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AbstractÐWe obtain a unique solution to the well known indeterminacy for Ivantsov dendrites [Dokl.
Akad. Nauk. SSSR, 58, 567 (1947)] by considering the directional solidi®cation of a binary alloy as an
array of interacting needle crystal dendrites. From the results of an asymptotic theory for the steady-state
solidi®cation of slender needle crystal arrays, the shape of the dendrite can be obtained from the solution
of a non-linear integral equation. Here we solve this integral equation numerically to determine the charac-
teristics of the solutions and compare the results to dendrite morphologies observed in experiments. The
integral equation has a solvability condition that selects a distinct tip radius and tip undercooling for a
given set of experimental conditions and dendrite spacings. This selection criteria is fundamentally di�erent
from traditional tip selection theories based on surface energy, and is linked to the interactions of dendrites
in the array. Predictions of the tip radius are in good agreement with experimental measurements for con-
ditions where the asymptotic theory is expected to be valid. Our results suggest that the tip radius increases
with array spacing in the experimentally relevant parameter range. This relationship is consistent with the
existence of a range of stable array spacings during directional solidi®cation: the lower bound on array
spacings is set by the stability criteria for array overgrowth, and an upper bound may be determined by
the condition for tip splitting. In the asymptotic limit of small dendrite spacings, our integral equation
interestingly has a degenerate set of solutions, indicating a transition from selection to degeneracy in the
limit of small spacings. The explanation of this transition is beyond the scope of our theory and remains to
be addressed. # 1998 Acta Metallurgica Inc.

1. INTRODUCTION

A long term goal in the modeling of solidi®cation
processes is the prediction of morphologies and

length scales. In the simplest systems, such as the
directional solidi®cation of a binary alloy, we have

a good understanding of the qualitative behavior of
the morphologies and length scales, but a compre-
hensive quantitative theory is still being actively

sought [1, 2].

In [3], we presented an asymptotic analysis of a
model for the directional solidi®cation of a binary

alloy as an array of three-dimensional needle crys-
tals. In this analysis, we speci®cally chose parameter

scalings to correspond to the conditions of dendritic
growth. The result of the analysis is a one-dimen-

sional non-linear integral equation for the shape of
the needle crystal. In this paper we solve this inte-

gral equation numerically to determine the steady-
state shapes as a function of the solidi®cation con-

ditions.
Our numerical method reduces the integral

equation to a non-linear system of equations for the

shape at node points along the length of the den-

drite. We solve the system of non-linear equations

numerically using a linearized iterative scheme. A

particular feature of the system of equations, which

is due to the physics incorporated into the original

integral equation, is that there is a solvability con-

dition: for a given set of experimental parameters

and dendrite spacings, there is a selection of the tip

radius, tip undercooling and shape of the dendrite.

Our theory has no adjustable parameters.

Predictions of the tip radius are in good agreement

with experimental measurements over a range of

solidi®cation velocities. The selection of the tip

radius in our theory is due to the interactions of the

dendrites in the array and is entirely independent of

surface energy. As such, it represents a fundamental

philosophical alternative to tip selection theories

such as marginal stability theory [4], microsolvabil-

ity theory [5, 6] or interfacial wave theory [7], in

which surface energy is responsible for selection of

an Ivantsov dendrite [8].

Another feature of our results is that the pre-

dicted tip radius increases monotonically with the

dendrite spacing for the typical spacings observed

in experiments. We suggest that this relationship is
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consistent with the existence of a range of stable

array spacings during directional solidi®cation. The
lower bound on stable array spacings is set by the
stability criteria for array overgrowth as in [9]. An

upper stability bound can be determined by the
condition for tip splitting [4]. By virtue of a mono-
tonic relationship between tip radius and dendrite

spacing, the maximum stable tip radius corresponds
to a maximum stable array spacing.

In the limit of zero temperature gradient our the-
ory describes the solidi®cation of an array of solutal
dendrites, or, the equivalent problem of a single

solutal dendrite growing along the axis of a tube. In
this case our theory predicts that for a given tube
size (or dendrite spacing), there is a unique tip

radius and growth velocity for a given undercool-
ing. As the undercooling increases so does the

growth velocity. However, for in®nite dendrite spa-
cing our theory recovers the well-known Ivantsov
dendrite for which the tip radius is not uniquely

determined. Thus, tip selection in our theory is due
to the non-linear interaction of the dendrite with
neighboring dendrites (or sidewalls).

We have also found that there are actually two
solutions for the same solidi®cation conditions and

array spacing. The ®rst solution corresponds well to
dendritic growth, while the second solution, having
a much larger tip radius, may perhaps be a vestige

of the ``cellular'' morphology existing well into the
parameter regime for dendritic solidi®cation.
Our results are similar in spirit to earlier work on

directional solidi®cation of dendrite arrays by
Hunt [10] and Kurz and Fisher [11] which relate the

dendrite spacing to the tip characteristics by assum-
ing a priori a simple shape for the dendrite. While
these papers contain a similar end result, namely a

relationship between the tip characteristics and the
dendrite spacing, each uses an assumed dendrite
shape which does not solve the free boundary pro-

blem for solidi®cation. In our work we determine
the relationship between the tip characteristics and

the spacing by solving the detailed problem for the
dendrite shape. If one uses a tip selection criteria
based on surface energy, then the Hunt theory gives

a prediction of a unique dendrite spacing [12]. The
same selection criteria could also be applied to our
results to obtain a unique spacing. Recent exper-

imental evidence, however, suggests that there is
not a unique dendrite spacing during directional

solidi®cation, but rather a range of stable
spacings [13, 14] and we have interpreted our theory
in light of these observations.

Our work also contains similarities to the descrip-
tion of steady-state dendrite arrays by Warren and
Langer [9]. Both treat dendrites as line sources of

solute, but the dendrite shapes assumed by Warren
and Langer do not satisfy the free boundary pro-

blem. Their solutions also contain one more degree
of freedom than ours. Without surface energy the
Warren and Langer solutions have two degrees of

freedom, and by using a selection criterion based

on surface energy for the tip characteristics they
obtain a family of solutions parameterized by the
dendrite spacing. We also obtain a family of sol-

utions parameterized by the spacing, but this is due
to a tip selection mechanism intrinsic to the free
boundary problem for the array and without

recourse to a selection criterion based on surface
energy. In our theory, surface energy is not respon-

sible for selection of a unique tip radius, but rather
is responsible for determining the range of tip radii
which are stable from a family of permissible sol-

utions.
The crucial role of the dendrite spacing in deter-

mining a unique solution is revealed by comparing

our results for dendrite morphologies with previous
work on cellular morphologies [15, 16]. The cellular

work considers directional solidi®cation in the limit
of cell spacing much less than the di�usion length
and ®nds that in the absence of surface tension the

solutions to the free boundary problem are charac-
terized by two degrees of freedom corresponding to
the spacing and the tip undercooling. Our work

focuses on dendrite morphologies where the spacing
and di�usion length are comparable in magnitude.

In this di�erent limit the solutions have one less
degree of freedom, being characterized by a den-
drite spacing with the tip undercooling determined

as part of the solution. The di�erence in the num-
ber of degrees of freedom in the solutions for the
cellular and dendrite limiting cases can be recon-

ciled through our integral equation. We show that
in the limit of small spacings the solution to our
integral equation has two degrees of freedom

instead of one, in agreement with the cellular
results [15, 16]. Thus, the selection of solutions in

our theory is due to interaction e�ects present in
the free boundary problem when the dendrite spa-
cing is comparable to the di�usion length and not

in the limiting case when the spacing is small com-
pared to the di�usion length.
From the above discussion, our integral equation

apparently has a transition in the number of
degrees of freedom in the limit of small spacings.

Numerically we ®nd that for ®xed, order unity spa-
cing there is a selected tip state. If we consider our
®nite-spacing model and evaluate the asymptotic

limit of small spacings, the simpli®ed integral
equation has a degenerate set of solutions corre-
sponding to computed cellular morphologies [15, 16].

