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Axisymmetric gravity currents in a system rotating around a vertical axis, that
result when a dense fluid intrudes horizontally under a less dense ambient fluid, are
studied. Situations for which the density difference between the fluid is due either to
compositional differences or to suspended particulate matter are considered. The fluid
motion is described theoretically by the inviscid shallow-water equations. A ‘diffusion’
equation for the volume fraction in the suspension is derived for the particle-driven
case, and two different models for this purpose are presented. We focus attention
on situations in which the apparent importance of the Coriolis terms relative to the
inertial terms, represented by the parameter C (the inverse of a Rossby number),
is not large. Numerical and asymptotic solutions of the governing equations clarify
the essential features of the flow field and particle distribution, and point out the
striking differences from the non-rotating case (Bonnecaze, Huppert & Lister 1995).
It is shown that the Coriolis effects eventually become dominant; even for small
C, Coriolis effects are negligible only during an initial period of about one tenth
of a revolution. Thereafter the interface of the current acquires a shape which has
a downward decreasing profile at the nose and its velocity of propagation begins
to decrease to zero more rapidly than in the non-rotating situation. This relates
the currents investigated here to the previously studied quasi-steady oceanographic
structures called rings, eddies, vortices or lenses, and may throw additional light on the
dynamics of their formation. The theoretical results were tested by some preliminary
experiments performed in a rotating cylinder of diameter 90 cm filled with a layer of
water of depth 10 cm in which a cylinder of heavier saline fluid of diameter 9.4 cm
was released.

1. Introduction
Gravity currents occur whenever fluid of one density flows primarily horizontally

into fluid of a different density. Many such situations arise in both industrial and
natural settings, as reviewed by Simpson (1997). Commonly the current is driven by
compositional or temperature differences, to lead to a homogeneous current, or by
suspended particulate matter, to lead to a particle-driven current. Combinations of
both particle and compositional or temperature differences can also occur (Sparks
et al. 1993). Currents may propagate in either a two-dimensional or axisymmetric
configuration, or may be otherwise influenced by side and/or topographic constraints.
Some of these processes have now been fairly well investigated. Our aim here is
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Figure 1. Schematic description of the system; z is the axis of symmetry. The grey region represents
the current at t = 0, and the initial height is used as the length scale. The deformation of the upper
interface is negligible small.

primarily to evaluate the effects of rotation on the propagation and shape of high-
Reynolds-number homogeneous and particle-driven gravity currents of finite volume
in an axisymmetric geometry. Rotational effects can play a role in industrial settings
and will definitely play a major role in many large-scale natural situations. Gravity
currents of fixed volume in a rotating frame have been investigated in configurations
with a sidewall that prevents free azimuthal motion and hence axisymmetry, a topic
reviewed by Griffiths (1986). The novel features of the gravity current investigated
here are the axial symmetry of the configuration and the incorporation of the particle-
drive mechanism. In these respects, the work presented herein can be viewed as an
extension to the new approach taken to balancing inertial, buoyancy and particle
effects in flows by Bonnecaze, Huppert & Lister (1993) and Bonnecaze et al. (1995).
Closely related investigations concerning a possible steady-state attained by density-
driven rotating axisymmetric currents and their stability were performed by Saunders
(1973), Csanady (1979), Flierl (1979) and Griffiths & Linden (1981) as detailed below.

The system under consideration is sketched in figure 1: a deep layer of ambient
fluid, of density ρa, above a solid horizontal surface at z = 0, is in solid-body rotation
with angular velocity Ω about the vertical axis of symmetry. At time t = 0 a fixed
volume of co-rotating heavier fluid, initially in a cylinder of height h0 and radius
r0h0, where r0 is dimensionless, is released into the ambient fluid. An axisymmetric
current starts to spread radially. If the current fluid is a mixture (suspension) of
heavier particles in essentially the same interstitial fluid as the ambient, this is called a
particle-driven current; while the current spreads, particles settle out and the effective
strength of the current, as compared with a homogeneous current, decays.

The corresponding flow in a non-rotating system was studied by Bonnecaze et al.
(1995). Our task here is to incorporate the Coriolis effects into the modelling of
that flow and to understand their major influence. Loosely speaking, the azimuthal
velocity, with an appropriate equation, must be added to the previously studied
system. It turns out that this has non-trivial consequences.

In a non-rotating gravity current the characteristic length is h0, the characteristic
velocity, purely in the radial direction, is (g′h0)

1/2 and the reduced gravity is g′ =
(ρc/ρa − 1)g, where ρc is the density of the fluid that makes up the current and g is
the acceleration due to gravity. In a particle-driven current ρc may vary in time due
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to the settling of particles from the suspension. Hence the initial value of g′, denoted
by g′0, is used for definiteness. Using h0 and (g′0h0)

1/2 as length and velocity scales,
the relevant dimensionless parameters are the initial radius, r0 (which also determines
the volume of the current) and the dimensionless particle settling velocity, β, which
is assumed small. Note that by setting β ≡ 0 the homogeneous gravity current is
recovered. An appropriately defined Reynolds number is assumed large, and hence
viscous effects need not be incorporated.

In a current in a rotating system Coriolis effects must be accounted for. With the
above-mentioned scales for length and velocity, the Coriolis effects are proportional
to the dimensionless parameter

C = Ω(h0/g
′
0)

1/2 = 1/Ro, (1.1)

which expresses the ratio of the azimuthal velocity Ωh0 to the inertial velocity (g′0h0)
1/2

and can be defined as the inverse of the formal Rossby number, Ro. However, it should
be noticed that Coriolis effects remain after the decay of the inertial processes. For
this reason Coriolis effects may produce significant differences from non-rotating
currents even for very small values of C. The most striking difference is the existence
of a finite radius of propagation. More accurate considerations, discussed below,
show that if Cr0 is small the Coriolis effects do not affect the propagation of the
current much during, say, the initial tenth of a revolution of the system following
the release. During this time the current attains a much larger radius than the initial
one and a large lag of angular velocity relative to the ambient fluid. This and the
subsequent flow may be stable for at least several revolutions of the system. On the
other hand, if Cr0 is large, the current is able to perform only a slight readjustment of
its initial conditions in a boundary layer of dimensionless thickness 1/C produced by
a corresponding movement of the nose. (Note that the dimensional distance h0/2C,
or h0Ro/2, is usually defined as the Rossby radius of deformation or adjustment.)
This is, however, a very unstable situation.

Evidently, the most interesting cases – before the onset of instabilities, at least –
are in the domain of small Cr0. This also appears to be the pertinent range of some
geophysical systems, such as the Gulf Stream core rings (Saunders 1973; Flierl 1979;
Csanady 1979). Indeed, the axisymmetric rotating currents of the present investigation
are closely related to structures called rings, vortices, eddies or lenses of one fluid
embedded in a fluid of a different density in a rotating frame. These structures are
quasi-steady (stability disregarded): their fluid–fluid interface reflects a local equi-
librium between the pressure gradient and the radial Coriolis component, while the
radial motion (the azimuthal Coriolis component) is zero; we shall refer to them as
SL (steady-state lens). Long-time effects, such as spin-up and/or sedimentation in the
particle-driven case, will ultimately lead to the decay of a stable SL. The mechanism
of formation of Gulf Stream (and other large-scale oceanographic) eddies is from
meanders of the main current (as discussed by Richardson 1983), not from the ide-
alized lock release as considered here. However, following Flierl (1979) and Csanady
(1979) for example, we can argue that once an independent almost axisymmetric and
non-cyclonic volume of anomalous water is formed its subsequent spread is expected
to have features in common with the lock-release current.

The experiments of Saunders (1973) and, more extensively, of Griffiths & Linden
(1981) concern homogeneous (β = 0) SLs and focus on questions of stability. The
former study considered ‘bottom vortices’ produced by releasing a cylinder of heavy
fluid on the flat horizontal bottom of a container of less dense fluid. The latter
studied ‘surface vortices’ produced by an opposite set of fluids (in an open container).
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Saunders reported stable SLs for Cr0 < 0.4. The SLs of Griffiths & Linden were
always unstable, but for Cr0 < 1 the instability seemed to become significantly large
only several revolutions after the establishment of a lens shape. Griffiths & Linden
(1981) attribute the stability of the bottom vortices to the action of the viscous Ekman
layer at the bottom, which may be able to suppress the growth of the disturbances,
in contrast to the situations of surface vortices. The instabilities were found to be
predominantly baroclinic when the thickness of the vortex is larger than 0.1 of the
maximal depth of the ambient fluid, but predominantly barotropic otherwise.†

It is emphasized that these experimental studies, as well as the theoretical ones
(Flierl 1979; Csanady 1979, to be discussed in §3), considered the problem from the
quasi-steady point of view. The dynamic process of the gravity current that connects
simple initial conditions to an SL has not been investigated.

The present work attempts to throw some light on the propagation of a gravity
current from an initially simple state – actually, the one used in the above-mentioned
experiments – to the attainment of a (quasi) maximal radius of spread, where the
thickness of the head is reduced to zero, which is shown to be close to the SL, in
the parametric range of small C. In particular, our investigation is concerned with
particle-driven currents. In §2 the model equations of motion, based on shallow-
water approximations, and the appropriate boundary conditions are introduced. The
SL solution of these equations is briefly presented in §3. Some numerical results
of the rotating gravity currents are presented in §4, and their difference from the
non-rotating case emphasized. A better insight is sought in §5 via an analytical
approximate solution, for small C and β, which is supported by additional numerical
results. A discussion of our preliminary experimental investigations is presented in §6.

