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Abstract. The 1990s have been designated the International Decade of Natural Disaster Reduction; and this
paper discusses two natural disasters. In the first we show how to model massive, ground-hugging ash flows,
known as pyroclastic flows by geologists, in terms of particle-driven, turbulent gravity currents. A framework
for solving forward problems is set up so that, for different geometries, all the flow and deposit properties
can be predicted given the initial conditions of the flow following a volcanic eruption. This is then used to
discuss inverse problems, for which only the details of the deposit are provided and the initial conditions of
the flow are to be calculated. This method of approach is applied to analysing the eruption of Taupo, New
Zealand, about 1800 years ago. We demonstrate that the ash-laden flow travelled over the ground in a current
of order 1 km high travelling at a typical speed of 200 m s−1.

The second study concerns the runout of massive landslides. A model employing the concepts of the
flow of granular materials is presented in which the interior of the rockfall propagates uniformly above a
thin shear layer of rocks through which all the rocks eventually fall, to leave the flow and add to its deposit.
Quantitative predictions from this theoretical model are shown to agree well with observations from about 50
rockslides on Earth, the Moon and Mars. Our model suggests that simulation of such granular flows would
be extremely difficult, if not impossible, to achieve in the laboratory.

1. Introduction

James Lighthill has used his enormous intellectual talents to create a number of completely new fields, includ-
ing the areas of noise produced aerodynamically, biofluiddynamics, and non-linear acoustics. In addition,
he has been extremely influential in a variety of roles such as Director of the Royal Aircraft Establishment at
Farnborough, Provost of University College, London and a Director of the Post Office. Recently, as Chairman
of the Special Committee on the International Decade for Natural Disaster Reduction, James has caused its
members to think quantitatively and clearly about natural disasters, and at the same time has contributed
immensely to the scientific debate (Lighthillet al., 1993; Lighthill, 1996). In the spirit of this interest, we
present in honour of James a summary of two studies we have recently undertaken on hazardous flows.

1 The research of the authors is supported by grants from the Leverhulme Foundation and NERC.
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The first concerns the product of large volcanic eruptions, which can lead to what geologists call a
pyroclastic flow: a hot, ground-hugging ash flow which is generated by the collapse of a volcanic eruption
column. Volcanic eruptions represent one of the most destructive natural disasters in terms of mortality in a
variety of different ways. For example, 22,000 people were swept away as a result of mud slides following
the eruption of Nevado del Ruiz, Colombia in 1985; 29,000 people were asphyxiated following the eruption
of Mount Pelée in the West Indies in 1902; and 35,000 people died, mainly through drowning, due to the
famous eruption of Krakatau, Java in 1883. In this century property damage of more than $ 10,000 million
has occurred as a result of volcanic eruptions. (More details can be found in the stimulating article by
Rampino (1992).)

Eruptions originate due to increasing pressure in the liquid chamber beneath the volcanic edifice leading
to unsustainable shears in the overlying rock. The rock breaks apart and a vent to the atmosphere from
the chamber below is created. A three phase turbulent flow of small solid rock particles, liquid magmatic
droplets and released vapour can penetrate into the atmosphere at speeds considerably in excess of the local
speed of sound at temperatures around 700 °C (Kiefer, 1977). The upwardly directed momentum of this
turbulently moving jet is gradually decreased while at the same time the jet entrains relatively cold, ambient
air. The small, heavy and hot ash particles quickly transfer some of their heat to this interstitial air which
thereby becomes less dense and thus decreases the effect of the negative buoyancy of the trapped particles.
Quantitative models have been constructed (Woods, 1988, 1995) that predict the minimum initial momentum
flux necessary for the bulk buoyancy to become positive by this process, which permits the eruption column to
rise further into the atmosphere, driven by the thermal exchanges between the hot particles and the entrained
air. This leads to what is known as a Plinian eruption column (Pliny, 79). (For interesting additional accounts,
see Francis (1993) and some of the references therein.) If the initial momentum flux is not sufficiently high,
the column of hot ash particles and entrained air collapses and propagates out along the terrain as a relatively
heavy and hot pyroclastic flow. It is this situation we consider here.