Unfortunately, our numerical method fails in the
limit of small spacings, so we are not able to

describe this apparent transition in the number of
degrees of freedom as the spacing approaches zero.
We have also not yet been able to ®nd a satisfying

physical mechanism for why such a transition might
occur. It has been suggested by a referee that in the
absence of a description of this transition, our

model lacks a crucial link which validates the pre-
sence of a selection mechanism at ®nite spacings,
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and consequently our calculations may be incorrect.
We are of the opinion that such a transition is a

common occurrence in non-linear systems, and that
the validity of our model and calculations can be
easily con®rmed.

A related set of calculations on dendrite arrays
has been performed by Lu and Hunt [17]. Our
work should be viewed as complementary to their

model in the sense that our work is relevant to the
description of slender morphologies at moderate to
large dendrite spacings which their calculations

would have di�culty describing. Their calculations
also give a unique shape for a given dendrite spa-
cing. However, this result appears to depend on the
presence of surface energy. In particular, the exist-

ence of a dendritic solution in their model depends
on having an anisotropic surface energy. Aside
from a fundamental di�erence regarding the role of

surface energy, their calculations contain similar
features to our work, namely, a range of stable
array spacings which can be bounded by over-

growth and tip splitting conditions, as well as the
appearance of two distinct types of solutions.
The rest of the paper is organized as follows. In

Section 2 we present a brief summary of the integral
equation developed in [3]. In Section 3 we describe
the numerical method and solvability condition
used to obtain solutions to the integral equation. In

Section 4 we compare our theory to experimental
observations of dendritic growth and indicate its
relevance to the determination of the range of

stable spacings during dendritic growth. Our main
conclusions are summarized in Section 5.

2. AN INTEGRAL EQUATION FOR THE
DIRECTIONAL SOLIDIFICATION OF SLENDER

NEEDLE CRYSTAL ARRAYS

We consider the directional solidi®cation of a
binary alloy of composition C1 with a phase dia-

gram as given in Fig. 1. The alloy has initial freez-
ing temperature T0 and equilibrium freezing range
D T0. For the purposes of simplicity, the phase dia-

gram is assumed to consist of straight lines with
constants k and mL denoting the segregation coe�-
cient and liquidus slope, respectively. The freezing
range for the alloy is then given by

D T0=mLC1(kÿ 1)/k.
Figure 2 illustrates the directional solidi®cation

of an array of smooth needle crystals. The solidi®-

cation front moves in the ÿz direction at constant
speed V. The system is modeled using the one-sided
model for directional solidi®cation [18] in which dif-

fusion of solute in the solid is neglected and the
temperature ®eld is given by the ``frozen tempera-
ture'' approximation. The full details of the model

are given in [3]. The ``frozen temperature'' approxi-
mation assumes that the di�usion of heat is much
faster than the di�usion of solute in the liquid, and
that the di�usivity of heat in the liquid and the

solid is the same. In a coordinate frame moving

with the solidi®cation front, the imposed linear tem-
perature pro®le is then given by

T � T0 ÿ Gz; �1�
where T0 is the reference temperature de®ning
z = 0 (the liquidus isotherm for composition C1),
and G is a constant, positive temperature gradient
(it is warmer ahead of the front). We assume the
solidi®cation morphology consists of a periodic

array of identical, smooth needle crystals with rec-
tangular planform as depicted in Fig. 2. There are
four length scales used to quantify the morphology.

The ®rst is the position of the tips relative to the
reference temperature isotherm, ztip, which is

directly related to the tip undercooling by the tem-
perature gradient. The second is the tip radius r
given by the harmonic mean of the two principle

radii of curvature of the dendrite tip. Finally, the
dendrite spacings lx and ly are the spacings of the

Fig. 1. Phase diagram for a binary alloy.

Fig. 2. Schematic of array of needle crystals: (a) side view;
(b) top view.
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rectangular array in the x and y directions, respect-

ively.

In addition to these four morphological length

scales, there are three fundamental process length

scales which are determined by the solidi®cation

conditions [2]. The ®rst length scale is the di�usion

length lD=D/V where D is the di�usivity of solute

in the liquid and V is the imposed solidi®cation

speed. The second length scale is a thermal length,

lT=(kDT0)/G, which is related to the vertical extent

of equilibrium freezing in the imposed temperature

gradient. The last process length scale is the capil-

lary length lC=G/(kDT0). The capillary constant G
relates the melting temperature of a curved solid/

liquid interface Tk to that of a ¯at interface Tf

according to the Gibbs±Thomson equation

Tk=TfÿGk where k is the curvature of the inter-

face.

In [3] the relative sizes of the di�erent length

scales for dendritic solidi®cation are determined

from a study of experimental data. This analysis

suggests asymptotic scalings in terms of a small

non-dimensional parameter

E � lD=lT � 1: �2�
For a given set of solidi®cation conditions E is

known (a control parameter). The scalings for the

di�erent length scales are

r=lD � EP; �3�

�lx; ly�=lD � �Lx;Ly�; �4�
and

lC=lD � E2; �5�
where P, Lx, and Ly are taken to be O(1). In the

above equations, P corresponds to a scaled tip

radius parameter, and Lx, Ly are non-dimensional

dendrite spacings. Scaling (5) leads to a dendrite

shape which is independent of surface energy to

®rst approximation. The scaled tip position Z is

given by

Z � dztip=lD; �6�
where d is a parameter related directly to E by

d � 1

ln�1=E� : �7�

In the asymptotic theory we view d as an order

unity constant even for the smallest realistic values

of E because of the logarithmic dependence.

The dendrite shape is described in cylindrical

coordinates (r, z, y) relative to the center axis of the

dendrite. We describe the dendrite shape with non-

dimensional variables using the di�usion length lD
as our length scale. The surface of the dendrite is

then given by

r � lDR�z; y�; �8�

where z is the non-dimensional distance behind the

dendrite tip given by

z � zÿ ztip
lD

: �9�

In [3], we present a detailed asymptotic analysis of
the free boundary problem for the dendrite shape.

We solve the problem to determine the ®rst order
solution (neglecting corrections of order E) using
slender body theory and matched asymptotic

expansions [19]. The shape of the dendrite is
described in three regions: a tip region
[z= O(E)<<1], an inner region [z= O(1)], and a tail

region [z = O(1/E)>>1]. The three locally-valid sol-
utions are matched to each other to generate a uni-

formly valid composite solution for the whole
dendrite:

R � Rtip � Rin ÿ Rtip=in � Rtail ÿ Rtail=in: �10�
In the above, the tip solution, Rtip, and the solution
common to the matched tip and inner solutions,
Rtip/in, are identically given by an Ivantsov dendrite

with a scaled tip radius P,

Rtip � Rtip=in �
����������
2EPz

p
: �11�

The solution common to the matched tail and inner
solutions is given by

Rtail=in �
�����������������
E
LxLy

p
z

r
: �12�

The solution in the tail region, Rtail, is not axisym-
metric and not known explicitly. However, the
cross-sectional area of the tail solution is known

from conservation of solute to be

Atail � LxLyf1ÿ �1� �1ÿ k�Ez�ÿ1=�1ÿk�g: �13�
In addition, the liquid domain is truncated by the
formation of the eutectic phase at

zE �
1

E
CE ÿ C1
C1�1ÿ k� ; �14�

where CE is the eutectic composition. By

equation (12), the only information passed from the
tail region to the rest of the solution is the area
each dendrite occupies in the periodic array,

AL=LxLy. Thus, the details of the tail shape are
not necessary for determining the behavior of the
dendrite tip. The details of the tail region merely

describe how the rectangular planform is ®lled as
solidi®cation proceeds along the length of the den-
drite subject to the constraints (13) and (14).

Because these tail details do not a�ect the rest of
our solution, for the purposes of illustrating the

entire composite solution we shall approximate Rtail

by the e�ective radius Re�
tail of the cross-sectional

area of the tail from (13) as

Rtail1Reff
tail �

��������������
Atail=p

p
: �15�

This e�ective radius corresponds to the axisym-
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metric tail shape of a dendrite solidi®ed in a cylind-

rical tube of area AL with radius

RL �
����������������
LxLy=p

p
: �16�

The true composite solution should have an Rtail

which is not axisymmetric. However, these details

would only a�ect our plots of the composite sol-

ution and are irrelevant to the inner and tip sol-

utions. Our predictions of the tip radius and tip

undercooling are similarly una�ected.

