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Reversing buoyancy of particle-driven gravity currents
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Particle-laden flows exhibit reversing buoyancy behavior if the density of the ambient through
which they propagate is greater than that of the interstitial fluid, though less than the initial bulk
density of the suspension. In this case a gravity current is initiated above the underlying boundary
until sufficient particles have sedimented from the flow, at which time the particle-laden fluid
becomes less dense than the surrounding ambient. The buoyancy of the residual suspension reverses
and it lifts off the boundary to ascend through the ambient. Such phenomena are encountered in
industrial and natural situations. This study presents a laboratory investigation of finite volume
releases of particle-laden fluid which undergo reversing buoyancy. A simple box model theory is
proposed to describe the flow and to predict the distance from the source at which lift-off occurs.
The predictions of the model agree well with both our experiments and those of previous studies.
Additionally, we investigate these flows using the shallow-water equations which are analyzed using
asymptotic series. These reveal the structure of the internal dynamics within the currents and predict
lift-off distances which verify the validity of those obtained from the less rigorous box model.
© 1999 American Institute of Physics.@S1070-6631~99!02309-0#
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I. INTRODUCTION

When a suspension of particles is introduced into an a
bient fluid, a variety of fluid mechanical phenomena may
observed depending upon the concentration and densit
the suspended particles and the densities of the ambien
interstitial fluids.~The latter is sometimes known as the su
pending fluid.! If the densities of the ambient and interstiti
are identical then the presence of the relatively heavy p
ticles makes the suspension more dense than the surroun
fluid. Hence there is a buoyancy-derived force which drive
boundary-hugging flow and the suspension is transpo
away from its source. The particles, however, continua
sediment out of the current to the underlying boundary, t
reducing the density difference and the flow decelera
Such turbidity currents are common features in lak
oceans, and the atmosphere1 and are important mechanism
for the transport of sedimentary particles.2 If the density of
the interstitial fluid is greater than that of the ambient t
presence of the suspended particles adds to the overall e
density and similar phenomena are observed to those
scribed above, with the additional feature that even after
the particles have settled out there is still a buoyancy fo
driving the flow. If, however, the density of the interstiti
fluid is less than that of the ambient then the motion of
particle-laden fluid is determined by its initial bulk density.
could be buoyant relative to the ambient, in which case
rises as a particle-laden plume.3 Conversely, if it is initially
heavier than the ambient it will flow as a boundary-hugg
gravity current until sufficient particles have sedimented
to render its bulk density less than the density of the s
2891070-6631/99/11(10)/2891/10/$15.00
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rounding fluid. At this point the current lifts-off the boundar
and ascends through the ambient. Such reversing-buoy
currents are found when fresh-water, sediment-laden tur
ity currents enter saline oceanic waters1 or when hot ash-
laden pyroclastic flows are emitted from volcanic sourc
into cooler surrounding air and loft to form coignimbrit
clouds.4 Also, many industrial effluents are discharged as
particulate mixtures into a cooler environment.

There have been a number of recent studies of parti
driven gravity currents which analyze the flows from both
experimental and theoretical viewpoint. These include tw
dimensional and axisymmetric gravity currents generated
the release of a fixed volume;5–9 currents generated by
constant flux of fluid and their interaction with topography10

erosional currents;11 and studies of the influence of rotatio
and a background mean flow.12,13 Currents which exhibit
reversing-buoyancy phenomena have received some a
tion. Sparkset al.14 performed experiments on releases o
finite volume of suspension of relatively heavy particles w
relatively light interstitial fluid, whilst Hurzeleret al.15 per-
formed experiments on currents generated by constant
ume fluxes. In this paper we report some additional exp
ments in which finite volumes of suspensions are relea
into an a quiescent ambient~see Sec. II!. Sparkset al.14 de-
veloped a theoretical description of the flow which employ
a ‘‘shallow-water’’ model~as described further in Sec. V!.
These data were reconsidered by Hurzeleret al.15 who em-
ployed a time-dependent, two-dimensional, numerical mo
to explain the observations as well as to present an empi
relationship for the temporal evolution of the current. Th
1 © 1999 American Institute of Physics
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empirical model is based upon dimensionless variables
propriate to the spreading of a compositional gravity curr
with the influence of particle sedimentation appearing as
experimentally determined function. We demonstrate tha
a different choice of dimensionless variables and so
asymptotic analysis of the governing equations, a differ
relationship may be derived. This new expression is con
tent with the dynamics of the motion.