We model the hot, pyroclastic flow as an isothermal, turbulently propagating particulate-driven gravity
current. We summarize some of the approaches that have been used to investigate this situation in order to
predict: the rate of propagation of the current; the distribution of deposited material; and the final runout
length. This is what a geophysicist calls a forward problem. The corresponding inverse problem determines
the initial conditions of the flow, and especially the initial particulate concentration, given the observed
distribution of the deposit. We apply these ideas particularly to the eruption of Taupo, New Zealand, 1800
years ago, which distributed 30 km3 of solid material across the North Island and was one of the largest
eruptions in the last 10,000 years. Specifically, we show that the solids concentration after collapse of the
central column was of order 0.3% by volume in a flow whose typical radial velocity was 200 m s−1.

The second study we review here is a new model for the runout characteristics of large rockfalls, which
can constitute spectacular geological hazards. Very large debris avalanches, in which the volume of the
transported material is greater than 1 km3, can run out a horizontal distance greater than ten times the fall
height. There are observations of such catastrophic flows on Earth, on the Moon and on Mars. The largest,
currently known landslide occurred on Mars had an estimated volume of 18,000 km3 and ran out about 20
times its initial height of fall (Lucchitta, 1979).

We apply some of the modern concepts of the flow of granular media (Bagnold, 1954; Savage, 1989;
Campbell, 1990) to analyse a model in which the interior of the rockfall is considered to propagate uniformly
above a thin shear layer of rocks at the base. The volume of the rockfall gradually decreases as rocks fall out
of this shear layer, having transferred their momentum to the main flow. Quantitative predictions from our
analysis compare well with observations from specific avalanches. One of the most interesting, and probably
controversial, aspects of our model is that it indicates that conditions required for long runout would be
difficult, if not impossible, to achieve in laboratory settings.

2. Particle-Driven Gravity Currents

2.1. Compositional Currents

Gravity currents occur whenever fluid of one density propagates primarily horizontally into fluid of a different
density. A very readable review of gravity currents, along with a series of examples and applications, is given
by Simpson (1997). When the density of the current is conserved following the motion, such as when salt
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water intrudes into fresh water, the current is called a compositional gravity current. Quantitative studies of
inviscid, compositional gravity currents, using the Bernoulli equation, were first carried out by von K´armán
(1940) with the arguments corrected somewhat by Benjamin (1968). Their results indicated that if the current
intrudes into very deep fluid, the velocity at the front of the currentuN is related to the depth of the current
just at the rear of the headhN by

uN = Fr(g′hN )1/2, (2.1)

where the Froude numberFr is a constant (
√

2 according to perfect fluid theory) and the reduced gravity

g′ = (ρc− ρa)g/ρa (2.2)

in terms of the gravitational accelerationg and the densitiesρc andρa of the current and ambient, respectively.
An axisymmetric, compositional gravity current, propagating under a balance between inertial and buoy-

ancy forces, can be modelled by the shallow-water equations, which describe the radial velocity and thickness
of the current as functions of the radial co-ordinate and time. These equations have a long-time similarity
solution (Bonnecazeet al., 1995) for an instantaneous release of a fixed volume, in which the radial extent
of the currentrN is given by

rN = C(g′Q)1/4t1/2, (2.3)

wheret is the time since the release andC is a function ofFr.
This result can be compared with a simple box model that assumes that the initial volume collapses in a

series of discs of equal volume, throughout which there are no radial variations. On the assumption that at
the front of each disc (2.1) is obeyed (with ˙rN = uN ), a result identical to (2.2) is obtained, except that the
value ofC is slightly altered. Experimental observations agree well with either representation.