The determination of the inner solution, Rin,

appearing in the composite solution (10) is some-

what complicated and is at the heart of the asymp-

totic analysis. In the inner region, the dendrite

appears as a slender body with

Rin�z; y� � E1=2 �R�z� �17�
where R(z) is O(1). Viewed from an O(1) distance

away, this slender dendrite appears to be a line

source of solute of strength q(z) extending from

0 < z <1. From conservation of solute at the sur-

face of the slender dendrite one obtains the follow-

ing relationship between the solute source strength

and the dendrite shape,

�R�z� �
�����������������������������
1

pd

Z z

0

q�z0� dz0
s

: �18�

The line source q(z) satis®es the following non-lin-

ear integral equation derived from the condition of

local equilibrium on the surface of the needle crys-

tal,

Z � dz � q�z�
4pd
ÿ q�z�

4p
ln

�R2

4z

� �
� gE

� �

�
Z 1
0

�q�z0� ÿ q�z��Gnear�z; z0� dz0

�
Z 1
0

q�z0�Garray�z; z0� dz0; �19�

where gE is Euler's constant,

Gnear�z; z0� � 1

4p
expfÿ�1=2��j z0 ÿ z j ��z0 ÿ z��g

j z0 ÿ z j ;

�20�
and

Garray�z; z0� �
X

i2�j2 6�0

X 1

4p

expfÿ�1=2��
������������������������������������������������������
�iLx�2 � � jLy�2 � �z0 ÿ z�2

q
� �z0 ÿ z��g������������������������������������������������������

�iLx�2 � � jLy�2 � �z0 ÿ z�2
q :

�21�
In the above equations, Gnear and Garray follow

from the Green's function for solute di�usion in a

moving frame of reference. The last integral in

equation (19) is the contribution to the solute ®eld

near the ``center'' dendrite that is generated by all

the other dendrites in the array. Solutions to the

integral equation must satisfy matching conditions

with the tip and tail solutions. Matching in the tail

region requires

q�1� � dLxLy; �22�
which is an imposed constraint if we prescribe the

spacings. Solutions to the integral equation auto-

matically satisfy this condition because as z 41
the dominant terms of (19) are

dz0
Z 1
0

q�z0�Garray�z; z0� dz0 as z41; �23�

which is only satis®ed if q(z) 0dLxLy as z 41.

Matching the inner solution to the tip solution

requires

P � q�0�
2pd

: �24�

Equation (24) thus links the dendrite tip radius to

the strength of the solute source at the tip.

The preceding description of the solution has

complicated details, but the idea is straightforward.

The determination of the composite solution (10)

hinges on ®nding Rin. To determine Rin we must

solve the integral equation (19) for q(z). The par-

ameters appearing in this equation are d, Lx and

Ly. For a given set of experimental conditions (C1,
V, G, and material parameters) the parameter d is

prescribed. Array spacings lx and ly appear as the

spacing parameters Lx and Ly in Garray. Arrays of

di�erent spacings are described by varying Lx and

Ly. The unknowns we need to determine are the

source strength q(z), the scaled tip radius P, and the

scaled tip position Z. By substituting for the R

term in the integral equation (19) and using

equation (18), we have a single equation for q(z)
and Z in terms of the parameters d, Lx and Ly. We

solve the non-linear integral equation to ®nd q(z)
and Z simultaneously. The scaled tip radius for the

dendrite is then given by (24). From q(z) we ®nd

the inner solution Rin from (18) and (17). Knowing

Rin and P, we can then calculate a composite

solution for the dendrite shape from equations

(10)±(15). The dimensional tip radius and tip under-

cooling of our solution is thus given directly by

r � EPlD �25�
and

DT � T0 ÿ Ttip � GZlD=d: �26�
A simpli®ed explanation as to why the spacing of

the array selects a tip radius is as follows [3].

Consider the directional solidi®cation of a single

dendrite along the center of a cylindrical tube of

dimensional radius Rl in a weak temperature gradi-

ent for which lD<<lT. Here, 2Rl mimics the dendrite
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spacing l. Provided the walls are far enough away,
we can describe the dendrite tip in dimensional vari-

ables as an Ivantsov paraboloid

R2
tip � 2r�zÿ ztip�; �27�

with

T0 ÿ Ttip

kDT0
� �r=2lD�E1�r=2lD�exp�r=2lD�: �28�

In the region far behind the tip, (zÿ ztip) = O(lT)

and the shape is controlled by the weak tempera-
ture gradient and the nearness of the dendrite sur-
face to the tube walls. The slowly varying Scheil-
type solution for the tail region can be determined

from conservation of mass to be

R2
tail � R2

lf1ÿ �1� �1ÿ k��zÿ ztip�=lT�ÿ1=�1ÿk�g: �29�
The basic idea behind the selection mechanism is
that there is only one self-consistent solution for the
shape which describes the transition from the

Ivantsov tip to the Scheil-type tail. In our full
model this transition is accomplished by the inner
solution and requires the solution of the integral

equation (19). For this simpli®ed explanation the
analogy is requiring the Ivantsov tip (27) and
Scheil-like tail (29) to match in a region in between
the tip and tail regions, where r<<zÿ ztip<<lT. In

this region the tail solution behaves like

R2
tail0R2

l
zÿ ztip

lT
: �30�

Hence, matching to the Ivantsov tip requires

R2
l

lT
� 2r: �31�

Thus, since we know lT from the temperature gradi-
ent, (31) gives a unique r for each ``spacing'' Rl.

While the above illustrates the idea of what is
underlying tip selection in our theory, the relation-
ship (31) is not correct because the two solution

pieces in our simple model, even when matched, do
not solve the free boundary problem. To determine
the correct relationship between the tip radius and

the dendrite spacing, one must correctly solve for
the transitional inner shape R which connects the
tip and tail solutions. This solution for R necess-
arily involves the interaction of the shape with the

neighboring dendrites in the array, and thus is
somewhat complicated, but the underlying mechan-
ism for selection is the same.

3. NUMERICAL SOLUTIONS TO THE INTEGRAL
EQUATION

To determine the dendrite shape we solve the

integral equation (19) for q(z) by discretizing the
domain 0 < z <1 into N subintervals and solving
for the unknown source strength q(z) at the N+ 1
node points. The resulting non-linear system of

equations has a solvability condition which deter-

mines Z. To solve the non-linear system we employ

an iterative technique based on linearizing the pro-

blem about a trial solution, coupled with a singular

value decomposition of the resulting linear problem

to facilitate the implementation of the solvability

condition. Readers not interested in the details of

the numerical method could skip forward to

Section 4.

We ®rst map the in®nite domain 0 < z<1 to

0 < s < 1 using the transformation

s � 1

1� z=a
; �32�

where a is a (constant) stretching parameter which

can be chosen to accommodate the behavior of the

solution for large z. The mapping takes the tip

(z= 0) to s = 1, z = a to s = 1/2, and the tail

(z=1) to s = 0. In principle, the precise value of

a should not a�ect the dendrite shape. However,

for solutions based on a ®nite number of points N,

extreme values of a cause the numerical method to

fail and/or converge poorly. If a is too large the

dendrite tip is poorly resolved. If a is too small the

behavior in the tail region is poorly resolved and

the solvability method fails. For small N, discrete

solutions depend weakly on a, but for ®nite a and

su�ciently large N the results are independent of

the choice of a. We take a= 5 for all our calcu-

lations as a compromise which balances the resol-

ution of the tip and tail regions, and take N

su�ciently large to obtain results that are indepen-

dent of a.
Corresponding to the mapped domain 0 < s< 1,

we de®ne the mapped functions

Q�s� � q�z�=d; �33�

f �s� � �
�R�z��2
4z

; �34�

gN�s; s0� � Gnear�z; z0�; �35�
and

gA�s; s0� � Garray�z; z0�: �36�
The mapped integral equation becomes

Z � da�1=sÿ 1� �Q�s�
4p
ÿ d

Q�s�
4p
�lnf �s� � gE�

� dIN�s� � dIA�s�; �37�
where

f �s� � s

4p�1ÿ s�
Z 1

s

Q�s0�
�s0�2 ds0; �38�

IN�s� �
Z 1

0

�Q�s0� ÿQ�s�� agN�s; s
0�

�s0�2 ds0; �39�

and
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IA�s� �
Z 1

0

Q�s0� agA�s; s
0�

�s0�2 ds0: �40�

The mapped integral equation (37) is singular

at s = 0. However, we know from the tail condition

(22) that Q(0) = LxLy.