2. Formulation
Consider an ambient fluid of constant density, ρa. The fluid making up the current,

see figure 1, is considered to be a monodispersed suspension in which the particles
occupy the volume fraction α, with initial value α0. We denote by subscripts i the
continuous or interstitial fluid in the suspension, p the dispersed or particle phase,
and define the density parameters

ε =
ρp − ρi
ρi

and γ =
ρa − ρi
εα0ρi

=
1

α0

ρa − ρi
ρp − ρi

. (2.1)

The effective density of the suspension making up the current is given by the simple
combination of the density of the components,

ρc = (1− α)ρi + αρp = ρi + α(ρp − ρi) = ρi(1 + εα). (2.2)

The initial reduced gravity of the current is defined by

g′0 =

[
ρc(t = 0)

ρi
− 1

]
g = εα0g. (2.3)

If the current is homogeneous, or the particle volume fraction remains constant, the
effective reduced gravity remains g′0.

We assume that the initial mass concentration of the particles is small and so
εα0 � 1. We note that the subsequent analysis can be readily reduced to that of a

† The parameter θ or θ0 (defined as the Richardson number) in these papers is equal to 1/(2Cr0)2

in this paper.
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homogeneous-density-current case with a given g′0; in this case, the equation for the
volume fraction should be discarded (and α set formally equal to α0).

We use a cylindrical coordinate system rotating with angular velocity Ω around
the vertical axis of symmetry, z. The (mass averaged) velocity vector is denoted
by v = {u, v, w} and the gravity acceleration by −gẑ. The equations of motion for
a suspension contain some additional terms over the more familiar Navier–Stokes
equations for a homogeneous fluid, as explained, for example, by Ungarish (1993).
However, when the relative particle velocity, vR , is small compared to the fluid velocity
and the relative density difference between the suspension and the pure fluid, εα0, is
also small, these differences may be neglected. This approximation is employed here.
Thus, the inviscid axisymmetric equations of motion, valid in both suspension and
pure fluid regions, are the continuity equation,

∇ · v =
1

r

∂

∂r
ur +

∂w

∂z
= 0, (2.4)

and the momentum balances in the radial, azimuthal and axial directions,

ρ

[
∂u

∂t
+

1

r

∂

∂r
ru2 +

∂

∂z
uw − v

(
2Ω +

v

r

)
− Ω2r

]
= −∂p

∂r
, (2.5)

ρ

[
∂v

∂t
+

1

r

∂

∂r
ruv +

∂

∂z
vw + u

(
2Ω +

v

r

)]
= 0, (2.6)

and

ρ

[
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

]
= −∂p

∂z
− ρg, (2.7)

where the value of ρ in these equations should be taken as ρa in the ambient and ρc
in the domain of the current, see (2.2).

In addition, in the suspension region a transport (or ‘diffusion’) equation for the
dispersed particles is needed. This will be introduced later. Two models for the particle
distribution inside the suspending fluid are considered.

(a) Model T, for turbulent remixing, assumes that all the fluid of the initial current
remains part of the current, in the axial domain 0 6 z 6 h(r, t). The dispersed
particles settle out from the current only at the bottom with constant dimensionless
velocity −βẑ calculated from the Stokes formula (hindrance may be incorporated).
The remaining non-settled particles are remixed vertically in the current, so that the
volume fraction is homogeneous in the z-direction. At the interface z = h(r, t) there
is no relative motion between the current and the particles.

(b) Model L, for laminar sedimentation, assumes that the relative velocity of the
particles in the suspending fluid is −βẑ everywhere, like in a quiescent settling tank.
The upper interface of the current is defined now by the kinematic shock which
follows the boundary between the particles and the domain of the ‘pure fluid’. By
this process some of the interstitial fluid of the current is left behind the interface
and becomes part of the embedding ambient fluid. From another point of view, while
particles leave the current at the bottom, clear fluid leaves the current at the top.

Model T has been independently introduced by Einstein (1968), Martin & Nokes
(1988) and others. Although its rigorous derivation is lacking, this model has been
used with increasing confidence by various researchers. In particular Bonnecaze et al.
(1993, 1995) used this model for a problem closely related to the present one, and
showed that the theoretical predictions yielded good agreement with measurements
on the distance of propagation of the current versus time and sediment deposited
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versus distance. However, no measurements of the volume fraction of particles within
the flow are available for more complete validations. In a rotating current the
propagation is hindered by Coriolis effects, and hence the vigour of turbulence may
decrease with time and model L may become more relevant. However, for small
values of β, as considered here, the difference between the two models in the main
stage of propagation is expected to be small. This compatibility between the models
is confirmed by the results presented later.

For the ambient fluid domain, where ρ = ρa and α = 0, we assume that u = v =
w = 0. Hence the governing equations (2.5)–(2.7) indicate that

p = ρa
(

1
2
Ω2r2 − gz

)
+ const. (2.8)

Next, consider the domain of the current, 0 6 z 6 h(r, t) for r 6 rN(t). Here the
‘shallow-water’ approximation is introduced. This leads to the argument that the
left-hand side of the vertical momentum equation (2.7) is small and hence (2.7) can
be integrated to yield

p = −ρigz − ρiε
∫ z

0

α(r, z′, t)dz′ + f(r, t), (2.9)

where (2.2) was used for the density in this region. At the interface z = h(r, t) between
the current and the ambient fluid, the continuity of pressure evaluated from (2.8) and
(2.9) specifies f(r, t). After some arrangement, we obtain for the current domain

p = 1
2
ρaΩ

2r2 + ρig

[(
1− ρa

ρi

)
h+ ε

∫ h

z

α(r, z′, t)dz′ − z
]

+ const, (2.10)

and

∂p

∂r
= ρaΩ

2r + ρig

[(
1− ρa

ρi

)
∂h

∂r
+ ε

∫ h

z

∂α(r, z′, t)

∂r
dz′ + εα

∂h

∂r

]
, (2.11)

where α is taken at z = h. Subsequently, the governing equations in the region of the
current are z-averaged, and reduced to equations for the z-averaged variables u, v, α.
Some details are given in the Appendix.

Hereafter, in the spirit of the ‘shallow-water’ framework, the z-averaged variables
u, v, α are considered as functions of r and t only. The resulting equations for these
variables are presented below, in dimensionless form, after scaling, by the following
relationships:

{r, z, t, u, v, α} = {h0r, h0z, Treft, Urefu,CUrefv, α0φ}, (2.12)

where

Uref = (h0g
′
0)

1/2, Tref = (h0/g
′
0)

1/2, C = Ω(h0/g
′
0)

1/2. (2.13)

Here h0 is the initial height of the current, and Uref and Tref are the conventional
scales used in non-rotating gravity current problems. The Stokes settling velocity of
the particles, scaled by Uref , is denoted by β. Note that in this scaling the number of
revolutions performed by the rotating frame during time t is Ct/2π, therefore another
time coordinate, τ = Ct, will become relevant when considering effects associated
with the rotation.

The parameter C represents the importance of Coriolis effects relative to inertial
ones and can be considered as the inverse of the Rossby number of the flow. We are
concerned with flows with small C (or rather, small Cr0, where r0 is the dimensionless
initial radius).
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We keep in mind that the geometry and flow field of the current undergo big
changes in the process under investigation and therefore the scaled variables are not
always of order unity. The scaling velocity Uref is representative of the initial stage
of the motion, which is controlled by a buoyancy–inertia balance in a layer of height
h0 and gravity excess g′0; the nose very rapidly acquires a radial velocity of this order
of magnitude. The azimuthal velocity and length scalings reproduce well the angular
velocity acquired after a spread to, say, twice the initial radius. When the scaled
time, t, becomes large the scaled height, h, and radial velocity, u, and possibly the
scaled volume fraction, φ, become small, but the angular velocity remains O(1). These
features will become more evident during the progress of the analysis. The equations
of motion have been rechecked for consistency with these variations in the range of
parameters presented. A convenient rescaling of the variables is discussed in Ungarish
& Huppert (1998).

The equations of motion can be conveniently expressed either for h and the
combined variables,

ϕ = φh, q = uh, andV = vh, (2.14)

in ‘conservation form’, or for the original variables in ‘characteristic form’, as follows.

2.1. The governing equations, model T

In conservation form the equations can be written as

∂h

∂t
+
∂

∂r
uh = −uh

r
, (2.15)

∂

∂t
uh+

∂

∂r

[
u2h+ 1

2
(φ− γ)h2

]
= −u

2h

r
+ C2vh

(
2 +

v

r

)
, (2.16)

∂

∂t
φh+

∂

∂r
uφh = −βφ− uφh

r
(2.17)

and
∂

∂t
vh+

∂

∂r
uvh = −2uh

(
1 +

v

r

)
. (2.18)

In characteristic form, this becomes ht
ut
φt
vt

+

 u h 0 0
(φ− γ) u 1

2
h 0

0 0 u 0
0 0 0 u


 hr
ur
φr
vr

 =


−uh/r

C2v(2 + v/r)
−βφ/h
−u(2 + v/r)

 . (2.19)

The characteristic paths and relationships are essential for the application of
boundary conditions, and can also be used for obtaining the solution numerically
(see Bonnecaze et al. 1993 for further discussion). The standard derivation, see for
example Anderson, Tannehill & Pletcher (1984), requires first the eigenvalues of the
matrix of coefficients, which are

λ+ = u+ [h(φ− γ)]1/2 , λ− = u− [h(φ− γ)]1/2 , λ3 = u, λ4 = u,

and the corresponding eigenvectors(
1,

(
h

φ− γ

)1/2

,
1

2

h

φ− γ , 0
)
,

(
1,−

(
h

φ− γ

)1/2

,
1

2

h

φ− γ , 0
)
, (0, 0, 1, 0), (0, 0, 0, 1).

Consequently, the relationships between the variables on the characteristics with
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dr/dt = λ, are as follows:

λ+ : dh+

(
h

φ− γ

)1/2

du+
1

2

h

φ− γdφ

= dt

[
−uh
r

+

(
h

φ− γ

)1/2

C2v
(

2 +
v

r

)
− 1

2
β

φ

φ− γ

]
; (2.20)

λ− : dh−
(

h

φ− γ

)1/2

du+
1

2

h

φ− γdφ

= dt

[
−uh
r
−
(

h

φ− γ

)1/2

C2v
(

2 +
v

r

)
− 1

2
β

φ

φ− γ

]
; (2.21)

λ3 : dφ = −βφ
h

dt; (2.22)

λ4 : dv = −u
(

2 +
v

r

)
dt. (2.23)

Further manipulation on the last characteristic yields a convenient result. Since on
λ4 udt = dr, (2.23) can be rewritten as

dv

dr
+
v

r
= −2.