2.2. Particulate Currents

If the density difference in the current is due to particulate matter, another variable, the volume concentration
of particles,ϕ, enters the problem. If the density of the interstitial fluid making up the current is the same as
that of the ambientρa, while that of the particles is denoted byρp, the density of the currentρc is given by

ρc = ρpϕ + ρa(1− ϕ) (2.4)

In this situation another equation must be added that reflects the fact that these particles are advected along
with the fluid as well as being sedimented from it through the lower boundary layer. Following earlier studies
of sedimentation from turbulent suspensions (Martin and Nokes, 1988), this equation is usually written, for
a monodisperse particulate distribution, as

ϕt + uϕr = −V ϕ/h (2.5)

in terms of the radial velocityu, the single particle free-fall speedV and the thickness of the currenth(r, t).
The resulting shallow-water equations have to be solved numerically (there are no similarity solutions). An
extensive numerical investigation was carried out by Bonnecazeet al. (1995) and their numerical results
agree well with experiments undertaken to test the theoretical model.

2.3. Fixed Volume Box Models

A simple box model for an instantaneous release is described by the following equations (Dade and Huppert,
1995):

πr2h = Q, (2.6)

representing conservation of volume;
u = ṙ = Fr(g′pϕh)1/2, (2.7)

whereg′p = (ρp− ρa)g/ρa, representing the Froude number condition at the nose; and

ϕ̇ = −V ϕ/h (2.8)
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being ther-independent version of (2.5). To the non-linear set (2.6)–(2.8) must be added the initial conditions

r = 0, ϕ = ϕ0 (t = 0), (2.9a,b)

where (2.9a) reflects the assumption that the current is released with small radial extent andϕ0 is the initial
(volume) concentration of particles.

Dividing (2.8) by (2.7) and using (2.6) to eliminateh, we obtain

dϕ/dr = −λr3ϕ1/2, (2.10)

with (2.9) expressed as
ϕ = ϕ0 (r = 0), (2.11)

where
λ = π3/2V/[Fr(g′Q3)1/2]. (2.12)

Equation (2.10) with initial condition (2.11) has solution

ϕ1/2 = ϕ1/2
0 − 1

8λr
4, (2.13)

from which it is immediately seen that the current ceases (ϕ = 0) at

r∞ = (8ϕ1/2
0 /λ)1/4. (2.14)

Introducing the non-dimensional variablesΦ = ϕ/ϕ0 andR = r/r∞, we can rewrite (2.13) as

Φ = (1−R4)2. (2.15)

Substituting (2.6) and (2.15) into (2.7) and integrating the result using (2.9a), we find that

R = tanh1/2 T (2.16)

in terms of the non-dimensional timeT given by

T = 1
2Fr(g

′
pϕ0Q)1/2t/(π1/2r2

∞). (2.17)

These relationships are plotted in Figure 1.
In order to evaluate the deposit distribution, we argue that in timeδt the massδM = −ρpQδϕ is deposited

uniformly over an area ofπr2 to lead to a deposit density

δη = −(ρpQ/πr
2)δϕ. (2.18)

Thus the total deposit density (of dimensionsML−2) after the flow has ceased is given by

Figure 1. The dimensionless timeT , particle concentrationΦ and density of deposit ˆη = 3πr2
∞/(8ρpϕ0Q) as functions of the

dimensionless radiusR.
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η = −π−1ρpQ

∫ r∞

r
r−2ϕr dr. (2.19)

Differentiating (2.15), substituting the result into (2.19) and carrying out the integration, we find that

η = 4ρpQϕ0(R6− 3R2 + 2)/(3πr2
∞), (2.20)

which is also plotted in Figure 1.