We discretize the mapped domain 0 < s< 1

using N equal subintervals. The subintervals are

separated by N+ 1 node points given by

sj � j=N for j � 0; 1; . . . ;N: �41�
We denote the value of a function at the node point

j with a subscript, so that Qj=Q(sj), fj=f(sj),

(IN)j=IN(sj), and (IA)j=IA(sj). The tail condition

(22) gives

Q0 � LxLy; �42�
and the mapped integral equation (37) is evaluated

at all nodes except j= 0 to obtain

Z � da�1=sj ÿ 1� �Qj

4p
ÿ d

Qj

4p
�lnfj � gE�

� d�IN�j � d�IA�j : �43�

Equations (43) is expressed as a system of equations

for the unknowns Qj by writing each integral in fj,

(IN)j and (IA)j [see equations (38)±(40)] in terms of

the node values Qj. We ®rst note that the inte-

gration kernels are not well behaved in general: f(s)

has a singular kernel at s'= 0, gN(s; s') is singular

at s' = s, and gA(s; s') changes character rapidly

across s'= s. However, if we assume that Q(s) is

relatively smooth over the interval 0 < s < 1, then

we can expand Q(s) as a Taylor series near each

node point. To illustrate, consider the generic inte-

gral

I �
Z sN

s0

Q�s0�K�s0� ds0 �44�

where K(s') is some known kernel. The range of in-

tegration is broken into subintervals of width

D s = 1/N with each subinterval centered on a node

point:

I �
Z s1=2

s0

Q�s0�K�s0� ds0 �
XNÿ1
k�1

Z sk�1=2

skÿ1=2
Q�s0�K�s0� ds0

�
Z sN

sNÿ1=2
Q�s0�K�s0� ds0: �45�

In each subinterval sk ÿ 1/2<s'< sk + 1/2 we expand

Q(s') using a Taylor series

Q�s0� � Q�sk� � �s0 ÿ sk�Q0�sk� � . . . ; �46�
then substitute the expansion into each integral of

(45) and retain the leading order term. Thus, the

integral I is approximated by

I1Q0

Z s1=2

s0

K�s0� ds0 �
XNÿ1
k�1

Qk

Z sk�1=2

skÿ1=2
K�s0� ds0

�QN

Z sN

sNÿ1=2
K�s0� ds0: �47�

While the kernels K(s') may not be well behaved in

our problem, the kernels are known explicitly.

Furthermore, the subinterval integrations indicated

on the right side of equation (47) can all be evalu-

ated explicitly for each of the kernels in f(s), IN(s)

and IA(s). Using this technique, we can write the

integrals fj, (IN)j and (IA)j as weighted linear sums

of the unknowns Qk as

fj1
XN
k�0
F jkQk; �48�

�IN�j1
XN
k�0
N jkQk; �49�

and

�IA�j1
XN
k�0
AjkQk; �50�

where F jk, N jk and Ajk are coe�cient matrices

determined by integrating the kernels over the kth

subinterval. Substituting the approximations (48)±

(50) into equation (43) and combining with

equation (42), we obtain a non-linear system of

N+ 1 equations for the N + 1 unknowns Qj. In

addition, Z is also unknown. As will be shown in

equation (67), Z is determined by a solvability con-

dition.

Since the non-linearity is due to the logarithm

term of (43), the non-linearity is weak. We can thus

formulate the non-linear system of equations for Qj

as a linear system in which the matrix coe�cients

depend weakly on the unknown solution Q= (Q0,

Q1, . . . , QN). This formulation is represented in

compact form byXN
k�0

Ajk�Q�Qk � �bj �Zb�j for j � 0; 1; . . . ;N; �51�

where Ajk(Q) is the matrix of weakly varying coe�-

cients, bj and b*
j are known constants, and the j= 0

equation corresponds to (42). Finding a discrete sol-

ution to the integral equation is equivalent to sol-

ving the non-linear system (51).

Say for the moment we ignore the weak depen-

dence of Ajk on Q and determine the matrix coe�-

cients using Ajk(Q
0) where Q0 is a reasonable

approximation to our desired solution Q. This leads

to an inhomogeneous linear system for Q,XN
k�0

Ajk�Q0�Qk � �bj �Zb�j for j � 0; 1; . . . ;N: �52�
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The Fredholm alternative theorem states that (52)

has a solution only if the homogeneous problem,XN
k�0

Ajk�Q0�Qk � 0 for j � 0; 1; . . . ;N; �53�

has only the trivial solution Q= 0. In this case the

solution to (52) is unique and exists for any right-

hand side. Conversely, if the homogenous problem

(53) has a non-trivial solution, then solutions to the

inhomogeneous problem (52) exist only if the right-

hand side satis®es a solvability condition, and the

resulting solution is not unique.

In the context of our solutions for the dendrite

shape, if the homogeneous problem (53) has only

the trivial solution then solutions exist for any Z.
We could vary Z to generate a family of solutions

Q(s) with di�erent tip radii determined by

P = q(0)/(2pd) = Q(1)/(2p). Presumably we could

choose a Z that would give us a tip radius consist-

ent with an externally imposed tip selection criteria

(e.g. marginal stability). This is the philosophy used

in [9] but with a family of dendrite shapes con-

strained to be paraboloids. If, however, (53) has a

non-trivial solution, then for solutions to (52) to

exist we must choose Z to satisfy the solvability

condition. The solution Q to (52) is then not unique

and can be adjusted by arbitrary additions of the

solution to the homogeneous problem. Thus there

is a fundamental issue regarding the uniqueness of

Z and associated solutions Q(s) which hinges on

the existence of non-trivial solutions to the homo-

geneous problem. We ®nd that for any reasonable

choice of Q0 the homogeneous linear problem (53)

has a non-trivial solution. Thus Z is necessarily

determined by a solvability condition for solutions

to exist.

Of course, the full problem (51) is non-linear, so

the solvability theory described above is modi®ed

somewhat. If the problem was linear, as in (52),

then there would be in®nitely many solutions by the

Fredholm solvability theory. But in the non-linear

problem (51), the degree of freedom is eliminated

because the matrix coe�cients actually depend on

the value of Q. Varying Q changes the linear part

of the problem, and hence the solution. It is only a

special Q that gives the matrix coe�cients consist-

ent with Q being a solution to the matrix problem.

Thus solutions to the non-linear system (51) will be

distinct and not form a continuous family of sol-

utions as would be the case in the linear problem.

Solutions to the non-linear system (51) are therefore

characterized by distinct Q with an associated value

of Z determined by a solvability condition. It fol-

lows that there is a selected tip radius, tip under-

cooling and dendrite shape for a given set of

solidi®cation conditions and dendrite spacings.

In view of the above, we determine the solution

Q to the non-linear problem (51) as an iterative

re®nement of an initial guess Q0. At each step of

the iteration we solve a linear problem to ®nd an

improved solution. Let

Fj�Q� �
XN
k�0

Ajk�Q�Qk ÿ �bj ÿZb�j : �54�

Solutions to the non-linear problem are given by

Fj�Q� � 0 for j � 0; 1; . . . ;N: �55�
To derive a basis for an iterative scheme we linear-
ize Fj(Q) about some trial solution Q= Q0. Thus

Fj�Q�1Fj�Q0� �
XN
k�0

Bjk�Q0��Qk ÿQ0
k�; �56�

where

Bjk�Q0� � @Fj

@Qk

����
Q�Q0

� Ajk�Q0� �
XN
i�0

@Aji

@Qk

����
Q�Q0

Q0
i :

�57�
We then use a variant of Newton's method to solve
the non-linear problem by replacing (55) by the lin-

earization (56) and rearranging to obtain a linear
system for the unknowns Qk in which the matrix

coe�cients and right-hand side depend on the trial

solution Q0,XN
k�0

Bjk�Q0�Qk � ~bj�Q0� � Zb�j ; �58�

where

~bj�Q0� � �bj �
XN
i�0

XN
k�0

@Aji

@Qk

����
Q�Q0

Q0
kQ

0
i : �59�

Equation (58) forms the basis for a convergent

iterative scheme to compute the solution to the

non-linear problem. We choose an initial guess Q0,
solve for the improved solution Q, then use the new

solution as an initial guess for the next iteration.