With the initial condition v = 0 at r = rinit, this has the solution

v = −r
[
1−

(rinit
r

)2
]
. (2.24)

In particular, at the nose

v(r = rN) = −rN(t)
(

1−
[
r0/rN(t)

]2)
. (2.25)

Note that the angular velocity tends quickly to −1 as the current spreads away from
its initial rN(0) = r0 state, a manifestation of the potential-vorticity conservation as
shown below.

2.2. The governing equations, model L

In conservation form the equations can be written as

∂h

∂t
+
∂

∂r
uh = −uh

r
− β, (2.26)

∂

∂t
uh+

∂

∂r

[
u2h+ 1

2
(φ− γ)h2

]
= −u

2h

r
+ C2vh

(
2 +

v

r

)
− βu, (2.27)

∂

∂t
φh+

∂

∂r
uφh = −βφ− uφh

r
(2.28)

and
∂

∂t
vh+

∂

∂r
uvh = −2uh

(
1 +

v

r

)
− βv. (2.29)

Note that the last term in (2.26) represents the additional settling of the interface
due to the local sedimentation of the particles relative to the fluid. As a consequence,
the last term in (2.27) represents the loss of radial momentum, and the last term in
(2.29) represents the loss of angular momentum.
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In characteristic form, this becomes ht
ut
φt
vt

+

 u h 0 0
(φ− γ) u 1

2
h 0

0 0 u 0
0 0 0 u


 hr
ur
φr
vr

 =


−uh/r − β
C2v(2 + v/r)

0
−u(2 + v/r)

 . (2.30)

In model L, (2.28) or the third equation of (2.30) can be replaced with φ = 1 or
ϕ = h, respectively.

The eigenvalues and eigenvectors of the coefficient matrix are as in the previous
model. On characteristics dr/dt = λ the following relationships hold:

λ+ : dh+

(
h

φ− γ

)1/2

du+ 1
2

h

φ− γdφ

= dt

[
−uh
r

+

(
h

φ− γ

)1/2

C2v
(

2 +
v

r

)
− β

]
, (2.31)

λ− : dh−
(

h

φ− γ

)1/2

du+ 1
2

h

φ− γdφ

= dt

[
−uh
r
−
(

h

φ− γ

)1/2

C2v
(

2 +
v

r

)
− β

]
, (2.32)

λ3 : dφ = 0, (2.33)

λ4 : dv = −u
(

2 +
v

r

)
dt. (2.34)

The result (2.25) and its derivation are also valid for this model.

2.3. The nose boundary condition

As in the non-rotating case, a boundary condition for the velocity at the nose, ṙN(t),
is essential for a proper physical definition and mathematical closure of the problem.
The appropriate condition for the non-rotating case, C = 0, has been well studied,
both theoretically and experimentally, and recently extended to the particle-driven
situation (see Bonnecaze et al. 1993, 1995). The pertinent result is that

ṙN = Fr(hNφN)1/2, (2.35)

Fr = 1.19, 0 6 h/H 6 0.0742

= 0.5h−1/3, 0.0742 6 h/H 6 1, (2.36)

where H is the (dimensionless) height of the layer of ambient fluid.
For a rotating axisymmetric current, C > 0, to the best of our knowledge no

investigation on the nose condition has been performed. It can be argued heuristi-
cally that (2.35) is determined by local inertial–pressure effects in the close proximity
of the nose which will be only slightly influenced by the rotation of the system
if the local Rossby number is large, i.e. C is small. Indeed, we can compare the
orders of magnitude of the terms (in dimensional form) u∂u/∂r to 2Ωv at r ≈ rN .
With the anticipation that u ∼ ṙN ∼ (hNφN)1/2(g′0h0)

1/2, the radial scale of varia-
tion is similar to the height, and v ∼ ΩrN , so the ratio between the inertial and
Coriolis terms is ∼ φN/C2rN (in dimensionless form). More rigorously, using the
approach of Benjamin (1968) in a rotating system, we estimate that the effect of
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rotation will introduce into the right-hand side of (2.35) a multiplication factor of
the form (1 − c C2rN/φN)1/2, where the positive coefficient c is of order unity, but
should be determined by either a more complex analysis or experiments. Since our
investigation is concerned with small values of C, in the absence of more accurate
information, we shall proceed under the assumption that (2.35) and (2.36) remain
a good approximation for rotating gravity currents. The verification, extension and
improvement of this assumption is left for a separate investigation. Here some sup-
port to our approach is provided by the experiments reported in §6, which indicate
good agreement between theory and measurements of rN(t) for 0 6 C2 6 0.1. We
note in passing that the Coriolis effect on the nose condition is expected to be dif-
ferent in an axisymmetric current than in a current adjacent to a meridional wall
(of the type considered, for example, by Griffiths & Hopfinger 1983 and reviewed by
Griffiths 1986).

2.4. Potential vorticity

2.4.1. Model T

The potential vorticity, (2Ω + ẑ · ∇v)/h (in dimensional form, or C(2 + ẑ · ∇v)/h in
dimensionless form) is conserved under the assumptions of model T. This result can
be derived as follows.

We first combine (2.15) with (2.18) to obtain

∂v

∂t
+ u

(
1

r

∂

∂r
rv + 2

)
= 0. (2.37)

Applying the operator (1/r) (∂/∂rr) to the last equation, and letting

ζ = ẑ · ∇× v =
1

r

∂

∂r
rv,

we obtain, after some rearrangement, that

∂(ζ + 2)

∂t
+ u

∂

∂r
(ζ + 2) + (ζ + 2)

1

r

∂

∂r
ru = 0, (2.38)

or
D

Dt
(ζ + 2) = −(ζ + 2)

1

r

∂

∂r
ru. (2.39)

Note that (2.15) can be expressed as

h
1

r

∂

∂r
ru = −

(
∂h

∂t
+ u

∂h

∂r

)
= −Dh

Dt
. (2.40)

Dividing (2.39) by h and substituting (2.40), we obtain

D

Dt

(
ζ + 2

h

)
= 0. (2.41)

Initially, for all the fluid ‘particles’ in our problem, ζ = 0 and h = 1 and therefore

h(r, t) = 1 + 1
2
ζ(r, t) = 1 +

1

2

1

r

∂

∂r
rv(r, t) = 1 + ω +

1

2
r
∂ω

∂r
. (2.42)

Consider now volume conservation, which in view of (2.42) becomes

πr2
0 = 2π

∫ rN

0

hrdr = 2π

∫ rN

0

[
1 +

1

2

1

r

∂

∂r
rv

]
rdr = π

[
r2
N + rNv(rN, t)

]
,
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which yields the condition

ω(rN, t) = −1 +

[
r0

rN(t)

]2

. (2.43)

This is identical with (2.25), which was obtained from different considerations.
The combination of (2.42) and (2.43),

h(rN) =

(
r0

rN

)2

+ 1
2
rN

(
∂ω

∂r

)
N

,

has important implications: if (∂ω/∂r)N < 0, h(rN) decreases with the propagation
faster than expected from continuity considerations, and may even vanish. This is of
course accompanied by a diminution of the head velocity, ṙN . We shall see that, even
for small values of C, the radial motion may stop when rN ∼ O(C−1/2r0) is reached
(for larger values of C the departure from r0 is much smaller).

2.4.2. Model L

Equations (2.37)–(2.39) remain unchanged, but in this case

h
1

r

∂

∂r
ru = −

(
∂h

∂t
+ u

∂h

∂r

)
− β = −Dh

Dt
− β. (2.44)

Therefore, proceeding as before, we obtain

D

Dt

(
ζ + 2

h

)
=
β

h

ζ + 2

h
, (2.45)

or

D

Dt
ln

(
ζ + 2

h

)
=
β

h
. (2.46)

3. Steady-state lens shape (SL)
If β = 0 equations (2.15)–(2.18) admit a non-trivial steady-state solution with u = 0

and φ constant. The relevance to the rotating gravity current is evident: we expect
that in stable circumstances the time-dependent motion tends to a similar steady state
(or quasi-steady state in more realistic circumstances, as explained below).

This steady state has been considered by Flierl (1979) and Csanady (1979) in the
context of warm core rings in oceans. There are, however, differences with their
solutions. We obtained approximate analytical solutions for both small and large
values of Cr0; Csanady also presented analytical solutions but linearized the right-
hand side of (3.1), replacing 2 + ω by 2, which can be justified only for large values
of Cr0 (Csanady’s h(0) is about twice as large as the correct value for small Cr0).
We obtained numerical solutions essentially similar to those of Flierl (1979), but with
different scalings; Flierl focused attention on the parameters at the final shape, while
we define the results using the parameters at the initial state. We note in passing that
the ‘Rossby number’ ε defined by Flierl is equivalent to C[−1+(r0/rN)2] in the present
notation, and the ‘Rossby radius’ R is h0/2C in the present notation. The major novel
information gained in this work, however, concerns the dynamic development of the
SL, as considered below.

For simplicity, take φ − γ = 1, i.e. the relative difference between the densities of
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the current and the ambient fluid is εα0, equal to the ratio g′0/g. To obtain h(r) and
ω(r) at steady state we may use the radial momentum balance (2.16),

dh

dr
= C2rω(2 + ω), (3.1)

and the potential vorticity conservation in form (2.42),

h = 1 +
1

2

1

r

d

dr
r2ω. (3.2)

Substitution of (3.2) into (3.1) gives a single equation for ω

d

dr

1

r

d

dr
r2ω = 2C2rω(2 + ω), (3.3)

with the boundary conditions

ω = −1 + (r0/rN)2 and h = 0 (r = rN). (3.4)

The latter condition is necessary for consistency with uN = 0, but rN is not yet known.
Note that (3.1) and (3.2) also imply dω/dr = 0 at r = 0.