2.4. Fixed Flux Model

We now consider a quasi-steady, axisymmetric particulate gravity current responding to a (point source)
input with steady volume fluxF . Conservation of volume requires that

2πrhu = F . (2.21)

In this case of a steady input, there is a balance between particle advection and sedimentation, which indicates
that (2.5) can be expressed as

u
dϕ

dr
= −V ϕ/h. (2.22)

Substituting (2.21) into (2.22) and integrating the result subject to the boundary condition (2.11), we
obtain

Φ = e−σ
2

, (2.23)

whereσ = r/r∗ is a non-dimensional radial distance defined in terms of the length scale

r∗ = (F/πV )1/2. (2.24)

In contrast to the instantaneous, fixed volume release of the last section, there is not a finite radius at which
the mass of particulate matter is completely spent because material is continuously introduced at the source
for the duration of the flow.

Substituting (2.21) and (2.23) into the Froude number condition (2.7) at the head of the current, we find
that the velocity of the front of the flow satisfies

uN = U0σ
−1/3
N e−σ

2
N/3, (2.25)

where the velocity scale

U0 = (1
4FV Fr

4g′2p ϕ
2
0/π)

1/6
(2.26)

andσN is the value ofσ at the front of the current. SinceuN = ṙN = r∗σ̇N , (2.25) can be integrated to yield
the time

tN = (r∗/U0)
∫ σN

0
x1/3e1/3x3

dx (2.27)

at which the front of the current is atσN .
At any point in the flow the instantaneous downward mass flux of sediment per unit area is given by

ρpϕV . The local deposit densityη is given by the product of this flux and the time of duration of the flow
at that point to yield

η = ρpϕ0V (tE − tN )e−σ
2

(2.28a)

= η0(1− tN/tE)e−σ
2

(2.28b)

∼ η0e
−σ2

(tN ¿ tE), (2.28c)

in terms of the (observable) density of deposit at the originη0 and the total timetE over which the flux is
maintained.

Laboratory confirmation of these relationships is indicated in Figure 2.

2.5. Polydispersed Currents

The above development has concentrated entirely on monodisperse particulate matter, where the free-fall
speed is determined by the single constantV . The effects of polydispersion were evaluated both theoreti-
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Figure 2. Runout and density of deposit for axisymmetrically spreading particulate gravity currents generated by a constant-flux release.
(a) The dimensionless distance to the front of the currentσN = rN/r? as a function of the dimensionless timeτN = U0tN/r?. (b) The
dimensionless density of deposit ˆη = η/[η0(1− tN/tE)]. Symbols represent experimental data from Bonnecazeet al. (1995) and the
solid curves represent the theoretically predicted relationships.

cally and experimentally by Bonnecazeet al. (1996). Considering the non-linear shallow water equations
governing the instantaneous release of a fixed volume containing a number of different particle sizes, they
developed a scaling of these equations in such a way that all parameters appeared only in the initial con-
ditions. The long-time solution of these “master” equations was obtained and shown to be independent of
all details of the initial conditions except for the total volume. Bonnecazeet al. then proposed that the total
deposit could be obtained from a direct superposition of the deposit from individual species. The technique
was shown to be in good agreement with a series of laboratory experiments using five different particle sizes.

Applying these concepts to the relationship for the density of deposit for a single particle (2.28), on using
(2.24), we obtain the relationship

η(r) = η0

∫ ∞
−∞

V (ϕ) exp[−πV (ϕ)r2/F ]p(ϕ) dϕ/
∫ ∞
−∞

V (ϕ)p(ϕ) dϕ (2.29)

in terms of the probability distributionp(ϕ) of particle settling speeds.

2.6. Volcanic Inverse Problems

Sections 2.3 and 2.4 presented the direct, or forward, problems for an instantaneous release or a fixed flux of
sedimenting material of one size. For the former, given the initial concentrationϕ0 and the parameters that
make upλ, the concentration in, position of, and final deposit from the current can be determined. Similarly,
these functions can be determined for a fixed flux release given the parameters that make upr∗ , U0, and
η0. A number of complicated models have been constructed (Dobranet al., 1993) which have attempted to
include extra effects such as thermal and mechanical non equilibrium between gas and solid phases, particle
collisions, and subgrid scale turbulent modelling. The results of these heavily numerical schemes have been
applied to forecast the effects of a future eruption of Vesuvius (Dobranet al., 1994).