The motion of gravity currents has been described us
a variety of mathematical models with a range
complexity.2 The simplest models, which still yield consid
erable insight, employ dimensional analysis to determ
how the run-out lengths and velocities depend upon the
tial volume and buoyancy of the fluid and the settling velo
ity of the suspended particles. Box models provide a syst
atic means to perform such analysis.7–9,16 They also yield
quantitative predictions for the temporal evolution of t
characteristics of the flow, generally in closed analy
form.13 However, they do not provide information on th
variations of velocity and concentration within the curre
Such information does emerge, though, from ‘‘shallo
water’’ models17 in which the flow is assumed to be pre
dominantly horizontal and hydrostatic in the vertical. This
a considerable simplification of the full equations of moti
and such models may be integrated numerically to find
distribution of height, velocity and concentration within th
current. At the front of the current, though, the flow is n
predominantly horizontal. Instead there are unsteady, th
dimensional motions. Benjamin18 demonstrated how the ve
locity of the front of the current may be related to the relat
depth of the flow through a Froude number and derived
expression which was later experimentally tested by Hup
and Simpson.16 A final category of model with an increase
level of complexity is numerical simulation of the flow b
the integration of the full equations of motion. This avoi
the need for a frontal boundary condition but requires
adoption of a scheme to parameterize the turbulent moti
Such an approach, although numerically intensive, has b
successfully employed by Klempet al.,19 Xu and
Moncrieff,20 de Rooijet al.21 and Hurzeleret al.15 The first
two of these studies treat the fundamental situation of a c
positional gravity current driven solely by differences in de
sity. The third considers gravity currents intruding along t
interface between two fluid layers. The last paper treat
particle-driven gravity current with reversing buoyancy, a
incorporates a number of complexities due to the interacti
of particle and fluid motions.

In this paper we adopt the ‘‘box’’ model approach a
demonstrate how to derive simple, analytical predictions
the lift-off distances of reversing buoyancy, particle-driv
currents. The theory indicates that these distances are a
tion of the ratio of the density difference between the int
stitial and ambient to the excess bulk density of the susp
sion ~Sec. III!. This analysis yields explicit analytical resul
which may be simply applied to industrial and natural s
tings. We re-evaluate the data of Sparkset al.14 and indicate
how these results fit in with more complex models~Sec. IV!.
In Sec. V we indicate how these dimensional scalings of
box model emerge from a ‘‘shallow-water’’ model and ho
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asymptotic analysis may be applied to elucidate the structu
of the flow within the current. Finally, we discuss~Sec. VI!
some applications of this work and indicate some areas
future research. We also include an appendix which exam
ines the evolution of currents which gradually progress from
a regime in which their thickness is comparable to the dep
of the ambient to a regime in which the thickness is sma
compared to the depth of the ambient.

II. EXPERIMENTS

Sparkset al.14 performed an experimental investigation
of reversing-buoyancy currents in a 6 mlong flume of width
20 cm with a depth of ambient fluid of 40 cm. Alumina
particles of density 3.985 g cm23 and mean diameter 67mm
were suspended in solutions of either aqueous methanol
fresh water, which were then released from a lock of leng
20 cm into fresh or saline water, respectively. Both situation
led to particle-driven gravity currents with reversing buoy
ancy. Sparkset al.14 tracked the front of these currents and
detected the distance at which they became buoyant a
lifted off.