It is convenient to define y = r/rN and to reformulate (3.2) and (3.3) as

d2ω

dy2
+

3

y

dω

dy
− 2C2r2

Nω(2 + ω) = 0 (3.5)

and

h = 1 + ω +
1

2
y

dω

dy
. (3.6)

The associated boundary conditions are

ω = −1 + (r0/rN)2 (y = 1);
dω

dy
= 0 (y = 0); (3.7)

1 + ω +
1

2

dω

dy
= 0 (y = 1). (3.8)

From (3.6) the last condition imposes h(y = 1) = 0.

3.1. Solutions

3.1.1. Cr0� 1

Assuming an expansion of ω in powers of CrN (or of Cr0), we readily verify that

rN = C−1/2(2r0)
1/2, (3.9)

ω = −1 + Cr0 − 1
4
C2r2 = −1 + Cr0(1− 1

2
y2), (3.10)

h = 1
2
C2(r2

N − r2) = Cr0(1− y2) (3.11)

are the leading terms that satisfy the equation and the boundary conditions (with a
relative error O[(Cr0)2]). (It is evident that the term 2 + ω in this case is close to
1.)

The striking outcome is the quite small radius of spreading of the ‘current’, even for
small C (recall that in a non-rotating frame a similar current will spread, theoretically,
to infinity). Although the Coriolis effects enter the equations formally with the
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Figure 2. Steady lens, numerical (—) and approximate (−−−) solutions for various C2, r0 = 2.
(a) h vs. r; (b) ω vs. r.

coefficient C2, they actually affect the azimuthal velocity to O(C) and radial motion
to O(C1/2).

We also remark that the current spreads only (Cr0/2)1/2 times the Rossby radius
of deformation, h0/2C.

The time of propagation of the nose from the initial to the final position given by
(3.9) is O(C), or, in dimensional form, O(Ω−1). Thus, such a lens-shape steady structure
may develop during the first revolution of the rotating frame, on the same time scale
as the formation of the Ekman layers. The essential dynamics of the establishment of
the lens is discussed later.

Additional support to the present approximation is gained by comparison with the
numerical solution of the equations governing the SL. We use centred finite differences
on a uniform grid. For given C and r0 we estimate r2

N and solve (3.5) subject to (3.7).
Iterations are performed on the nonlinear term ω(2 + ω), starting with the value of
ω(y = 1). We correct the estimate to rN until (3.8) is satisfied.

Results are given in figure 2 for r0 = 2, C2 = 0.05, 0.1 and 0.4. The numerical
results are in good agreement with the approximations (3.9)–(3.11) for the first two
values of C2 (actually, C2r2

0 = 0.2 and 0.4).
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3.1.2. Cr0 � 1

For CrN � 1, the rotational effects are expected to dominate and hence the radial
motion is strongly restricted. An inspection of (3.5) indicates that when the coefficient
CrN � 1, ω is small and has a boundary-layer structure. Using an expansion in
powers of (1/CrN) (or (1/Cr0)), we obtain the leading terms

rN = r0

(
1 +

1

2CrN

)
, (3.12)

ω = − 1

CrN
exp[2CrN(y − 1)], (3.13)

h = 1− exp[2CrN(y − 1)]. (3.14)

The agreement with Csanady’s solution is good because the present small ω vindicates
the approximation 2 +ω ≈ 2. In this range of the parameter Cr0 the current spreads
one Rossby radius.

The SL structure, even if stable, is only an approximation to real circumstances
for a limited period of time. Evidently, even small viscous effects (loosely speaking,
Ekman layers) will eventually smooth out the discrepancy of angular velocity between
the lens and the ambient and/or solid bottom. In this respect, the SL derived for a
homogeneous (β = 0) case can also be considered as an approximation for a limited
period of time to a particle-driven case provided that the particles settle out more
slowly than the formation process; the relevant more quantitative consideration will
be given in §5. It will be shown below that a lock-released gravity current tends to
an SL structure in less than one revolution of the system; on the other hand, the
mechanisms that dissipate the SL may require many revolutions.

4. Numerical results
The governing equations (2.15)–(2.18) or (2.26)–(2.29) are formulated in conserva-

tion form for the variables h, q = uh, ϕ = φh,V = vh. Following closely the approach
of Bonnecaze et al. (1993, 1995), we performed the numerical solution using a finite-
difference, two-step Lax–Wendroff method. To facilitate the implementation of the
boundary conditions the r-coordinate was mapped into y = r/rN(t), which keeps the
current in the domain 0 6 y 6 1. Consequently the original equations were subjected
to the following modifications:(

∂

∂t

)
r

=

(
∂

∂t

)
y

− y ṙN
rN

(
∂

∂y

)
t

,

(
∂

∂r

)
t

=
1

rN

(
∂

∂y

)
t

, (4.1)

where the subscripts denote the fixed variable.
Artificial viscosity terms similar to those discussed by Bonnecaze et al. (1993,

Appendix A) were added to the radial momentum equation.
As long as hN = h(y = 1, t) > 0 the obvious boundary conditions are

u = v = 0 (y = 0), (4.2)

u = Fr [h(y = 1, t)φ(y = 1, t)]1/2 (y = 1). (4.3)

The boundary conditions for h and φ at y = 0 and 1 and v at y = 1 must be
calculated, for each new time step, from the balances on the characteristics λ−, λ+, λ3.
Note that there are differences between the models T and L in this respect.

After h(y = 1) reaches zero the boundary conditions at y = 1 must be modified.
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Obviously, this is a special issue for the case of the rotating current, because in
the non-rotating case the nose does not touch the bottom. We argue that after the
nose touches the bottom the outer radius of the current represents a contact line (as
opposed to the previous ‘front’) which is approximated by the conditions

∂u

∂r
= 0 h = 0 (y = 1−). (4.4)

Viscous friction around y = 1 may become important because of the small thickness.
Hence we cannot expect the last condition to remain accurate longer than, say, the
formation time of an Ekman layer, which is, roughly, C−1 in the present scaling.
Afterwards a spin-up process in the entire current must be considered; although the
entire process may be long, the thinner outer regions, to which the Ekman layers
convect the spun-up fluid, are expected to be affected first.

Actually, for both models T and L, it is not necessary to solve the full system
of equations by the Lax–Wendroff scheme. For model L, the solution of the third
equation in the system, (2.28), is simply ϕ = h, or φ = 1. For model T the potential
vorticity conservation results, see (2.42), allow a separate simplified solution of v(y, t)
after the calculation of h(y, t); this still requires a finite-difference solution, so the
practical gain is marginal, except for accuracy tests.

The numerical computations of the rotating current presented here are with the
common parameters r0 = 2, C2 = 0.05 and

Fr = 1.19, 0 6 h 6 0.0742

= 0.5h−1/3, 0.0742 6 h 6 1; (4.5)

with β = 5 × 10−3 for the particle-driven cases, models T and L, and β = 0 for the
homogeneous current.

This particular choice of r0, Fr, β and model T were used in the computations for
the non-rotating (C = 0) axisymmetric current by Bonnecaze et al. (1995, figures 2
and 3); for the sake of comparison some of these results have been recomputed
and shown here in figure 3. The present results, displayed in figures 4–6 point out
the influences of the Coriolis effects in the same configuration, but with some mild
rotation. (The wiggles near the centre at larger times are numerical perturbations that
should be ignored.)

Figures 4(a) (i) and (ii) show the motion of the interface. The change with time of
h(r) is strikingly different from the non-rotating case: by t = 2 the leading portion of
the rotating current has a ‘nose-down’ (∂h/∂r < 0) shape. The ‘nose-down’ portion
increases with time; at t = 8 the entire current can be considered to have a negatively
inclined interface, and the height of the nose is only about 15% of that of the non-
rotating current at the same time. At about t = 10 the propagation of the rotating
current stops at rN ≈ 5.1 (the non-rotating current attains this radius at t ≈ 7.5, and
doubles it at t ≈ 30).

Very similar behaviour of h(r, t) is seen for the particle-driven model L and for
the homogeneous (β = 0) current in figures 5 and 6. Recall that in these cases the
density excess of the current remains constant, φ = 1. In the L model the interface
descends slightly faster than in the T model; this effect is more pronounced near the
centre. The propagation of the front until the maximal rN is achieved, however, does
not differ significantly between models T and L (or even the β = 0 case). This can be

explained as follows. The propagation is dominated by ṙN ∝ h
1/2
N φ

1/2
N ; the change of

φN in model T is relatively small, about 10%, in this time interval, hence the much
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Figure 3. Non-rotating particle-driven current, model T, numerical results. r0 = 2, β = 5× 10−3, Fr
given by (4.5). (a) Interface h vs. r, various t. (b) Particle volume fraction φ vs. r, various t. (b)
Particle volume fraction φ vs. r, various t.

larger variation of hN , imposed by inertial and Coriolis effects, dominate the motion
of the nose.

The global volume of the fluid in the current in model L decreases by 0.5% at
t = 2, 3.5% at t = 4 and 14% at t = 8. On average, the interface must be lower by
similar amounts. The global volumes of the fluid in the current in model T and in
the homogeneous β = 0 case are identical (the present approach discards the volume
of the settled particles). Since the settling of the particles had little influence on the
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Figure 4. Rotating particle-driven current, model T. C2 = 0.05, other parameters as in figure 3. (a)
(i, ii) Interface h vs. r, various t. (b) Particle volume-fraction φ vs. r, various t. (c) Angular velocity
ω vs. r, various t.

position of the nose, the loci of the interfaces in model T and homogeneous β = 0
case are also very close. (Of course, at large t, say ∼ 1/β = 200, the difference must be
large since all the particles are expected to have settled out, while the homogeneous
current maintains its density excess.)