The iteration proceeds until Q converges, at which
point we have a solution to the non-linear problem.

We now turn to the solution of the linear pro-

blem (58). As mentioned previously, there is a fun-
damental issue as to whether there are non-trivial

solutions to the corresponding homogeneous pro-

blem. We have found that non-trivial solutions do
exist, which means that (i) there is a solvability con-

dition for the right-hand side of (58) which deter-
mines Z, and (ii) the linear problem is inherently

ill-conditioned. To deal with these aspects of the

problem, we solve the linear system using a singular
value decomposition [20]. The singular value de-

composition of matrix B is given by

B �
XN
i�0

siuivTi ; �60�

where superscript T denotes the vector transpose,

and where the singular values si and orthonormal
singular vectors ui and vi satisfy Bvi=siui. The
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singular value decomposition of matrix B is found

using standard LAPACK numerical subroutines.

Once si, ui and vi are known, the solution to the

original matrix problem from (58),

BQ � ~b�Zb�; �61�
is given by

Q �
XN
i�0

civi; �62�

where

ci � uTi �~b�Zb��
si

: �63�

Singular values si near zero indicate ill-conditioning

and the possible existence of non-trivial solutions to

the homogeneous problem. For reasonable choices

of the system parameters the singular value spec-

trum consists of a smoothly decaying portion,

s0>s1> . . . >sN ÿ 1>0, and an isolated singular

value sN10. This last singular value goes to zero

rapidly as N increases. We interpret this near-zero

singular value as indicating the existence of a non-

trivial solution vN to the homogeneous problem

BvN=0.

If the homogeneous problem were exactly singu-

lar, sN would be identically zero and the corre-

sponding solvability condition for the right-hand

side would be that uTN(bÄ+Zb*) = 0, which can be

ensured by choosing

Z � ÿ uTN
~b

uTNb
� ; �64�

which makes cN identically zero. The resulting sol-

ution for the linear problem would be given by

Q �
XNÿ1
i�0

civi � ~cNvN : �65�

In the above, the sum on the right side does not

contain a term for i= N because cN=0 by the sol-

vability condition. The second term on the right-

hand side represents the solution to the homo-

geneous problem. The constant cÄN is arbitrary,

re¯ecting the fact that the solution is not unique.

This homogeneous solution vN contains many oscil-

lations, typically on the scale of the interval discreti-

zation D s = 1/N. Adding di�erent amounts of this

solution results in discrete solutions Q(sj) with

di�erent amounts of ``smoothness''. In particular,

we have found that there is a single value of cÄN
which makes the solution very smooth. Since we

expect a smooth and well behaved Q(s) on physical

grounds, it seems natural to choose cÄN to make

Q(sj) as smooth as possible. We de®ne the smooth-

ness of the discrete solution Q(sj) as the norm of

the derivative kQ'k where

kQ0k �
������������������������������������������
1

N

XN
k�1

Qk ÿQkÿ1
Ds

� �2

vuut ; �66�

and choose cÄN to minimize kQ'k.
While the above method is appropriate if sN is

exactly zero, in our case sN is only approximately

zero (usually in the range 10ÿ5±10ÿ10, depending on

N) because we are solving a discrete version of the

integral equation. Thus, the solution to the homo-

geneous problem is not quite exact, and so (64) is

only approximate. Technically, for non-zero sN, the
self-consistent relation between Z and the ampli-

tude of the last mode cÄN is

Z � ÿ uTNb
�

uTN
~b
� sN

~cN

uTN
~b
; �67�

so when we choose a speci®c cÄN to obtain a smooth

solution, Z is actually perturbed slightly from the

value given by the strict solvability condition (64)

by an amount proportional to sN. The e�ect on Z
is negligible for all practical purposes. The primary

e�ect is that it allows us to satisfy the non-linear

system of equations ``exactly'' for ®nite N even if

sN is not exactly zero. If we were to use the strict

solvability condition (64) then the errors in satisfy-

ing the non-linear equations would be of the same

size as the error associated with the solution to the

homogeneous linear problem, of order sN. Since

sN40 as N41, there is really no di�erence

between either expression for Z. The important

result is that at each iteration we obtain a smooth

solution and the associated Z dictated by the solva-

bility condition.

As the iteration scheme proceeds, Q and Z each

converge. We stop the iteration scheme when the

relative change in Q is less than a prescribed toler-

ance,

kQÿQ0k
kQk < tol; �68�

where

kQk �
�������������������������������

1

N � 1

XN
k�0
�Qk�2

vuut : �69�

Unless stated otherwise, we use tol = 10ÿ8. Our

converged solutions satisfy the non-linear system of

equations (51) with a residual kFk of less than 10ÿ8.
The numerical algorithm we use to solve the dis-

cretized integral equation (51) is thus summarized

as follows:

1. Choose an initial guess Q0;

2. Determine the coe�cients Bjk, bÄj and b*
j of the

linear problem (58);

3. Find the singular value decomposition of B;

SPENCER and HUPPERT: SOLIDIFICATION OF DENDRITIC ARRAYS 2653



4. Identify the near-zero singular value sN and cor-
responding singular vector vN as a solution to

the homogeneous matrix problem;
5. Calculate improved solution Q from (65) by

choosing cÄN to minimize kQ'k with self-consistent

Z given by (67); and
6. Check for convergence using (68). If the solution

has not converged let Q= Q0 and repeat steps

2±6. If solution has converged and solves the
equations, accept it as the solution to the non-
linear system.

4. RESULTS

Figure 3 shows a typical dendrite shape as calcu-
lated with our theory. Each of the locally valid sol-
utions is shown along with the composite solution

for the entire shape. For purposes of illustration,
we have used the axisymmetric tail solution Rtail

from (15). The composite shape for the dendrite is

described well by the inner solution for up to about
10 di�usion lengths behind the tip. The composite
solution deviates noticeably from a parabolic tip

within 1 di�usion length of the tip. The composite
and tail solutions approach each other well below
the range of z shown because the smallness of E and
k appearing in the tail solution (13).

To demonstrate the relevance of our asymptotic/
numerical solutions to the growth of dendritic
arrays during directional solidi®cation, we present a

comparison of the predictions of our theory to ex-
perimental observations on dendritic growth mor-
phologies by Somboonsuk, Mason and Trivedi

(SMT) [21]. In these experiments, an alloy of SCN±
acetone was directionally solidi®ed between two clo-
sely spaced plates. The tip radius r and dendrite
spacing lx were measured as a function of the tem-

perature gradient and solidi®cation velocity. From
the experimental data, we can directly evaluate the
parameters d and Lx. We can also evaluate Ly by

assuming that the plate separation corresponds to
ly. These three parameters determine the solution in
our theory, which has a unique tip radius and tip

undercooling. Here we present comparisons of tip
radius measurements.{
Table 1 summarizes the solidi®cation conditions

and dendrite measurements from the SMT exper-
iments. Table 2 gives the corresponding non-dimen-
sional input parameters which appear in our theory,
along with the measured value of the scaled tip

radius Pexp and our calculated values for the tip
radius Ptheory and the tip position Ztheory.
Figures 4 and 5 summarize the comparison of

our theory with the measured data. Figure 4 com-

pares the data at ®xed nominal temperature gradi-
ent G= 67 K/cm with varying velocity (data A0±

E0). The agreement of theory and experiment is
quite good at small E (where the asymptotic theory

for E<<1 is expected to be valid). At larger values of
E the theory gives a tip radius which is smaller than

the experimental value by a factor of 2±3. Figure 5
shows the comparison of theory and experiment at

®xed nominal velocities V= 65 mm/s (data B1±B5)
and V= 10 mm/s (data D1±D5) with varying tem-

perature gradient. As with the comparison at ®xed
temperature gradient in Fig. 4, the theory and ex-

periment agree well for small E but the predicted tip
radius is too small by a factor of 1.5±2 for larger

values of E (>0.03).