In our study experiments were performed in a 9.5 m lon
flume of width 25 cm with an ambient fluid depth of 20 cm
Suspensions of relatively monodisperse silicon carbide pa
ticles with mean diameter 23mm and density 3.217 g cm23

were employed. The interstitial fluid was aqueous methan
whilst the ambient was fresh water. The initial bulk densit
was adjusted by varying the initial mass loading of particle
The well-mixed suspension, to which a very small quantit
of Calgon was added to remove coagulation effects, was
leased from a lock of length 10 cm. To initiate the current th
lock-gate was removed rapidly and the frontal position wa
measured at intervals of 3 s until the current became buoya
and lifted off. The position of the front as a function of time
is shown in Fig. 1 whilst the experimental parameters a
given in Table I. In all of the experiments the lift-off oc-
curred before viscous forces began to play a dominant ro
Estimates of the Reynolds number of the currents sugge

FIG. 1. The distance of the front of the gravity current from the source as
function of time. The five experimental runs correspond to different value
of the parameterg.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2893Phys. Fluids, Vol. 11, No. 10, October 1999 Reversing buoyancy of particle-driven gravity currents
that it is initially in excess of 1000 throughout the flow. Th
experiments supplement those of Sparkset al.14 and our aim
is to develop a theoretical description which encompasse
of them.

In these experiments, the lift-off distance is taken as
downstream distance at which the nose of the current
becomes buoyant, relative to the ambient fluid, and lea
the underlying boundary to ascend towards the free surf
No further propagation of the front of the current occu
along the bottom boundary. This distance may be clea
identified in each of the experiments. It is noteworth
though, that in the rest of the current the reversal in bu
ancy is not as clearly defined. The whole current thickens
its buoyancy is progressively reduced. This is in marked c
trast to the behavior of particle-driven currents for which t
interstitial fluid is identical to the ambient. These flows pr
gressively thin as the particles sediment to the underly
boundary, whereas reversing-buoyancy currents asc
through the entire ambient after they have become buoya
the nose.

III. BOX MODEL ANALYSIS

We develop a box model of the two-dimensional prop
gation of particle-driven gravity currents, following Dad
and Huppert7 and Hallworthet al.13 Our analysis is based o
the assumption that the dynamics are controlled by a bala
of inertial and buoyancy forces. The densities of the inter
tial and ambient fluids and the particles are denoted byr i ,
ra andrp , respectively, and the volume fraction of particl
by f. The density of the current is hence given by

rc5~rp2r i !f1r i . ~1!

The initial volume fraction of particles isf0 and a dimen-
sionless measure of the difference in densities between in
stitial and ambient relative to the initial excess density of
current is given by

g5
ra2r i

~rp2r i !f0
. ~2!

For a particle-driven current to be of a reversing buoyan
nature,g must be positive and less than unity. As show
below, its magnitude is crucial in determining the lift-o
distance.

TABLE I. Details of the experiments conducted in this study, giving t
mass of methanol and 23mm diameter particles added to 5180 g of water
make the initial suspension, and measurements of the postion and tim
run-out. The ambient fluid in each case was fresh water. The settling ve
ity of an individual particle in the suspending fluid is 0.058 cm s21 for fresh
water and 0.048 cm s21 for the water/methanol mixture.

Experiment
Mass of

methanol~g!
Mass of

particles~g!
Runout length

~cm!
Runout time

~s!

M23/1 575 659 375 63
M23/2 575 358 201 33
M23/3 575 237 123 27
M23/4 575 178 69 21
M23/5 0 237 496 210
Downloaded 09 Feb 2004 to 131.111.8.96. Redistribution subject to AIP
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In accord with the usual box model approach, we tr
the geometry of the current as an evolving rectangle
lengthL and heighth. The validity of this major simplifica-
tion ~and the reasons for its success! have been discusse
recently by Hogget al.22 The current is also assumed to b
nonentraining. Hence conservation of mass yields

hL5A, ~3!

whereA is the initial cross-sectional area or volume per u
width. At the front of the current we invoke the Froude num
ber condition

dL

dt
5Fr@g~rc2ra!h/ra#1/2. ~4!

In this expressiong is the gravitational acceleration and Fr
the frontal Froude number given by16

Fr5H 0.5~h/H !21/3, h/H.0.075

1.19, h/H,0.075,
~5!

whereH is the depth of the ambient fluid. The volume fra
tion of particles in suspension evolves as23,24

df

dt
5

2vsf

h
, ~6!

where vs is the settling velocity of an individual particle
This may be calculated using the Stokes formula if the p
ticles are sufficiently small. Otherwise it may be experime
tally determined or empirically calculated to take into a
count the~small! inertial drag~see, for example, Soulsby25!.
The sedimentation law~6! indicates that the volume fractio
of particles within the current decreases as the current pro
gates. Lift-off occurs when the density of the current h
become equal to the density of the ambient. At this point
only has the current become neutrally buoyant, but also
frontal speed has fallen to zero. Equivalently, this condit
is given byf5gf0 . We examine the theoretical prediction
of lift-off in the two regimes of deep and shallow ambie
fluid, corresponding to the two functional forms of the fro
tal Froude number.