The variation of the particle volume fraction according to model T is displayed in
figure 4(b) (cf. figure 3b). The order of magnitude of the variations of φ with time
are as in the non-rotating case, because the sedimentation itself is not influenced
by Coriolis effects. However, the rotation modifies the r profile of this variable; in
particular, the decay of φ near the nose increases with C. This is a by-product of the
faster decay of hN in the rotating case, which influences the source term −βφ/h in
the particle ‘diffusion’ equation (third equation in (2.19)).

The angular velocity in the current, ω = v/r, is negative and of order of unity, as
seen in figure 4(c). This means that the angular motion of the current lags considerably
behind that of the ambient fluid (or the rotating frame of reference). As expected
from the conservation of potential vorticity, ω and h are strongly connected. Roughly,
ω ≈ −1 + h in the interior, and ω ≈ −1 + (r0/rN)2 near the nose. For t > 4 the
angular velocity is smaller than −0.7 in the major part of the current, hence we may
expect a large influence of the Coriolis terms. Indeed, this influence is represented
by the C2rω(2 + ω) source term on the right-hand side of the radial momentum
equation (2.19); for ω = −0.7 the coefficient |ω(2 + ω)| attains 91% of its maximal
value.
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The rotating current at its maximum propagation is close to – but not identical with
– the SL, as seen from the comparison between figure 2 (with C2 = 0.05) and figure 4
(at t > 8). Both the shape of the interface and the angular velocity are essentially in
agreement, but it is noted that the maximal rN exceeds slightly the SL value, then
starts to shrink, and the interface of the dynamic current at the corresponding time
is not as smooth as in the SL. We speculate that the final adjustments of a dynamic
current to the SL involves viscous effects, which were not incorporated in our models.
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The remarkable point, however, is that the current comes close to its SL in less than
half a revolution of the system, Ct/2π ≈ 0.3.

We summarize that the numerical solution of the equations of motion for the
rotating gravity current, both particle-driven (models T and L) and homogeneous
(β = 0), yield apparently meaningful and physically acceptable descriptions of the
problem under investigation. The major Coriolis effects are quite similar for the
particle-driven and homogeneous currents when β � 1. There are striking differences
between non-rotating and rotating gravity currents. Other numerical computations,
not discussed here, display the same consistent pattern. This suggests that a better
understanding and interpretation may be gained by an asymptotic analysis for small
values of C and β. Such an analysis is presented in the next section. The approximate
analytical results also provide a verification of the numerical code.

Moreover, since the governing equations and boundary conditions contain approxi-
mations, experimental support is essential for the physical validation of the theoretical
results. This aspect will be treated in §6.

5. Insights and approximations for Cr0 � 1

When C � 1 we expect, on account of the numerical results and order of magnitude
considerations of the dominant dynamic balances, three major stages in the time-
dependent behaviour of a gravity current.

(i) The Coriolis terms are much smaller than the inertial terms. An inertia–pressure
balance prevails in the radial direction, and the current spreads as in the non-rotating
C = 0 case. However, due to the potential vorticity conservation, the angular velocity
decreases substantially during this stage.

(ii) The Coriolis terms are of the order of magnitude of the inertial terms. A three-
term Coriolis–inertia–pressure radial balance occurs. The current spreads more slowly
than in the non-rotating case and its shape is modified from ‘nose-up’ to ‘nose-down’.

(iii) The Coriolis terms are much larger than the inertial term. A radial balance
between Coriolis effects and pressure gradient ensues. The radial velocity changes
sign, and the height of the nose decreases to zero.

For clarity, we assume a homogeneous current, β = 0, φ = 1. Afterwards, it will
be shown that the discussion remains valid for β � C2 (the change of the volume
fraction φ in the latter case will also be estimated).

5.1. First stage

Here we wish to substantiate the existence of the first stage and the emergence of the
second stage.

In a non-rotating gravity current a ‘long time’ similarity solution exists, which is a
good approximation for the real behaviour for t > t0 ≈ 4r0/Fr � 1 (after a ‘slumping’
period see Huppert & Simpson 1980; Bonnecaze et al. 1995; Hallworth et al. 1996)†.
In this solution rN increases linearly with t1/2. If the first stage exists for a rotating
current with sufficiently small C, the same ‘long time’ solution must be an accurate
approximation for the radial motion, i.e. the Coriolis terms are expected to be a small
perturbation of the similarity solution for some time interval in t > t0. We therefore
assume a solution of the form

h(t, y) = ṙ2
N(t)H(y, t); u(t, y) = ṙN(t)y. (5.1)

† For definiteness, rN(t0) = 3.
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The essential boundary condition

u(y = 1, t) = Fr[h(y = 1, t)]1/2 (5.2)

(hereafter Fr is a constant) is then simply reduced to

H(y = 1, t) = Fr−2. (5.3)

Substituting (5.1) into the radial momentum equation,

ut + hr + uur = C2rω(2 + ω), (5.4)

we obtain

[r̈N −C2rNω(2 + ω)]y +
ṙ2
N

rN

∂H

∂y
= 0; (5.5)

and into the continuity equation,

ht + uhr + hur + uh/r = 0, (5.6)

we obtain

2HṙNr̈N + 2H
ṙ3
N

rN
+ ṙ2

N

∂H

∂t
= 0; (5.7)

while the conservation of potential vorticity yields

ω + 1
2
y
∂ω

∂y
= −1 + ṙ2

NH(y, t) (5.8)

with the condition

ω(y = 1, t) = −1 + [r0/rN(t)]2. (5.9)

Here H and r0 are of order unity.
To describe the first stage, we let

rN = Kt1/2, and hence ṙN = 1
2
Kt−1/2, r̈N = − 1

4
Kt−3/2, (5.10)

where K is of order unity, as shown below.
We consider t� 1 (actually, t > 4r0/Fr). First, using (5.8)–(5.10), we estimate that

ω = −1 + O(t−1), ω(2 + ω) = −1 + O(t−2). (5.11)

The momentum equation (5.5), on account of (5.10) and (5.11), yields, after some
rearrangement,

1
4
Kt−3/2

{
y[−1 + 4C2t2(1 + O(t−2))] +

∂H

∂y

}
= 0; (5.12)

and hence

H = Fr−2 + 1
2
[1 + O(C2t2)](y2 − 1). (5.13)

Now in the continuity equation (5.7) the first two terms are O(t−2) and cancel each
other identically, while the third term is, relative to the previous ones, O[C2t2].

The global volume conservation,

2π

∫ rN

0

rhdr = 2πrNṙ
2
N

∫ 1

0

Hydy = πr2
0 (5.14)

gives the coefficient

K = 2[r2
0Fr

2/(4− Fr2)]1/4. (5.15)
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The Coriolis terms in (5.13) give a relative contribution O(Fr2C2t2) to (5.14).
We conclude that the Coriolis terms introduce O(C2t2) perturbations on the r, z, t

non-rotating similarity profile of the gravity current. Thus, for large t and very
small Ct the non-rotating similarity solution for rN(t), h(r, t), u(r, t), supplemented by
ω = −1, approximate the motion. A relevant time interval for the first stage is
therefore t0 < t < C−1 which is feasible when Cr0 < Fr/4. Hence, the existence of the
first stage is expected even for moderately small values of C, but a clear distinction
between the first two stages requires C � Fr/(4r0).

The physical interpretation of (5.12) is as follows. As the current spreads, its thick-

ness decreases and, due to the nose condition ṙN = Frh
1/2
N , the speed of propagation

is reduced. This deceleration, expressed by the inertial term in (5.12), is provided
mainly by the gravity-induced pressure gradient, proportional to the inclination of
the interface. Unlike the local inertial and gravity-induced pressure gradient, which
decrease with time as the current becomes thinner, the Coriolis acceleration at a fixed
radius remains practically constant (for t � 1). Hence its influence accumulates in
time in spite of the small coefficient C2.

Actually, this Coriolis acceleration is equivalent to a radial pressure gradient in a
non-rotating system. In a non-rotating frame of reference, the current (for t � 1)
moves only in the radial direction, while the fluid above it is in solid-body rotation,
and hence subject to dp/dr = C2r. This pressure gradient is induced in the fluid of
the current and seen, in the rotating frame, as the radial Coriolis term. Since the
inertia and gravity-induced pressure gradient decay in time, the relative importance
of the Coriolis term increases constantly. Therefore, the C = 0 non-rotating solution
is an approximation to the rotating gravity current which is non-uniform in time:
at a sufficiently large t (actually, before the system performs one tenth of the first
revolution, as shown below) significant Coriolis modifications of the non-rotating
solution become necessary. This new stage is analysed below.

5.2. Second stage

The essential modifications are indicated by the foregoing balances. Obviously ω = −1
is an accurate approximation. In the radial direction the need to decelerate the current
remains. In this task, however, the gravity-induced pressure gradient, reproduced by
∂H/∂y, is increasingly supplemented by the Coriolis term (or the centrifugally-induced
pressure gradient). Consequently, we may expect two essential modifications of the
non-rotating behaviour: (i) a stronger deceleration (slower propagation); and (ii) a
reduction of ∂H/∂y,

We found that these modifications start as small, O(C2t2), perturbations of the
non-rotating similarity solution. Here we attempt to calculate in some detail these
perturbations to leading order in O(C2t2).

We notice that this perturbation develops on a ‘long time’ coordinate,

τ = Ct, (5.16)

which actually has a simple physical interpretation: the time needs to be scaled with
the angular period of the rotating frame (the first radian is attained at τ = 1).
Apparently, the initial Coriolis effect enters into the solution via even powers of τ.
We therefore seek a solution of the form

rN = Kt1/2b−1/4(τ), (5.17)

u = ṙNy + ũ(y, t, τ), (5.18)
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h = ṙ2
NH(y, t, τ), (5.19)

ω = −1, (5.20)

where

b(τ) = 1 + 4χτ2, ũ = BKt−1/2τ2y(1− y2), (5.21)

with the dot denoting derivatives in time at fixed y, and K is the same constant
as in the non-rotating case. Evidently, for C = 0, the non-rotating similarity form
is recovered, and for small τ, perturbations of O(τ2) are introduced in rN and u.
Formally, a consistent correction ω̃ could be incorporated into the right-hand side of
(5.20). However, since the calculation of this variable is decoupled we shall discuss it
separately below.