We emphasize that our theory contains no adjus-
table parameters. That our theory gives a tip radius

near the experimental measurements of dendrites
without regard to surface energy considerations is a

remarkable result. The implication of our theory is
that, for given dendrite spacings and experimental

conditions, there is a selected tip radius and tip
undercooling for the dendrite which comes about

due to the non-linear interactions in the array. This
selection of the tip radius is independent of the sur-

face energy, and thus the selection mechanism is
fundamentally di�erent from the marginal

stability [4], microsolvability [5, 6], and interfacial-
wave [7] theories for tip selection in single-com-

Fig. 3. Calculated dendrite shape. The composite solution
consists of appropriately matched tip, inner, and tail sol-
utions. The horizontal scale is expanded to show the
details of the slender shape. The tail solution is taken to
be axisymmetric for purposes of illustration (see text).
Input parameter values are k= 0.1, E= 0.0116, Lx=6.47,
Ly=7.75. This solution has a scaled tip radius P = 10.8

and a scaled tip position Z � 2:24.

{Experimental data on the tip undercooling was not
reported so no similar comparison can be made for the tip
undercooling.
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ponent dendrites. While we do not claim that our

model is universally appropriate, the results so far

suggest that it may be useful for describing main-

stream dendritic growth in a band of velocities that

are (1) su�ciently above the cell-to-dendrite tran-

sition at low velocities and (2) su�ciently below the

high velocity regime where the capillary length and

the tip radius become comparable and for which

the e�ect of surface energy on the tip undercooling

is not negligible.

Figures 6 and 7 summarize the tip characteristics

of solutions to our model as a function of the con-

trol parameter E and the dendrite spacing. For the

®gures, we assume that l= lx=ly. For a given ex-

periment we would know E. Each E = constant

curve corresponds to a family of solutions parame-

terized by the spacing. For each spacing our theory

predicts a unique tip radius and undercooling.

Figure 6 shows the variation of the non-dimen-

sional tip radius (Peclet number) as a function of

the spacing for di�erent values of E. For a given

value of E, the tip radius generally increases with

the dendrite spacing. For nonzero E, each curve on

Fig. 6 terminates at a critical value of L because of

a breakdown in the slender-body scalings we have

used. In particular, following the E = 0.01 family of

solutions upwards for increasing L, the correspond-

ing dendrite shape develops a bulb-like tip which

then pinches o� where the family of solutions termi-

nates. As E decreases this breakdown of the scalings

is pushed to larger values of L, but it does not dis-

appear. Thus, in the context of our asymptotic the-

ory, it is not possible to ®nd solutions for ®nite E as
L41 because our scalings break down. However,

it does appear that for small E the tip radius tends

to a constant as L becomes large before the scalings

fail. Figure 6 also shows that for a ®xed spacing L,
the tip radius approaches a limiting value as E4 0.

Finally, we note that for small spacings the tip

radius is insensitive to E and varies roughly like

r10.01l. It is not feasible to investigate the limit

of zero spacing in our model because the in®nite

sums in (21) converge too slowly.

Figure 7 shows the variation of the non-dimen-

sional tip undercooling as a function of the spacing

for di�erent values of E. For small L the undercool-

ing increases with spacing. Each curve has a maxi-

mum undercooling followed by the termination of

Table 1. Data from SCN±acetone experiments. Results are taken from Table 2 of SMT for the velocity range 4 mm/sEVE100 mm/s,
above the cell-to-dendrite transition at V11 mm/s. If two measurements were reported for a given experimental condition we have listed
the average measurement. The published data is for plate separations of either 150 or 500 mm, but the plate spacing for each measurement
is not listed. Figure 5 of SMT suggests that most of the measurements are for 150mm, so we set ly=150 mm. Each data point is labeled

for future reference

Label V (mm/s) G (K/cm) lx (m m) ly (mm) r(mm)

A0 100 67.0 96.8 150.0 2.0
B0 65.6 65.6 125.2 150.0 2.3
C0 25.5 66.7 174.2 150.0 4.0
D0 10.7 66.85 240.25 150.0 6.25
E0 3.97 68.0 326.0 150.0 10.05
B1 65.3 29.6 181.0 150.0 2.86
B2 65.8 42.4 150.0 150.0 2.56
B3 65.9 52.0 143.0 150.0 2.30
B4 65.0 65.6 129.8 150.0 2.455
B5 64.3 77.0 119.85 150.0 2.40
D1 10.6 29.9 370.0 150.0 5.25
D2 10.6 41.0 332.5 150.0 5.73
D3 10.6 46.7 265.0 150.0 5.27
D4 10.5 63.7 245.25 150.0 5.40
D5 10.8 77.0 205.95 150.0 5.73

Table 2. Non-dimensional parameters and results. The non-dimensional parameters are determined from the experimental data of Table 1
using the materials parameters listed in SMT: D= 1.27�10ÿ5 cm2/s, C1=5.5 mol pct acetone, mL=ÿ 2.22 K/mol pct acetone,
k= 0.10, Tm=331.24 K and with T0=Tm+mLC1. The theoretical results are determined from our numerical solution to the integral

equation with N = 160 points. The same results are obtained with N = 80 points to within one unit of the precision indicated

Label E d Lx Ly Pexp Ptheory Ztheory

A0 0.00774 0.206 7.62 11.8 20.3 17.3 3.31
B0 0.0116 0.224 6.47 7.75 10.3 10.8 2.24
C0 0.0302 0.286 3.50 3.01 2.66 2.2 0.92
D0 0.0722 0.380 2.02 1.26 0.729 0.43 0.61
E0 0.198 0.617 1.02 0.469 0.159 0.06 0.69
B1 0.00524 0.190 9.31 7.71 28.1 19.8 4.42
B2 0.00745 0.204 7.77 7.77 17.8 14.7 3.26
B3 0.00912 0.213 7.42 7.78 13.1 13.0 2.76
B4 0.0117 0.225 6.64 7.68 10.8 11.0 2.21
B5 0.0138 0.234 6.07 7.59 8.78 9.6 1.90
D1 0.0326 0.292 3.09 1.25 1.34 0.6 0.6
D2 0.0447 0.322 2.78 1.25 1.07 0.53 0.64
D3 0.0509 0.336 2.21 1.25 0.864 0.48 0.64
D4 0.0701 0.376 2.03 1.24 0.637 0.43 0.61
D5 0.0824 0.401 1.75 1.28 0.591 0.40 0.60
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the family of solutions due to the breakdown of our

scalings as mentioned above. Corresponding to the

behavior in Fig. 6, the point of termination moves

to larger L as E decreases. Further, the maximum of

the curve also moves to larger L and becomes less

sharp as E decreases. We do not know if the feature

of a maximum in the undercooling curves corre-

sponds to a physical e�ect, or, because it occurs

relatively close to where a family of solutions termi-

nates, it is an indication that the scalings are start-

ing to fail.

The information from Figs 6 and 7 is combined

in Fig. 8 to show how the non-dimensional under-

cooling is related to the Peclet number of the tip

for di�erent values of E. For each curve, the spacing

is increasing as the Peclet number increases. In gen-

eral, the trend is that the tip undercooling increases

with Peclet number, then passes through a maxi-

mum at Peclet number 10.15 before the solution

Fig. 4. Comparison of theoretical predictions for the scaled tip radius P to the experimental data.
Results are for nominal temperature gradient G= 67 K/cm (data A0±E0). The theory assumes that E is

small.

Fig. 5. Comparison of theoretical predictions for the scaled tip radius P to the experimental data.
Results are for nominal velocity V= 65mm/s (data B1±B5) and nominal velocity V= 10 mm/s (data

D1±D5). The theory assumes that E is small.
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family terminates at larger Peclet number. Since our

theory is based on p<<1, it may very well be true

that the maxima of the undercooling curves (which

is the same feature present in Fig. 7), and the sub-

sequent termination of the solution family is

because the Peclet number of the solutions becomes

too large to be described by our theory.