However, in general, geologists are faced with a different problem. They observe the distribution of the
final deposit long after the eruption has ceased and know the particulate distribution within it. From such
observations alone they would like to evaluate the strength of the eruption and its duration. They would then
like to determine such further quantities as the solids concentration, speed and thickness of the pyroclastic
flow as functions of distance.

Such an evaluation, conducted in a quantitative manner, was first carried out by Dade and Huppert (1996)
using the results of Sections 2.4 and 2.5.

The deposit from the eruption of Taupo, New Zealand in a.d. 186 has been painstakingly documented
after years of work by Wilson (1985). The deposit, called by geologists an ignimbrite, comprises about
30 km3 of material spread in a roughly axisymmetric fashion around the inferred vent in Lake Taupo over
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20,000 km2 of countryside with little mean slope. The deposit thickness near the ventη0 is of order 10 m.
Using the model of Section 2.4 and 2.5, Dade and Huppert showed that the total volumetric fluxF in the
turbulent flow after collapse of the central eruption column was of the order of 40 km3 s−1 and lasted for no
more than about 15 minutes. The initial solids concentration in the pyroclastic flow, we infer, was 0.3% by
volume in a current that was about 1 km thick and travelled with a typical radial velocity of 200 ms−1. At
that speed, by transferring kinetic energy into potential energy, the current could surmount any topographic
barriers less than about 2 km in height. All hills within 100 km of Lake Taupo are less than 500 m high
and observations confirm that the deposit was draped virtually uniformly over them, further atesting to the
enormous energy of the flow. The low solids concentration of 0.3% by volume may seem surprising given
the almost opaque nature of contemporary pyroclastic flows. However, particle driven flows of very low
concentration in the laboratory also appear opaque, even when viewed quite close up. Further details of the
Taupo analysis can be obtained from Dade and Huppert (1996), but it should also be mentioned that their
quantitative interpretation is still not accepted by all geologists (Wilson, 1997; Dade and Huppert, 1997).

An even larger eruption occurred at Taupo around 1 million years ago. Approximately 225 km3 of ash
was deposited over 45,000 km2 (Wilsonet al., 1995). Using the concepts described above we calculate that
the total initial flux was of order 200 km3 s−1 and that the resulting pyroclastic flow attained its maximum
distance from the source of 200 km in less than 20 minutes.

3. Gigantic Landslides
3.1. Simple Models

Many quite small rockfalls can have devastating consequences. Really large landslides released by earth-
quakes or some other catastrophic event occur less frequently, but have been well documented over the
centuries. Enormous rocks can come crashing down the mountainside and travel a distance along the pre-
dominantly horizontal valley floor many times the initial fall height. Such events also occur at the sea bed.
No generally accepted model has yet been presented to explain the observed characteristics of these very
energetic flows.

The simplest model of a rockfall comes from considering a massM to slide (without tumbling) from a
heightH down a slope of angleθ, and then to run out along a horizontal plane, as depicted in Figure 3. On
the assumption that the (uniform) coefficient of frictionµ < tanθ, so that sliding can occur, it is easy to
show that the horizontal component of velocityU of the mass at the base of the slope is given by

U = [2g(1− µ/ tanθ)H]1/2 cosθ, (3.1)

which is dissipated (the mass comes to rest) after a total (slope + floor)horizontaltravel of length

L = [1/ tanθ + (1− µ/ tanθ)(cos2 θ/µ)]H (3.2a)

≈ µ−1 (µ¿ tanθ; cosθ ≈ 1). (3.2b)

We first note from (3.2) that:
(i) L ∝ H; (3.3a)
(ii) L/H is independent ofM ; and (3.3b)
(iii) L/H is independent ofg. (3.3c)

Figure 3. Sketch of a massM , which slides down an inclined plane at an angleθ to the horizontal and then runs out at the base.
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Figure 4. The ratio of the total horizontal runout distanceL to the initial height above the baseH: (a) as a function of the angle of the
planeθ for a massM , sliding down the plane; and (b) as a function of the volumeV for observed rockslides.