We remark that the profile of ũ was inferred from a combination of analytical
considerations of the Coriolis action and inspection of the numerical results. The
modification function b−1/4(τ) in (5.17), on account of (5.21), is a compact form for
the expansion 1− χτ2 +O(τ4); its non-uniqueness is not expected to alter the leading
O(τ2) term which is our major concern here in the following solution.

The task is to calculate the constant coefficients χ and B such that the perturbed
similarity solution (5.17)–(5.21) satisfies the equation of motion when C > 0 to higher
accuracy than the original similarity solution, for τ small but finite. (Our attempt to
reduce the error from O(τ2) to O(τ4) was only partly achieved, as described below;
for a better formal result a more general dependency of ũ on y should be assumed,
but the resulting complication of the analysis is beyond the scope of this paper. The
simplification is vindicated by the good agreement with numerical results, as discussed
below.)

The ‘nose condition’ (5.2) reduces again to (5.3), which is an advantage of the
attempted form (5.17)–(5.19).

We substitute (5.17)–(5.21) in the radial momentum equation and obtain, on the
left-hand side, the same terms as in (5.5) plus

˙̃u+ (ṙN/rN)ũ+ (ũũy/rN). (5.22)

We realize that the last term is relatively O(τ4), and therefore discard it. The remaining
equation can be integrated, subject to (5.3), to give

H(y, τ) = Fr−2 + 1
2
[1 + ψ(τ)](y2 − 1)− 1

4
Υ (τ)[y2(2− y2)− 1], (5.23)

where

ψ(τ) = −4τ2[b2(τ)− 6χ] (5.24)

and

Υ (τ) = 2Bτ2b9/4(τ)[3 + b−1(τ)]. (5.25)

We proceed to the continuity equation (5.6). On the left-hand side we obtain the
same terms as in (5.7) plus

(ṙ2
N/rN)[ũ(∂H/∂y +H(ũy + ũ/y)]. (5.26)

Using (5.23), we rearrange the left-hand side of (5.6) as

LHS(5.6)
1
4
K2t−2

= 4[R(y) + O(τ4)], (5.27)
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where

R(y) = −3χ(2Fr−2 + 1) + 1 + y2(3χ− 1)

+ 1
4
B[4(1− y2(2− y2)) + y2(1− y2) + (2Fr−2 − 1 + y2)(1− 2y2)]. (5.28)

The rescaling with 1
4
K2t−2 was introduced to make the leading terms in the continuity

equation, such as 2HṙNr̈N , of order unity. Equation (5.27) displays the relative residue
in the continuity equation. It is not possible to cancel R(y) for 0 < y < 1 as desired
when χ and B are not both zero. However, we can impose on R(y) two conditions
that will make the solution meaningful. First, we require global volume conservation
up to O(τ4), which can be expressed as∫ 1

0

R(y)ydy = 0, (5.29)

and yields

B = − 3
2
(1− χ/χ0), χ0 =

1

3

Fr2

4 + Fr2
, (5.30)

for an arbitrary value of χ (physical considerations show that χ should be larger than
0 and smaller than χ0). The second condition on R(y) is less obvious. Here we chose
to impose ∫ 1

0

R(y)y2dy = 0, (5.31)

which means that the volume influx weighted by the radius vanishes up to O(τ4), and
can also be interpreted as a restriction on the influx of radial momentum. Combined
with (5.30) this produces

χ/χ0 = f(Fr), with f(1.19) = 0.618, f(0.72) = 0.774. (5.32)

We note that, encouragingly, other reasonable conditions on R(y), such as R = 0 at
y = 0 or 1, give very similar results. For the results (5.30)–(5.32) and Fr = 1.19, R(y)
is indeed small, as seen in figure 7. Since no restriction was applied on the O(τ4) term
of (5.27), we expect that this term becomes locally dominant when τ2 > |R(y)|. Thus,
for τ < 1 the error in the continuity equation is controlled to be acceptably small: it
behaves like τ2 when τ is very small (say, < 0.1), and as τ4 for larger values of this
variable.

With the results (5.30)–(5.32) we also rechecked the global volume conservation
(5.14). The relative error in this quantity can be expressed as

E =

{
1− Fr2

4− Fr2

[
ψ(τ)− 1

3
Υ (τ)

]}
b−3(τ)− 1 = Aτ4 + O(τ6), (5.33)

where the value of A is approximately 0.4 and 0.07 for Fr = 1.19 and 0.72, respectively.
This suggests that the present approximate solution is substantially more accurate for
the smaller value of Fr.

To summarize, the first and second stages are straightforwardly combined. For
4r0/Fr < t < C−1 and β � C2 the behaviour of the current is given by the
approximation

rN = Kt1/2b−1/4(τ), (5.34)

u = 1
2
Kt−1/2b−5/4(τ)y

[
1 + 2Bτ2b5/4(τ)(1− y2)

]
, (5.35)

h = 1
4
K2t−1b−5/2(τ)H(y, τ), (5.36)
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Figure 7. Residue R(y) for Fr = 1.19, χ = 5.386× 10−2, B = −0.573 and f(Fr) = 0.618

H(y, τ) = Fr−2 + 1
2
[1 + ψ(τ)](y2 − 1)− 1

4
Υ (τ)[y2(2− y2)− 1], (5.37)

ω = −1, (5.38)

where

τ = Ct, (5.39)

b(τ) = 1 + 4χτ2, (5.40)

ψ(τ) = −4τ2[b2(τ)− 6χ], (5.41)

Υ (τ) = 2Bτ2b9/4(τ)[3 + b−1(τ)]. (5.42)

K,B and χ are constants; the first is given by (5.15), and

B = −1.5[1− f(Fr)], χ =
1

3

Fr2

4 + Fr2
f(Fr), (5.43)

with f(Fr) = 0.6 and 0.8 for Fr = 1.19 and 0.72, respectively. Recall that τ = 2π is
the time for the first revolution of the system. A consistent correction for ω will be
considered later.

This approximate solution has been validated by comparison with numerical results
and good agreement was obtained. However, the initial conditions introduce some
perturbations into the first stage which subsequently propagate into the second stage
and obscure the comparison in the range of not very small C. In other words, the
accurate numerical attainment of the true asymptotic range 4r0/Fr � t � 1/C
from standard initial conditions requires heavy computations with our scheme. This
complication was readily avoided by using synthetic initial conditions, assuming the
ideal accomplishment of the first stage as follows. We start at some specified t = t0
(1 < t0 � 1/C) with rN(t0) and h(y, t0) given by (5.17) and (5.19) and ω = −1
is imposed for all y and t. The volume is also defined via a prescribed r0. The
subsequent behaviour, at least up to τ = 1, was calculated for various values of
C, Fr, r0, starting with the same τ2

0 = C2t20 = 0.02. (We note in passing that these
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Figure 8. Comparison between numerical, similarity non-rotating, and present (asymptotic) solu-
tions. (a) h vs. r at t = 10, τ = 0.707, Fr = 1.19, C2 = 0.005, β = 0; (b) h vs. r at t = 14, τ = 0.990;
(c) u vs. r at t = 10, τ = 0.707; (d) u vs. r at t = 14, τ = 0.990.

smooth initial conditions also eliminate the spurious wiggles observed in the lock-
release computations.)

In particular, runs with C2 = 2×10−2, 0.5×10−2, 0.125×10−2; r0 = 2; and Fr = 1.19
were performed. Typical outcomes are shown in figure 8 (obtained with f(Fr) = 0.6).
The results confirm the dependence of the Coriolis modifications on τ. For example,
at τ = 0.707 the computed h(y = 1) is 24.5% below the non-rotating similarity value
for all the above-mentioned values of C – although the corresponding times are
t = 5, 10, 20; on the other hand, the difference of the computed value from the present
approximate solution is only 3.2%. At τ = 1.131 the computed rN is 7% below the
non-rotating similarity solution and 1% below the present solution.

Similar comparisons for Fr = 0.72, not displayed, yielded even better agreements.
As seen in this figure, the most striking effect of the Coriolis modifications is the

change of the current’s profile from ‘nose up’ to ‘nose down’. The time for the first
occurrence of this change, τ1, can be calculated from the present solution as follows,
see (5.19), (5.23), (5.24):

∂H

∂y
(y = 1, τ = τ1) = 0 = 1 + ψ(τ1), (5.44)

and hence

τ1 ≈
1

2

[
1 +

Fr2

4 + Fr2
f(Fr)

]
. (5.45)

This prediction is confirmed by the numerical results. As time progresses the portion
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of the current with negative ∂h/∂y increases. The physical interpretation is as follows.
The ∂h/∂y represents the pressure gradient induced by the buoyancy force. In the
non-rotating case this is the means by which the tail of the current is decelerated to
keep its velocity matched to that of the nose which is slowed down due to the decrease
in its thickness, ṙN = Fr[hN(t)]1/2. In the rotating case the Coriolis effect also tends
to decelerate the current. At small τ the Coriolis force ‘helps’ the above-mentioned
conventional pressure gradient, therefore a reduction of ∂h/∂y occurs. At larger τ this
Coriolis effect (which increases with r and is, locally, constant in time) provides more
deceleration than the current needs to comply with the nose condition. This builds
up fluid with negative ∂h/∂y behind the nose; in this region the gravity (buoyancy)
pressure gradient tends to accelerate the fluid against the Coriolis effect.

Another noteworthy difference from the non-rotating current is the reversal of the
radial velocity in the central region after some τ2. According to (5.35) u becomes
negative in the centre region y2 � 1 for times larger than

τ2 ≈ (−2B)−1/2 ≈ 0.9 for Fr = 1.19

≈ 1.2 for Fr = 0.72. (5.46)

The region of negative u is expected to expand rapidly with τ. Although already in
the speculative range of τ, this prediction is in excellent agreement with the numerical
results, see figure 8(d) (for this run no negative u was recorded for τ < 0.85).