For reference, we have also plotted on Fig. 8 the

undercooling relationship for the Ivantsov

dendrite [8], Y= (p/2)E1(p/2)exp(p/2). In our the-

ory we assume p = O(E) and neglect corrections of

O(E). Thus, in the context of our small Peclet num-

ber theory, the Ivantsov relation would be given by

Y 0(p/2)(ÿln(p/2)ÿ gE). We note that as E4 0

there is a collapse of our solution curves onto the

small Peclet number Ivantsov relation. Thus, in this

sense, we recover the Ivantsov solution in the limit

E4 0. However, the collapse of the curves onto the

Ivantsov solution does not hold for Peclet num-

ber 4 0. The reason is because, according to Fig. 6,

as p 4 0, the dendrite spacings are necessarily

going to zero as well. Thus, as p 4 0 in Fig. 8, the

solutions become less Ivantsov-like because the

neighboring dendrites are actually getting closer. So

it is not surprising that the Ivantsov relation is not

recovered as p4 0.

Since E measures the relative strength of the tem-

perature gradient, we can interpret our E 4 0 results

in terms of isothermal dendrite growth. In particu-

lar, the periodic boundary conditions for a unit cell

of our array are equivalent to having side walls for

the cell boundary. Thus, in the limit of E4 0 our

Fig. 6. Theoretical calculations of the non-dimensional tip radius p = r/lD as a function of the dendrite
spacing L= l/lD for di�erent values of the control parameter E.

Fig. 7. Theoretical calculations of the non-dimensional tip undercooling Y = DT/kDT0 as a function of
the dendrite spacing L= l/lD for di�erent values of the control parameter E.
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theory describes the growth of a single isothermal

solute dendrite along the axis of a tube. In our

array geometry, l would be the side length of a

square tube. In an experiment, we would impose

the undercooling Y and measure the tip radius and

growth velocity. In our theory, if Y is known then

L= lV/D is prescribed from Fig. 7. Since we know

D and the dimensions of the tube, L gives us the

growth velocity as V= LD/l. From L we also ®nd

p = rV/D from Fig. 6 which determines the tip

radius as r = pD/V. Thus, using Figs 6±8, the pre-

dictions of our theory in the case of E 4 0 could be

tested directly by experiments in which isothermal

solute dendrites of known undercooling are grown

in square tubes.

In our comparison to the experimental data we

used the experimentally measured spacings to pre-

dict the tip radius. In our model, for a given set of

solidi®cation conditions there exists a family of

steady-state solutions parameterized by the spacings

of the array. Our steady-state theory thus

provides no direct means of determining which spa-

Fig. 8. Theoretical calculations of the non-dimensional tip undercooling Y as a function of the non-
dimensional tip radius p for di�erent values of the control parameter E. Along each curve the spacing L

increases as p increases.

Fig. 9. A bound on the range of stable spacings. The solid curve shows the variation of the tip radius
parameter P with the dendrite spacing parameter Lx in our theory for the solidi®cation conditions of
data point A0. Also shown is a lower bound for array stability given by the Warren±Langer theory for
array overgrowth [9], and an upper bound for the tip radius from the marginal stability theory [4]. The
maximum stable tip radius translates to an upper bound for stable array spacings. The single exper-

imental data point (x) is indicated within the stability bounds and close to our theoretical curve.

SPENCER and HUPPERT: SOLIDIFICATION OF DENDRITIC ARRAYS2658



cing will be observed in practice. This is not

surprising, since the selection of dendrite spacings

is an intrinsically time- and history-dependent

phenomenon [22, 13, 14]. However, our steady-state

theory contains some features which may be rel-

evant to determining the range of stable dendrite

spacings which exist for a given set of experimental

conditions [13, 14]. To illustrate this idea, we con-

sider how the predictions of our theory depend on

the dendrite spacing. The variation of the tip radius

parameter P with the dendrite spacing parameter

Lx for data point A0 is shown in Fig. 9. As with

the general trend displayed in Fig. 6, the tip radius

increases with increasing dendrite spacing.

To determine which array spacings are stable we

consider the instability mechanisms which would

a�ect the dendrite array [13] in the context of our

model. First, if the dendrites are too close together,

then the competition between the tips can cause

some members of the array to be overgrown. This

gives a lower bound on stable array spacings.

Second, if the tip radius becomes too large, then

the dendrite tip is unstable to tip splitting. Since

our results have the critical feature that the tip

radius increases with dendrite spacing, a maximum

stable tip radius gives an upper bound on array

spacings which can be stable. While the rigorous

analysis needed to predict these upper and lower

stability bounds in the context of our model has

not yet been carried out, we can employ the results

of related models to illustrate how the above ideas

give a range of stable array spacings which are rel-

evant to experiments.

For the lower stability bound, we note that our

approach is similar to the description of steady-

state arrays in Warren and Langer [9]. The primary

di�erence is that they assume that the dendrite

shape is parabolic, whereas we solve for the shape.

They also assume that the tip radius is determined

by a selection condition based on the surface energy

and involving the parameter s*, whereas our tip

radius is determined by the array spacing. Aside

from these fundamental philosophical di�erences,

the results are similar in that both give a family of

steady-state solutions parameterized by the array

spacing. In their paper, Warren and Langer exam-

ined the stability of an array with respect to the

overgrowth mechanism, and found that there was a

critical spacing above which the array was stable.

Although we have not yet evaluated the stability of

our array solutions using the approach set forth in

Warren and Langer, we do expect that a similar

stability bound will be present. For purposes of il-

lustration, we have indicated where the Warren±

Langer stability boundary would be in Fig. 9

(Lx=4.6), based on the results presented in Fig. 4

of Warren and Langer. Array spacings smaller than

this spacing are unstable to the overgrowth instabil-

ity, while array spacings greater than this spacing

are stable with respect to the overgrowth of neigh-

boring dendrites.

To determine an upper stability bound for array

spacings, we consider the marginal stability con-

dition for a dendrite tip [4]. While the marginal

stability condition of [4] applies to a single-com-

ponent dendrite, this condition can be readily trans-

lated to an equivalent condition for directional

solidi®cation of a binary alloy (see equation (2.18)

of [9]). In terms of our scalings, the marginal stab-

ility condition gives a maximum stable tip radius

approximated by

P� � 1

E

���������
2lc
lDs�

s
; �70�

where s* = 0.025, and we have dropped corrections

of order E. For the experimental conditions of data

point A0, the maximum stable tip radius is

P* = 24.8. For purposes of comparison, we have

indicated this maximum stable tip radius on Fig. 9.

Based on our relationship between tip radius and

array spacing, the maximum stable tip radius corre-

sponds to an upper stability bound for the array of

about Lx=10.7. Stable tip radii and spacings are

expected to lie on the theoretical curve between the

two stability boundaries shown, and it is seen that

the data point lies within the range of stability and

close to the theoretical curve.

Thus, using the two stability bounds from other

theories in conjunction with our relationship

between the tip radius and the dendrite spacing

puts a bound on the stable array spacings. Over

this range of stable spacings there is a surprisingly

large variation in the predicted tip radius. While the

precise determination of the stability bounds for

Fig. 9 using the scalings and equations of our

model may change the stability bounds somewhat

from the Warren±Langer and marginal stability

bounds, we expect that the essential feature of an

upper and lower bound on the range of stable spa-

cings will remain.

In the Introduction we mentioned that the selec-

tion of a tip radius and tip undercooling by the spa-

cing was due to the presence of interaction e�ects

between dendrites. Such selection was not found in

the limiting case for which the spacing was much

less than the di�usion length as studied for cellular

morphologies [15, 16]. The cellular work and our

results appear to be contradictory because, in the

absence of surface energy considerations the cellular

solutions have two degrees of freedom but our sol-

utions have only one degree of freedom.

