 3 ~ )  

Applying Howard's technique, with n = 1 - (1 - a2)* and H = 1, we obtain 

and 

where 

ac 2iPcot (np) B(P+i,  +) 
i?J - - (1 - P )  ( I  - 4p2)B(P,4) ' 
_ -  

p = (1 - &. 

( 2 . 4 ~ )  

(2 .4b )  

(2.5) 

The interpretation of (2.4) seems clear: for values of J slightly less than Jl(a) 
the Taylor-Goldstein equation has an unstable solution. Numerical investigation 
(Hazel 1972) shows this to be false. There is an unstable mode contiguous to 
J = Jl(a) only for 0 < a < i J 3 ;  the portion 4J3 < CI < 1 is an isolated neutral 
curve. There is another neutral eigensolution (Thorpe 1969) 

c = 0, q5 = ( c ~ s + y ) g ~ ( ~ - J ) ~ ( s i n + y ) B ~ ( ~ - ~ ~ ,  a = +2/3 (0 < J < $) ( 2 . 6 ~ , b , c )  
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and Hazel shows that only the region 

0 < a < 943, 0 < J < J,(a) 

bounded by the two neutral curves is unstable. Howard’s technique applied 
along a = 943 with n = Q & (a - J)Q and H = (cos $Y)*~(&--~)’ yields 

&/act = T 2 x 3t i($ - ~ ) t .  (2.7) 

The upper sign implies instability for a < 443, in agreement with the numerical 
results. The lower sign would seem to imply that contiguous to the neutral 
eigensolution 

(0  < J < $) ( 2 . 6 ’ ~ )  b, c) 

there is an unstable mode for a > 643. This is false. The solution (2.6’) represents 
an isolated neutral eigensolution, and we note that the eigenfunction does not 
approach 

c = 0,  Q = ( C O S ~  2Y) &(*-J)’ (sin 4y)*+(a-J)’, CL = 443 

Q = cos9y as J + 0 ,  (2.8) 

which is the neutral eigenfunction in the homogeneous ( J  = 0 )  situation. 
An exactly analogous situation occurs for the profiles 

U = sin y, N 2  = cos2 y, (2.9a, b)  

with - y1 = y2 = 7T. (2.10) 

There is a neutral eigensolution (Thorpe 1969) 

c = 0, #J = (~iny)l-~~, J = J2(a) = a2(1-a2) (0 < a < I),  (Z. i la ,b,c)  

for which Howard’s technique, on taking n = a2, H = 1, yields 

and 

ac 
aa 

2i cot (7fa2) B(+ - 012 9 1 2 )  

aB( 1 - 012, 9) 
_ -  - ( 2 . 1 2 ~ )  

( 2 . 1 2 b )  

Not all values of J slightly less than J2(a) are unstable, as would be inferred 
from (2.12), only those for which 0 < a < 942 .  There is another neutral eigen- 
solution 

(2.13 a, b )  

J J3(a) = 2 - a2 (+J2 < a < +43) (2.13 c) 

c = 0, 4 = (cos 9y)4*(’t-J)’ (sin +y)4T(*-J)’, 

and only the region 

0 < J < min[J2(a),J3(a)] (0 < a < 443) 

is unstable (Hazel 1972). And, as before, it  is only the upper-signed solution of 
(2.13) which is the limit of contiguous unstable eigensolutions. 

At first sight, these examples might seem to contradict Miles’s (1963) theorem 
(viii): “the existence of a neutral curve in an (a,  J)-plane implies the existence of 
contiguous, complex eigenvalues ” with the added footnote: “ Theorem (viii) 
does not guarantee the existence of unstable eigenvalues, although their existence 
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is implied by the development.. .below", i.e. the complex eigenvalue c of the 
theorem has non-zero imaginary part. However, this theorem was proved only 
for monotonic velocity profiles, essentially because the proof required the value 
of c along the neutral curve to be different from the value that U(y) takes at  
either of the boundaries. If the velocity profile is not monotonic, then, as 
numerical investigation of the above examples show, the existence of a neutral 
curve does not necessarily imply the existence of contiguous eigensolutions. Now, 
if there are no contiguous eigensolutions, then the manipulations involved in 
arriving at the Howard formulae are meaningless; there are just no solutions 
adjacent to the neutral curve for which first variations can be considered, to 
yield (1.4), and a c / h  and ac/aJ have no significance. In  such situations, the 
right-hand sides of (1.5) and (1.6) [(2.4), the lower-signed solution of (2.7) and 
(2.12) in our examples] merely represent numbers obtained by a formal evalua- 
tion of integrals having no foundation. 

2.2 .  An example for which the technique implies stability 
of an  unstuble region 

Thorpe (1969) in a footnote comments upon the profiles 

U = sech2 y, N 2  = sech4 y (2.14a, b)  

with - y1 = yz = 00. (2.15) 

He remarks that " [there exist] the (degenerate) neutral eigensolutions 

[c = 01, q5 = tanhysechy, J = 3 + a 2  (2.16a,b,c) 

and [c = 01, q5 = sech2y, J = a2. (2.17a, b, c) 

These do not appear to be stabilityboundaries". Indeed not. Applying Howard's 
technique to the neutral solutions (2.16) and (2.17), with n = 1 and H = 4, we 
obtain 

and 

ac ac _ -  _ - =  0 ( J =  3+a2) 
aa aJ (2.18 a, b) 

(2.19 a, b) 

Equations (2.16) and (2.17) would seem to indicate that c does not become 
complex just off the neutral curves. Further, c = 0, the value of U(  rf: CO), and 
the examples of $2.1 might lead one to conclude that both (2.16) and (2.17) 
represent isolated neutral curves. 