A. Relatively deep ambient fluid

In this regime the Froude number is constant and eq
to 1.19.16 From ~4! and ~6! we find that

df

dL
52

vsf

Frh@~f2gf0!gp8h#1/2, ~7!

where the reduced gravity is denoted b
gp85(rp2r i)g/ra . We introduce dimensionless variable
c5f/f0 andj5L/L` , where

L`5S 5 Fr~gp8f0A!1/2A

vs
D 2/5

.

This lengthscale corresponds to the predicted runout len
when there is no density difference between the ambient
interstitial fluids.13 We find that~7! is transformed to

dc

dj
52

5cj3/2

~c2g!1/2. ~8!

of
c-
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Lift-off occurs atc5g and so integrating this expression, w
obtain the dimensionless lift-off distance,joff ,

joff
5/25~12g!1/22g1/2 tan21@~12g!1/2/g1/2#[F~g!. ~9!

The lift-off distance, relative to the runout length when t
densities of interstitial and ambient are equal, is purel
function of g ~Fig. 2!. Note thatjoff51 at g50, which re-
covers the results of Hallworthet al.13

The rate at which the current approaches the lift-
length may be modeled continuing this simple approa
Adopting the dimensionless time scaleT5t/t, where

t5
5A

vsL`
, ~10!

we find the following coupled, nonlinear differential equ
tions model the temporal evolution of the length of the c
rent and the concentration of particles within it,

dc

dT
525cj, ~11!

dj

dT
5S c2g

j D 1/2

. ~12!

These are integrated numerically subject to the bound
conditionsc51 andj50 atT50. Solutions of this system o
equations are given in Fig. 3 for five different values ofg.

From these coupled differential equations,~11! and~12!,
we may construct approximate solutions for the tempo
evolution of the dimensionless length and scaled volu
fraction of particles. Such solutions may then be compa
with the empirical spreading rules proposed by Hurze
et al.15 These solutions are essentially expansions in the
gimeT!1. Nevertheless we find that they provide relative
good approximate solutions during a considerable portion
the evolution of the current. Carrying out considerable al
braic manipulations, we find that

c5123S 3

2D 2/3

~12g!1/3T5/31O~T10/3!, ~13!

FIG. 2. The dimensionless lift-off distances (joff) as a function ofg. The
curve corresponds to the theoretical prediction of the box model while
symbols correspond to the experimental measurements~L, M23/1-5; s,
K-O; n, C-I!.
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j5S 3

2D 2/3

~12g!1/3T2/32
1

4 S 3

2D 7/3

~12g!21/3T7/3

1O~T12/3!. ~14!

In dimensional variables we find that

L~ t !5c1~12g!1/3~g8A!1/3t2/3

3S 12c2t5/3
vs~g8A!1/3

A~12g!2/31O~ t10/3! D , ~15!

with c151.47 andc250.11 for Fr51.19. Although the first
term of this spreading law is similar~up to the numerical
value of the constantc1) to that proposed by Hurzele
et al.,15 the second term is quite different. The constantsc1

andc2 are purely functions of the Froude number at the fro
of the current. We demonstrate in See. V that this form
temporal evolution also emerges from the shallow-wa
model of the flow, and from that analysis the internal stru
ture is explicitly calculated.

B. Relatively shallow ambient fluid

In this regime, the Froude number condition at the fro
of the current is given by Fr50.5(h/H)21/3. Hence we find
that

df

dL
52

2vsf

h~~f2gf0!gp8h!1/2 S h

H D 1/3

. ~16!

Once again this expression is rendered dimensionless by
introduction of the variablesc andh5L/L* , where

L* 5S 13~gp8f0A!1/2A7/6H1/3

vs
D 6/13

. ~17!