Unfortunately, a direct comparison between our

dendrite theory and these cellular theories is not

possible because each involves di�erent speci®c

assumptions about the relative sizes of length scales

to formulate asymptotic solutions. We employ slen-

der body theory to describe dendrites for which the

di�usion length lD is much smaller than the thermal
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length lT and for which the non-dimensional under-

cooling is small. The cellular work is concerned

with ``fat'' ®nger solutions which occur for lD/

lT=O(1) and for which the non-dimensional under-

cooling is order unity. Despite this discrepancy in

length scale assumptions, however, it is possible to

show how the presence of selection in our results

does not contradict the absence of selection in the

cellular results. In the limit of small spacings, the

solutions to our integral equation recover the two

degrees of freedom exhibited by the cellular sol-

utions.

We reconsider our integral equation (19) in the

limit of small spacings. We rescale the parameters

and unknowns using lD/lT=E/d<<1, l/lD=d1/2 ~L,
q(z) = dqÄ(z), with other variables scaled as before

and d = 1/ln(1/E)<<1. To leading order in d, the sec-

ond term on the right hand side of (19) and the

integral involving Gnear do not appear. Further, the

integral involving Garray in (19) can be approxi-

mated for small spacings using the asymptotic

results in Appendix C of [23]. To leading order, the

integral equation becomes

Z � z � ~q�z�
4p
� 1

~Lx
~Ly

�Z z

0

~q�z0� dz0

�
Z 1
z

~q�z0� exp�zÿ z0� dz0
�
: �71�

The exact solution to the integral equation is

~q�z� � ~Lx
~Ly 1� m Z ÿ 1ÿ

~Lx
~Ly

4p

" #
exp�ÿmz�

( )
�72�

where

m � ÿ1=2�
��������������������������������
1=4� 4p= ~Lx

~Ly

q
: �73�

In contrast to the numerical solutions for the line

source q(z) in which the tip undercooling Z is deter-

mined by a solvability condition, here the line

source strength qÄ(z) has an extra degree of freedom

associated with the unspeci®ed tip undercooling Z.
Thus, we ®nd that if we consider our integral

equation in the limit of small spacings then there is

an additional degree of freedom in the solutions

which corresponds to the ®ndings on cellular sol-

utions in the limit l/lD<<1, lD/lT=O(1) and ztip/

lD=O(1) [15, 16]. The selection mechanism in our

model is due to the dendrite spacings being ®nite

and disappears in the limit of small spacings.

Another point mentioned in the Introduction is

that our model is based on the idea of using smooth

needle crystal dendrites to describe the character-

istics of real dendrites. Since real dendrites develop

sidebranches, the success of our model in predicting

dendrite behavior relies on the assumption that a

dendrite with sidebranches has the same ``average''

behavior as a smooth needle crystal. The encoura-

ging agreement between experiment and theory

suggests that at least in some parameter ranges this

is a good approximation. This is not to say, how-
ever, that sidebranches are irrelevant to dendritic
growth. Our results do not necessarily rule out

dynamic tip selection mechanisms associated with
sidebranch formation.
Our results do not necessarily displace any of the

surface-energy-based selection criteria either. To be
fair, without surface energy our needle crystals, as

with the Ivantsov dendrite, are unstable to small
disturbances; for the theory to be truly complete
the e�ect of surface energy should be included. And

it is not obvious what surface energy will do to our
selection theory. For example, when surface energy
is added to the Ivantsov dendrite, smooth solutions

only exist if the surface tension is anisotropic. It
might be the case that by adding surface tension to

our model it will no longer be possible to describe
smooth solutions, but this would need to be demon-
strated. It is also possible that surface tension may

act as it does in the Ivantsov problem and select a
tip radius. In this case a selected tip radius would
result in the selection of a unique dendrite spacing

in our theory.
An important feature associated with real den-

drites that we can not reproduce with smooth nee-
dle crystals is the true mechanism for determining
the upper stability boundary for dendrite spacings.

The actual mechanism of instability at large spa-
cings is not tip splitting but the outgrowth of ter-
tiary sidebranches [13], which we can not describe.

However, an upper stability boundary determined
by tip splitting is still relevant in the sense that it

constrains the range of stable spacings from above.
Sidebranches or no, it should not be possible to
have a tip radius which exceeds the critical radius

for tip splitting, so the tip splitting criteria does
give useful information about what spacings are
de®nitely not stable. Since the experiments show

that the tertiary sidebranch mechanism controls the
upper limit on spacings, it is expected that the cor-
responding stability boundary will be at a smaller

spacing than the stability boundary for tip splitting,
and will further reduce the range of stable spacings.

But since the tertiary mechanism is clearly not a
feature of our branchless solutions we make use of
the tip splitting mechanism to at least obtain an

upper bound on where the upper stability boundary
lies.

As a ®nal point, the fact that the integral
equation we are solving is non-linear means that
there exists the possibility for more than one sol-

ution to exist for a given set of parameters. We
have found that, in addition to the solution which
we have identi®ed as a ``dendrite,'' there is also a

distinctly di�erent ``type-2'' solution for the same
set of parameters. This second solution has a much
larger tip radius and larger tip undercooling than

the ``dendrite'' solution. Figure 10 shows the solute
line source strengths which are determined from the
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integral equation (37) for the dendrite and type-2

solutions. Figure 11 shows the di�erence in the sol-

ution shapes. It is tempting to speculate that the

type-2 solution is a vestige of the cellular solidi®ca-

tion morphology that has survived well into the

dendritic parameter regime. However, even if the

type-2 solution is related to the cellular mor-

phology, our model is only appropriate for describ-

ing ``slender'' morphologies away from the cell-to-

dendrite transition which occurs at E11, so we do

not expect our theory to be valid where the tran-

sition to cells would occur.

5. CONCLUSIONS

An integral equation for the growth of asymptoti-
cally slender steady-state arrays of needle crystals

during directional solidi®cation has been developed.
In this paper we have solved the integral equation
numerically to determine the composite solution for

Fig. 10. Two solutions to the integral equation for the experimental conditions of data point B0.
Solutions are shown for the solute line source strength as a function of the mapped distance behind the
tip. The ``dendrite'' solution has a tip radius which corresponds closely to the experimental observation;

the ``type-2'' solution has a much larger tip radius and larger tip undercooling.

Fig. 11. Composite shapes of the dendrite and type-2 solutions depicted in Fig. 9. Plot aspect ratio is
1:1. The z/lD coordinate indicates the relative position in the imposed temperature gradient with larger

undercooling corresponding to larger z.
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the shape of the needle crystal. The model and its
solutions were demonstrated to be relevant to den-

dritic growth at moderate velocities. The solutions
have the following features:

. For given solidi®cation conditions and array spa-

cings the non-linear interactions of the dendrites
in the array determines a unique tip radius, tip
undercooling and dendrite shape. This selection

mechanism is fundamentally di�erent from cri-
teria based on surface energy.

. The predictions of our theory are in good agree-

ment with experimental measurements of the den-
drite tip radius in the SCN±acetone system for
velocities su�ciently above the cell-to-dendrite

transition.
. The selected tip radius generally increases with

the array spacing, tending to a constant for small
temperature gradients and large spacings.

. For ®nite array spacing, in the limit of a weak
temperature gradient, our theory results in the
selection of a particular member of the Ivantsov

family of solutions.
. Given the solute undercooling, our model can be
used to predict a unique tip radius and growth

velocity for a single, isothermal solute dendrite
grown along the center axis of a square tube.

. The variation of tip radius with array spacing is
consistent with a band of stable array spacings.

The lower stability bound for array spacings is
determined by the criteria for overgrowth of
neighboring dendrites. An upper stability bound

for array spacings can be determined from the
condition for tip splitting.

. In addition to the ``dendritic'' solution there is

also a ``type-2'' solution with larger tip radius
and larger tip undercooling for the same exper-
imental conditions and array spacings. This sec-

ond solution may be related to the low-velocity
cellular morphology.

. Our integral equation has an apparent transition
in the number of degrees of freedom in the limit

of small spacings. We have not yet been able to
describe the precise location of this transition
mathematically, nor explain the physical mechan-

ism. An explanation of how this transition in the
number of degrees of freedom occurs and a veri®-

cation of our description of this new selection
mechanism awaits future research.
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