Equation (3.4a) indicates that the runout is directly proportional to the fall height, while (3.4b and c) can
also be obtained by dimensional arguments.

Figure 4(a) presents a plot ofL/H as a function ofθ for various values ofµ. For a typical coefficient
of sliding friction of 0.5 the horizontal runout is approximately 2. Equation (3.4b) suggests thatL/H is
independent of mass and hence volume of the fall, but it is instructive to plot the geological data forL/H
as a function of the volumeV (becauseθ does not vary over a wide range from one rockfall to another).
The data from about 50 large rock avalanches and landslides are plotted in this way in Figure 4(b). It is
immediately seen, as is well known, thatL/H varies considerably, and systematically, withV . The above
model is too simplistic to explain this variation. It does, however, indicate that long runouts correspond to
effectively small coefficients of friction, and suggests that a low friction “fluid” model might be appropriate.
Indeed, it is commonly stated that in the gigantic rockfalls, “the rocks flow as if like water”.

Previous models of the scale dependence ofL/H have been presented, including the suggestions that:
trapped air could maintain the rocks in suspension (Shreve, 1968), but this would not work on the Moon
or Mars; the rocks might melt to form a molten layer called “frictionite” (Erismann, 1979); or that high
frequency vibrations could generate sufficient acoustical energy to diminish the effect of frictional contact
between the rock surfaces (Melosh, 1979). None of these explanations has been generally accepted.

3.2. A Granular Flow Model

We summarize here the model, originally proposed by Dadeet al.(1997), of the runout of a two-dimensional
non-rigid array of rocks that travels uniformly above a thin region of intense particulate shear, on a horizontal
boundary, as depicted in Figure 5. Rather than use the detailed descriptions of granular flow, as embodied
in some of the work of Jenkins and Aavage (1983), Savage (1997), Anderson and Jackson (1992), and

Figure 5. A sketch of the rock-laden current running along a horizontal base.
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others, which make simplifying assumptions of their own and require the evaluation of a number of “free”
parameters, we propose a direct model that is based on four main concepts. First, that the evolving rock flow
satisfies a dynamic Coulomb condition at the base so that the ratio of normal forces to shear forces there is
constant. Second, that the shear stress at the base is proportional toρrD

2(u/δ)2, whereρr is the density of the
rocks ofaveragediameterD travelling at speedu in the interior flow above a boundary layer of thickness
δ. This relationship was first proposed by Bagnold (1954), can be obtained by dimensional arguments and
has been well confirmed in many experiments and “in just about every theoretical study” (Campbell, 1990).
Third, that the particles in the boundary layer jostle about and hit each other in supporting the interior flow
and thereby impart their horizontal momentum to the remaining flow as they drop out at the base with zero
horizontal velocity. Finally, we assume that the Bagnold numberBa = D(τ/ρ)1/2/ν is large (greater than
order 102), whereτ is the shear stress at the base of the flow of mean densityρ andν is the coefficient of
kinematic viscosity of the interstitial fluid.

We envisage that the rock mass falls a heightH down a slopeθ and then spreads in two-dimensions across
a horizontal floor in a disaggregated, non-rigid state. Over an ‘entry’ lengthl0, defined in more detail below,
the landslide organizes itself so as to be described by the following equations. These could be identified
as averaged equations, somewhat akin to the box model equations of Section 2. In our view, it would be
somewhat pointless to derive more complicated descriptions given that each rockfall is different in detail
and that, in particular, the distribution of rock sizes varies considerably from one rockfall to another as does
the terrain over which they flow.