Finally, we use the second stage approximation to illuminate the transition to the
possible steady-state lens shape (SL) discussed in §3. It turns out that the SL radius,
(2r0)

1/2C−1/2, is first reached, according to (5.17), at

τ3 ≈
1

Fr
(1− 1

8
Fr2). (5.47)

We also estimate

hN(τ3) ≈ 1
2
(1 + 1

4
Fr2)Cr0b−5/2(τ). (5.48)

At this instant the current still propagates forward with a nose velocity only about
10% smaller than in a non-rotating case. We must therefore infer that the current will
initially spread beyond the SL radius, then shrink back. This expectation is consistent
with the observation that an increasing part of the current acquires negative u for
τ > τ2. Remarkably, the values of τ3 and τ2 are close. We may roughly say that when
the current first passes the SL radius, a returning motion starts to build up, which is
enhanced with further spread.

The appearance of this reverse motion seems to mark the end of the second
stage, and the beginning of the third stage in which the motion is governed by a
Coriolis–pressure balance, with small contributions from the inertial term.

5.2.1. The correction to ω = −1

With the previously obtained rN(t), H(y, t, τ) the correction to the value of ω, so
far considered = −1 to leading order, can be considered with the use of (5.8)–(5.9).
Letting

ω = −1 + ω̃(Y , t, τ), where Y = y2, (5.49)

we obtain

Y
∂ω̃

∂Y
+ ω̃ = ṙ2

N(t)H(Y , t, τ), (5.50)

subject to

ω̃(Y = 1) = [r0/rN(t)]2. (5.51)
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The analytical solution is cumbersome, but approximations for Y � and Y → 1 give
some useful insights. In the former region (for, say, Y < 0.8) the derivative term is
discarded, which yields simply that

ω̃ = h(Y , t, τ). (5.52)

In the latter region we freeze the space-dependent terms in (5.50) at Y = 1, and
determine, after linearization and rearrangement, that

ω̃ ≈ [r0/rN(t)]2{1 + [1− (rN(t)ṙN(t)/r0Fr)
2](1− Y )}. (5.53)

This result indicates that for small τ the maximum value of ω̃ is at the nose, but later
on (from around τ = 0.5) a small decrease of ω̃ from the interior to the nose occurs.
Evidently, in the interior and near the nose ω̃ = O(t−1), as assumed in the foregoing
analysis.

5.3. The change of φ in a particle-driven current

The previous analysis was performed for the homogeneous current case, β = 0.
However, it can be used, without loss of formal accuracy, for the particle-driven case
with β � C2. This is justified by the behaviour of the volume fraction, φ(y, t), for
which we now derive an approximation. We assume an expansion of the form

φ = 1− βφ̃(y, t) + O(β2), (5.54)

and assume further that βφ̃ is sufficiently small to affect only slightly the Coriolis-
perturbed flow discussed above during any instant in the entire interval 0 < τ < 1.
An inspection of the equations of motion shows that the straightforward restriction
can be expressed as

βφ̃(y, τ)� τ2. (5.55)

In this case, we can attempt to evaluate the perturbation φ̃ from the particle-continuity
equation (2.19)

φt + uφr = −βφ/h, (5.56)

with u and h given to leading order by (5.18) and (5.19). This yields

˙̃φ+ ũφ̃y = 1/ṙ2
NH(y, τ) + O(β); (5.57)

and with the substitution of (5.21) and (5.36)

˙̃φ+ [KBt−1/2τ2y(1− y2)]φ̃y =

(
2

K

)2

tb5/2(τ)
1

H(y, τ)
. (5.58)

This is more conveniently expressed in terms of Y = y2 and τ = Ct as

∂φ̃

∂τ
+Bτ3/2Y (1− Y )

∂φ

∂Y
=

(
2

CK

)2

τb5/2(τ)
1

H(Y , τ)
, (5.59)

subject to the condition φ̃(y, τ = 0) = 0, where

B = 2KBC−1/2. (5.60)

The solution is obtained by the method of characteristics,

dφ̃

dτ
=

(
2

CK

)2

τb5/2(τ)
1

H(Y , τ)
(5.61)
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Figure 9. φ̃C2 vs. y for various τ, C2 = 0.005, r0 = 2, Fr = 1.19.

on

dY

dτ
= Bτ3/2Y (1− Y ). (5.62)

From the last equation we obtain the characteristic that reaches the position Y1 at τ1

Yc(τ) =
C1 exp( 2

5
Bτ5/2)

1 + C1 exp( 2
5
Bτ5/2)

, (5.63)

where

C1 = [Y1/(1− Y1)] exp(− 2
5
Bτ5/2

1 ). (5.64)

Combining (5.61) and (5.62) with (5.63), we obtain the value of φ̃ at a chosen Y1, τ1

as

φ̃(Y1, τ1) =

(
2

CK

)2 ∫ τ1

0

τb5/2(τ)dτ

H[Yc(τ), τ]
. (5.65)

(To be more explicit, H[Yc, τ] means that in (5.37) y2 is replaced by the expression
(5.63).) Since H and b are both of order unity in the range of interest, we expect
φ̃ ∼ τ2/C2. Hence the restriction (5.55) can be satisfied when β � C2, in which case
the present approximation is validated. We note that for Y1 = 0 and Y1 → 1 we
obtain Yc = 0 and 1 respectively, and (5.65) reduces to the usual boundary conditions
applied at these positions.

The numerical integration of (5.65) is straightforward; typical results are presented
in figure 9. The integrand depends on the parameters Fr, r0 and C so that a general
solution of (5.65) is not available.

We note that the type of approximation used in the derivation of φ̃ in the rotating
gravity current may be used also in the non-rotating case for the extension of the
similarity solution to a particle-driven current. This topic will be discussed elsewhere
(Hogg, Ungarish & Huppert 1998).
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5.4. Third stage

The approximations used for the analysis of the first and second stages are not valid
in this stage, formally because the boundary condition (5.3) is incompatible with the
expectation that h(rN) becomes zero at a finite τ. An estimate of the propagation of the
current in this stage may be obtained by considering the balances on characteristics,
and, of course, from the numerical results. These indicate that the current propagates
slowly, in a time interval ∆τ ∼ 1, to about 35% beyond the SL radius, where the
height of the nose becomes zero. We expect that it will subsequently shrink back to
the SL radius, but our inviscid model and nose conditions are not expected to remain
accurate for these circumstances. This topic is left for future investigation.

6. Experimental observations
The theoretical analysis was tested by several visualization tests. The apparatus

consisted of a cylindrical container of radius 45 cm with transparent sidewalls, which
can be set in rotation about the vertical axis, z. The free surface of the fluid was
open to the atmosphere. The ‘lock’ from which the current was released was a small
inner cylinder of inner radius 4.7 cm, wall thickness of 0.3 cm and height 15 cm.
This was placed in a central position on the bottom of the container by means of an
elastic seal (a heavy metal ring on the upper side of the inner cylinder was used to
increase the pressure on the seal). The inner cylinder could be lifted with the aid of
a simple mechanism of strings and pulleys. A metal frame attached to the rotating
container supported cameras and the above-mentioned mechanism. Observation was
possible from both above and the side. A video camera, co-rotating with the container,
recorded the view from above.

For a typical test, the container was filled with tap water to a height of 10 cm.
The inner (top- and bottom-less) cylinder was lowered and sealed to the bottom.
A measured amount of salt or heavy particles was added to the water in the inner
cylinder, plus 2 cm3 of dye. This coloured mixture made up the heavier intruding
fluid. The system was rotated at some pre-assigned angular velocity, and the fluids
allowed to spin-up for about 15 min. The experiment started with the quick lifting
of the inner cylinder (‘lock’), which released the coloured heavy mixture into the
ambient transparent water. Unfortunately, not many details could be seen because,
typically, the time of propagation was only about 10 s and after the first 2 s the average
thickness of the current became less then 1 cm. For better results a considerably larger
container and/or more sophisticated release and recording means are necessary.

The propagation of the nose, rN(t), was extracted from the video camera records,
using a pre-marked grid of concentric circles (radii 5, 10, ...40 cm) on the bottom of
the container. The current’s front had some asymmetries and ragged portions (due
to perturbations and wall shear during the release stage) and we used some intuitive
‘smoothing’ to track the nose.

The range of tested parameters was, approximately: h0 = 10 cm, r0 = 0.47 (in
dimensionless form), g′0 = 20–80 cm s−2 and Ω = 0.2–0.5 s−1. The inertial time scales,
(h0/g

′
0)

1/2, were 0.71–0.35 s. The corresponding spin-up intervals, 2h0/(νΩ)1/2, were
7.4–4.8 min, and the length scales of the Ekman layer were 0.22–0.14 cm. Note that
when the current attains the radius rN ≈ 25 cm its average thickness, h0(r0/rN)2, is
about twice the Ekman layer length scale.

The observed currents were stable. (We recall that instabilities of a closely related
‘bottom’ vortex are expected for Cr0 > 0.375, see Saunders 1973.) The simple release
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Figure 10. Photographs from above of the propagation of a saline current in the rotating cylinder,
C2 = 0.10. g′0 = 20 cm s−2. Time increases from photo 1 to photo 4.

mechanism caused some initial perturbations in the current and ambient fluid and
this was reflected by deviations from the symmetrical pattern and some ragged
portions of the interface, which persisted during the stage of propagation. These
features appeared both in the non-rotating and rotating tests. However, no relative
amplification or break-ups occurred; in contrast, in the rotating cases some decay of
these asymmetries was observed close to and after the attainment of the maximum
radius. Representative behaviour is displayed in figure 10.

The numerical results used for comparison were obtained with H = 1 in the
boundary condition (2.36), i.e. the initial height of the current equals that of the
ambient fluid.

Saline-driven current results are shown in figure 11. To emphasize the Coriolis
effects the non-rotating C = 0 case is also displayed.

For C = 0 the theoretical propagation is faster than the measured one (except for
the first recorded point). This discrepancy may be attributed to the viscous effects
and the reverse motion in the ambient fluid which have been neglected in the model.