However, there are two further neutral eigensolutions : 

c = 2(012+l)(a2+3a+2)-~,  (s = (sechZy-c)&(l-")sech"ytanhy, (2.20a, b)  

J = 0 1 ( ~ ~ ~ - 4 a + 3 ) ( ~ ~ + 2 ) - ~  (0 < 01 < 1) (2.20 c) 

J = a ( 0 1 ~ - 5 a + 6 ) ( a + l ) - ~  (1  < 01 < 2), (2.21c) 

and c = Z(a-l)(a+l)--l, q5 = (sech2y-c)l-t"sechay, (2.21a,b) 
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FIG~JRE 1. The stability boundary (solid line) and some neutral curves (broken or solid lines) 
for U(y) = sechZy, N2(y) = sech4y, - 00 < y < CO. 

as can be verified by direct substitution. Numericd investigation shows that 
the stability boundary (the curve enclosing the region of instability) is made up 
of: (2.21); part of (2.20); and part of (2.17) [and none of (2.16)]. This is depicted 
in figure 1, from which it is clear that the neutral curve ( 2 . 1 7 ~ )  has cort' I 1guous 
unstable modes only along that part for which 0 < 01 < 1. 

2.3. An example for which the technique breaks down completely 

We discuss here an example for which the evaluation of the integrals in (1.5) 
leads to aclaa = GO. 

Consider the profiles 
U = y ,  N 2 = y 2  ( 2 . 2 2 ~ )  b )  

with -y1= Yz = 77, (2.23) 

which lead to the eigenvalue problem? 

4" + [Jy2(y - c)-2 - $1 $75 = 0) (2.24) 

+ = o  ( y =  +T) .  (2.25 a, b )  

There are two infinite families of neutral eigensolutions given by 

c = 0,  4 = C O S ( ~ - + ) ~ ,  J = ( n - & ) 2 + ~ 2 ,  (2.26a, b,c) 

and c = 0, si, = sinmy, J*== m2+a2, (2.27n, b ,c)  

where m , n =  1 , 2  ,.... (2.28) 

t The profiles have been considered previously, in a different context, by H~i land  & 
Riis (1968). They constrained attention to small values of G and thus the culmination of our 
stability calculation, figure 2, does not appear in their work. 
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Applying Howard's technique, with n = 1 and H = 4, we obtain 

and 

(2 .29)  

(2 .30)  

Equation (2 .30)  is obviously unsatisfactory, reflecting the fact, as will be shown 
below, that c --f 0 as a -+ a, = ( J  - m2)8 less rapidly than a - a,. 

The explicit behaviour of the eigenvalue c in the neighbourhood of the neutral 
curve ( 2 . 2 7 ~ )  can be obtained by expressing the solution of (2 .24)  in terms of 
two confluent hypergeometric functions: 

4 = e - 4 ~  (Y - C ) ~ A  Qrp, q, r ( y  - 41 + Bw-p, q, T(Y - C)IL (2 .31)  

p = 4 + ($ - Jc2)* - cJ(a2  - J ) t ,  (2.32 a) 

q = 1 +(I  - 4Jc2)4 (2 .326)  

and r = 2(012- J)+. (2.32 c) 

The eigenvalue relationship is thus 

where 

@[r(n--c)]Y[-r(n-+c)]  = @ [ - r ( m + c ) ] Y [ r ( m - c ) ] ,  (2 .33)  

where the two argumentsp and q have been suppressed. Expanding (2.33) about 
( 2 . 2 6 ~ )  and using the definition of a, _= [J - (n- +)2]*,  we obtain 

c N -4 iJ- l (a2-a2  n )  @ - - f a n )  (2 .34)  
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FIGURE 2. The stability characteristics for U ( y )  = y, N2(y) = y2, -77 < y < n-. The un- 
shaded regions are stable, the lightly shaded regions are unstable with c, = 0 and the darkly 
shaded regions are unstable with c, + 0. 



368 II. E. Huppert 

in agreement with (2.29), while expanding about (2.27c), we obtain? 

2J2Cin(2m7r)Si (2mn) (az-ah)* (a+cc,), (2.35) 
mn I" -- 

where the cosine and sine integrals are respectively defined by 

x 1 - GOS t sin t 
dt, Si(x) = -6%. 

s o  t 
Cin (x) = So (2.36a, b )  

Numerical solution of (2.33) yields figure 2. 
This flow is an interesting example of an inviscid velocity profile which is 

destabilized by the addition of a stable stratification, being unstable only if the 
Richardson number is Zarger than a. It also represents a counter example to the 
oft-made conjectural extension of Rayleigh's flex-point theorem, that, even for 
a heterogeneous shear flow, a necessary condition for instability is that U"(y) 
must change sign somewhere in the flow field. This is now clearly not correct. 

3. Conclusion 
We conclude that, although Howard's technique for investigating the stability 

characteristics in the neighbourhood of a neutral curve is often very effective, 
it should be used with caution. Examples exist for which erroneous conclusions 
would be obtained by a direct interpretation of the results of the technique. 
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