In this spirit, we denote the total volume and mass at any time in the flow asQ(t) andM (t) where

Q = lh, M = ρlh, (3.4a,b)

and the flow is of lengthl(t) and average thicknessh(t). The flow is resisted by a shear stressτ at the base,
which we assume to be uniform. The equation of motion in terms of the mean velocityu then becomes

d

dt
(Mu) = −τ l, (3.5)

which can be expanded to
du

dt
=
−τ l
M
− u

M

dM

dt
. (3.6)

The first term on the right-hand side is negative and represents the deceleration of the flow due to frictional
effects, while the second term is positive and represents the transfer of momentum to the flow from those
rocks which because of collisions lose their horizontal velocity and then fall vertically to the base of the
flow.

We evaluateτ by the Coulomb condition

τ = kP = kρgh, (3.7a,b)

whereP is the pressure at the base of the flow due to the overlying weight andk is a constant generally
taken to be about 0.5 (Campbell, 1990). As explained earlier

τ = 2ρrD
2(u/δ)2, (3.8)

where the pre-multiplicative constant follows the evaluation of Savage (1989).
Introducing a mean dynamic viscosity ¯µ, defined by

τ = µ̄u/δ, (3.9)

we can write (3.9) as
µ̄ = 2ρrD

2(u/δ) (3.10)

and define a granular Reynolds number

Re = ρuδ/µ̄ = 1
2(ρ/ρr)(δ/D)2. (3.11)

Laboratory experiments on the dimensions of a shear layer in a high-speed granular flow indicate that (δ/D)
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lies between 5 and 15 (Hanes and Inman, 1985). In terms of this Reynolds number,τ can be written as

τ = βρu2, β = Re−1. (3.12a,b)

Thus the Reynolds number lies between approximately 5 and 50, whileβ takes on values between 0.02
and 0.2. The variation reflects the different distributions in rock properties, such as size and elastic rebound
characteristics.

Substituting (3.12a) into (3.7) and using (3.4a), we obtain

Q = βlu2/(kg), (3.13)

which when substituted into (3.5), using (3.12) again, leads to

d

dt
(lu3) = −kglu2. (3.14)

Equation (3.14) needs to be solved subject to the initial condition

u = u0 = (kgQ0/βl0)1/2 (l = l0 = kgQ0/βu
2
0), (3.15)

whereQ0 is the initial volume of the flow, or, more accurately, the volume of the flow at the pointl0 beyond
which the above governing equations are appropriate.

Converting the temporal derivative in (3.14) to a spatial derivative viad/dt = ud/dl and introducing the
non-dimensional velocityW = u/u0 and distanceξ = l/l0, we can express (3.14) and (3.15) as

(d/dξ)(ξW 3) = −5
2AξW, (3.16)

W = 1 (ξ = 1), (3.17)

where
A = 2

5gkl0/u
2
0 = 2

5k(l0/h0)Fr−2
0 (3.18)

in terms of the initial Froude numberFr0 = u0/(gh0)1/2 of the flow. With the substitution of a new variable
ψ = ξW 3 into (3.16), it can be readily solved along with (3.17) to yield

W = (1 +A−Aξ5/3)1/2ξ−1/3, (3.19)

from which it follows from (3.13) that

Q/Q0 = ξW 2 = (1 +A−Aξ5/3)ξ1/3. (3.20)

The horizontal runout lengthL, at whichW = 0 (andQ = 0), is given from (3.19) by

L = [(1 +A)A−1]3/5l0 ≡ Bl0, (3.21)

where
l0 = hgQ0/βu

2
0 ∼ 1

2kQ0/βH (3.22a,b)

on the assumption thatu2
0 ∼ 2gH. Inserting this expression and (3.22b) into (3.18), we find that

A ∼ 1
10k

2Q0/βH
2. (3.23)

Note, in passing, that bothA andl0 and henceL are independent ofg (which is important only in determining
the timescaleof the flow), but thatL/H is not independent ofH (or ofQ0).