For C > 0 the theoretical propagation, both forwards and backwards, is faster than
the measured one (except for the first recorded points). For the forward propagation
the foregoing explanation for the discrepancy applies. As predicted by theory, rN
reaches a maximum whose value is in fair agreement with the experiment. However,
the backward shrink of the observed current to the SL radius is significantly slower and
less clear-cut than in the theory. This may be attributed to the Ekman-type balance
between Coriolis and viscous terms that is expected to appear in the experiment
when the current reaches its maximum rN . This thickness of the current is about
that of an Ekman layer; hence an Ekman-type smoothing of the angular velocity
difference (between the current and the boundary) is expected to occur on the time
scale 2Ω−1 ∼ 5 s. This lessens the Coriolis effect imposed by the outer fluid on the
current.
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Figure 11. Saline-driven current, rN vs. t, numerical results and experiments for (a) C2 = 0.028,
(b) 0.10 (�), and non-rotating + case. g′0 = 20 cm s−2.

The experiments with a suspension rather than with a saline solution were less
conclusive. We used silicon carbide particles (ρp = 3.22 g cm−3) of average diameter
9×10−4 cm, whose Stokes settling velocity is 1.0×10−2 cm s−1. The typical tests were
performed with g′0 = 20 cm s−2 and Ω = 0.46 s−1, hence β = 0.7× 10−3 and C2 = 0.1.

The major complication encountered was that in the inner cylinder (‘lock’), while
the suspension was being spun-up (the relevant time interval 2h0/(νΩ)1/2 is about 5
minutes) significant settling of particles occurred before the suspension was released
into the ambient. Moreover, it appears that the Ekman layer pumping during the
spin-up process modifies the conventional gravitational settling and disturbs the
homogeneous particle distribution. Consequently, the theoretical initial conditions of
a homogeneous suspension in solid-body rotation in the domain 0 < r < r0, 0 < z < 1
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could not be well approximated. Even after some attempts to compensate for the
particle settling by starting the spin-up with a higher cylinder of suspension, the
satisfactory initial conditions could not be attained. This made reliable quantitative
comparisons impossible. However, there was qualitative agreement between theory
and observations. For the particle-driven case we noticed a higher tendency for
instability and lens break-up than in the saline case. This may be a consequence of
the incomplete spin-up and inhomogeneous particle distribution in the suspension
domain prior to release into the ambient. The problem of combined spin-up and
settling in the suspension, and the possible effects on the particle-driven current
generated after the action of such a combination in the ‘lock’ domain, requires a
special analysis that is beyond the scope of this work.

The experiments confirm the theory concerning the essential differences between
the non-rotating and rotating axisymmetric currents even for small values of C
(Cr0 = 0.08 in figure 11), and the influence of the parameter C on the behaviour
of a rotating current. In particular, the present model seems to be a fairly accurate
predictive tool upon the incorporation of the hypothesis that the non-rotating nose
condition ṙN = Fr(φh)1/2 remains valid (here with the specific form (2.36), at least for
small values of C).

However, more complex experiments in a much larger container seem to be nec-
essary for a more rigorous confirmation (and perhaps improvement) of the theory.
In particular, it would be useful to increase the average thickness considerably above
that of the Ekman layers during all stages of propagation, and to obtain good records
of h(r) at various times. This will throw more light on the Coriolis effects on the nose
condition.

7. Concluding remarks
This study has pointed out some essential features of an axisymmetric particle-

driven gravity current in a rotating frame. The theoretical description used the
one-layer inviscid shallow-water equations, in a very deep solid-body rotating ambi-
ent, which were solved numerically and asymptotically for small C (ratio of Coriolis
to inertial effects) and β (dimensionless settling velocity of particles). The required
correlation for the nose velocity was assumed to be as in the non-rotating circum-
stances. The homogeneous current was treated as a particular case, β = 0. The results
were corroborated by simple experiments. The closest study for a similar non-rotating
current is that by Bonnecaze et al. (1995).

The most striking differences from the current in a non-rotating, C = 0, frame
appear up in the shape of the interface (thinner at the nose than at the tail) and in
the restricted radius of propagation (about C−1/2 times the initial radius).

For small values of C and β, three major stages may be distinguished in the
motion of the current. (i) In about the first initial tenth of a revolution, the current
spreads radially almost as in a non-rotating frame, but its angular velocity decreases
significantly. (ii) In the subsequent tenth of a revolution the radial velocity decelerates
rapidly, and the interface develops a new shape, thinner at the nose and thicker
at the tail, The radius of propagation reaches that of a steady-state lens (SL) but
continues to grow. (iii) The current propagates slowly, overshoots the SL radius by
about 35% while the height of the head decreases to zero, then shrinks back. This
stage, which takes about one fifth of a revolution, requires additional study because
it involves effects (such as viscosity) which were not included in the analysis. The
formation of the SL may be considered, theoretically, the end of the current process.
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In practice, however, the SL is only a quasi-steady stage. Sedimentation of particles
and/or viscous spin-up and/or instabilities will dissipate the SL into the ambient
after some additional (sometimes many) revolutions.

The present study provides an additional dynamical link for the formation of
oceanic structures called rings, eddies or vortices from simple initial conditions.

Each particular result (i.e. for a certain combination of the dimensionless param-
eters) presented in the paper can actually be extended to a family of cases by a
simple similarity rescaling of the variables; this, together with a simple ‘box model’
for the approximate description of the main effects detected in the present study, are
discussed in Ungarish & Huppert (1998).

Several interesting extensions are left for future work, such as a two-layer model,
and the incorporation of viscous effects (the Ekman layer correlations seem to be
adequate for the first approximation). The Coriolis influence on the nose velocity
correlation, which is a major bottleneck for accurate modelling, so far has received
very little attention. The possibility of reverse motion, after the overshoot of the SL
radius, is a complication with no counterpart in a non-rotating current. It appears
that most of the required information, like in the non-rotating circumstances, must
be acquired by experimental work. This would necessitate experiments in a rotating
container considerably larger than the one available in our laboratory (whose diameter
is 90 cm).

We wish to thank Mr M. A. Hallworth for essential assistance in the experimental
work, and Dr J. R. Lister for useful comments and suggestions. The research was
supported by the EPSRC.

Appendix. On the z-averaged equations
Some details of the derivation of the z-averaged equations of motion of the current

in 0 6 z 6 h(r, t) are briefly presented.
Consider first the interface Σ : h(r, t)− z = 0, between the current (suspension) and

the ambient pure fluid. The motion is prescribed by the equation (see, for example,
Ungarish 1993, §2.3)

∂h

∂t
+ up(z = h)

∂h

∂r
− wp(z = h) = 0, (A 1)

or

∂h

∂t
+ u(z = h)

∂h

∂r
− w(z = h) = −[up(z = h)− u(z = h)]

∂h

∂r
+ [wp(z = h)− w(z = h)].

(A 2)

The last term on the right-hand side introduces the difference between the models T
and L. In model T it is assumed that there is no relative velocity between the particles
and the fluid on the interface, and hence the right-hand side of (A 2) vanishes. In
model L it is assumed that the settling of the particles relative to the fluid on the
interface is as in a quiescent fluid, i.e. given by the Stokes velocity in the vertical
direction only (approximately), or equal to −β in dimensionless form.

If we use (averaged) values of u, not dependent on z, with w(z = 0) = 0, and
express w(z = h) in terms of u(r, t) with the aid of the continuity equation, we obtain
from (A 2), in dimensionless form

∂h

∂t
+

1

r

∂

∂r
ruh =

{
0, T model
−β, L model.

(A 3)
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We obtain the driving pressure gradient in the current using (2.10),∫ h

0

∂p

∂r
dz = ρaΩ

2rh+ ρig

[(
1− ρa

ρi
+ εα

)
1

2

∂

∂r
h2 + ε

∂α

∂r
1
2
h2

]
,

which can be rewritten as∫ h

0

∂p

∂r
dz = ρaΩ

2rh+ ρig
′
0

[
1

2

∂

∂r
(φ− γ) h2

]
. (A 4)

Now we reconsider the momentum equation for model T. (The extension to model
L is straightforward.) Subsequently, we assume (averaged) values of u and v, not
dependent on z, with w(z = 0) = 0.

Integrate the right-hand side of (2.5) from 0 to h, use (A 2) and (A 4), and divide
by ρi to obtain

(1+εα)

[
∂

∂t
uh+

1

r

∂

∂r
ru2h

]
+gεα0

∂

∂r

[
1
2
(φ− γ)h2

]
−(1+εα)vh

(
2Ω +

v

r

)
= Ω2rεα0(φ−γ)h.

(A 5)

Hereafter we switch to dimensionless form: scale length with h0, time with (h0/g
′
0)

1/2,
u with (h0g

′
0)

1/2 and v with C(h0g
′
0)

1/2.
Since εα0 � 1, we discard εα as compared to 1, and assume that, formally, C2 � εα0.

Equation (A 5) gives

∂

∂t
uh+

1

r

∂

∂r
ru2h+

∂

∂r

[
1
2
(φ− γ)h2

]
−C2vh

(
2 +

v

r

)
= εα0C2(φ− γ)hr. (A 6)

The centrifugal (last) term is neglected as compared with the Coriolis term.
The integral of (2.6) from 0 to h, using the dimensionless variables, yields

∂vh

∂t
+

1

r

∂

∂r
ruvh+ uh

(
2 +

v

r

)
= 0. (A 7)

Finally, we consider the particle continuity equation, for the z-averaged variables.
Since particles settle out only at the bottom with velocity β, this is (for both T and
L models)

∂φh

∂t
+

1

r

∂

∂r
ruφh = −βφ. (A 8)

Expansion and use of (A 3) yields

∂φ

∂t
+ u

∂φ

∂r
= −φ

h

[
β −

(
∂h

∂t
+

1

r

∂

∂r
ruh

)]
=

{
−φβ/h, in model T
0 in model L.

(A 9)
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