Inserting (3.22 b) into (3.21), we can finally write

L/H = 1/tanθ + 1
2kBQ0/βH

2 (3.24)

∼ 1/tanθ + 1
2103/5(kβ2)−1/5(Q0/H

2)2/5 (Q0¿ H2) (3.25a)

∝ Q0/H
2 (Q0À H2), (3.25b)

where (3.25a and b) correspond to relatively short and long runouts respectively.
Before comparing these results with field observations, we note that in the laboratoryH ∼ 1 m and so

to achieve long runouts requires initial (two dimensional) volumes in considerable excess of 1 m2. For an
experimental chute of width 0.1m this corresponds to a three-dimensional volume of 0.1 m3,which requires
in excess of 100 kg of solid material, suggesting that laboratory simulation of such large rockfalls is nigh
impossible.
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Figure 6. Predicted run outL as a function of the observed value
for 14 rockfalls. The predicted lengths are calculated using a value
of 0.1 for the inverse Reynolds numberβ with the error bars cor-
responding to a range ofβ from 0.02 to 0.2.

Figure 7. The ratio of runout lengthL to fall heightH as a function
of the ratio of initial volumeV toH3 for all the available rockfall
data. The solid curve represents (3.26a) withβ = 0.1 andθ = 350.
The dashed lines enclose the theoretical values for 200 < θ < 500

and 0.02< β < 0.2.

3.3. Comparisons with Field Data

The model we have developed is strictly two-dimensional. To compare the results with observations of real
events we assume that, as first suggested by Campbellet al. (1995), such debris flows can be approximated
as slowly-varying two-dimensional flows with average width proportional to the cube root of the initial
three-dimensional volumeV0. This suggests thatQ1/2

0 should be replaced byV 1/3
0 in the above equations,

leading to

L/H = 1/tanθ + 1
2kBV

2/3
0 /βH2 (3.26a)

∼ 1/tanθ + 1
2103/5(kβ2)−1/5(V0/H

3)4/15 (V0¿ H3) (3.26b)

∝ (V0/H
3)2/3 (V0À H3). (3.26c)

Figure 6 plots predicted against observed lengths over two orders of magnitude for a number of rockfalls
where the predicted lengths are calculated assumingβ = 0.1 and error bars correspond to variations inβ
from 0.02 to 0.2. The straight line helps to confirm the agreement between the two axes. Some of the data,
along with further details, are presented in Table 1. Figure 7 plots all the observations available to us ofL/H
as a function ofV/H3 along with the theoretical relationship (3.26a) evaluated forθ = 35° andβ = 0.1.
The dashed line encompasses values for which the model parameters span the ranges 20°< θ < 50° and
0.02< β < 0.2.While there is some scatter in the data, as would be expected given the wide range in terrain,
rock types, and sizes, the agreed trend between the model and the observations is in general encouraging.

4. Conclusions

We have reviewed two fluid-like models of distinctly solid flows. The first analysed the advection and
sedimentation of small particles whose presence drove a gravity current. We explained how such flows can
describe the extremely energetic pyroclastic flows which can result from large, violent volcanic eruptions.
The second model analysed the energetic motion associated with large rockfalls. We showed that the model

Table 1.Observation (theory).

Name V (km3) H (m) θ (°) L (km) u (m s−1) t (s)

Elm 0.01 610 45 1.6 (1.4) (43) (33)
Frank 0.03 870 45 1.6 (2.0) (50) (40)
Blackhawk 0.4 1220 15 7 (5) (80) (60)
Saidmarreh 20 1500 20 16 (20) (110) (180)
Valles Marineris 18,000 5000 30 100 (100) (125) (800)
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led to results for the runout length which are in good agreement with observational data. The last word has not
been written in either situation. Building on our simple models, which we hope capture the most important
aspects of the physics, we plan to incorporate further details of these fascinating, highly destructive flows
in the future.
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