Similarly to above, this lengthscale corresponds to the p
dicted runout length when interstitial and ambient fluid are
identical density. Integrating this expression, we obtain
dimensionless lift-off distance

hoff
13/65F~g!. ~18!

e

FIG. 3. The dimensionless distance from source as a function of dimens
less time. The symbols correspond to the experimental measurements,
the curves correspond to the box-model theory.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Downloaded 09 Fe
TABLE II. A summary of the experimental inputs and measurements of this study and of Sparkset al. ~1993!.
The experimental, dimensionless lift-off,joff , is calculated by dividing the measured lift-off length byL` and
by the empirical factor 1.6. The theoretical value ofjoff is calculated from Eq.~9!.

Experiment
d

~mm!
rp

~g cm23!
vs

~cm s21!
ra

~g cm23! f0

ra2r i

~g cm23!
H

~cm!
Lift-off
~cm! g

Expt.
joff

Theory
joff

C 67 3.985 0.65 1.01 0.020 0.010 40 377 0.17 0.77 0.7
D 67 3.985 0.67 1.0 0.015 0.005 40 390 0.08 0.86 0.8
E 67 3.985 0.62 1.0 0.015 0.010 40 263 0.18 0.56 0.7
G 67 3.985 0.47 1.0 0.023 0.028 40 197 0.40 0.35 0.5
H 67 3.985 0.40 1.0 0.030 0.054 40 157 0.61 0.25 0.3
I 67 3.985 0.44 1.0 0.038 0.094 40 145 0.82 0.23 0.2
K 67 3.985 0.65 1.01 0.012 0.010 40 234 0.29 0.53 0.6
L 67 3.985 0.65 1.01 0.015 0.010 40 287 0.22 0.61 0.6
M 67 3.985 0.65 1.01 0.023 0.010 40 390 0.15 0.77 0.7
N 67 3.985 0.65 1.01 0.030 0.010 40 482 0.11 0.90 0.7
O 67 3.985 0.65 1.01 0.035 0.010 40 516 0.10 0.94 0.7
M23/1 23 3.217 0.048 1.0 0.034 0.023 20 375 0.22 0.54 0.6
M23/2 23 3.217 0.048 1.0 0.019 0.023 20 201 0.40 0.33 0.5
M23/3 23 3.217 0.048 1.0 0.012 0.023 20 123 0.60 0.22 0.4
M23/4 23 3.217 0.048 1.0 0.009 0.023 20 69 0.80 0.13 0.2
M23/5 23 3.217 0.058 1.0 0.014 0.023 20 496 0 1.01 1.0
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Once again the lift-off distance, relative to the runout wh
the densities of interstitial and ambient are identical,
purely a function ofg. It is also possible that during it
evolution a current progresses from the regime of ‘‘shallow
to ‘‘deep’’ ambient fluid. This situation is modelled b
matching together these two analyses, as presented in
Appendix.

IV. COMPARISON BETWEEN THEORY AND
EXPERIMENTS

We now compare the box model theory for lift-off dis
tance with the experimental results. The gravity curre
studied in these experiments and in those of Sparkset al.14

were generated by a lock-release. The relatively dense
therefore initially occupied the entire depth of the ambie
However, as the current propagated it became progress
thinner. The comparison between the predicted and the m
sured distances at which lift-off occurs should then be m
using the combined theory of the Appendix. That analy
accounts for the transition between the different Frou
number conditions. In this section, however, we assume
the ‘‘deep’’ ambient theory of Sec. III A may be employe
This considerably simplifies the presentation of the exp
mental results and has negligible effect upon their quan
tive interpretation.

Comparison is made between the experimental res
and the theoretical predictions of the lift-off distance giv
by ~9! ~see Fig. 2 and Table II!. In the calculation of the
runout length for particle-driven currents without reversi
buoyancy,L` , we have had to include an empirical mult
plicative constant of 1.6. This constant might be thought
in a number of ways. The rapid removal of the lock-ga
leads to an initial slumping of dense, particle-laden flu
during which some entrainmnet of ambient fluid occurs. T
engulfment increases the bulk volume of the current,
though the total buoyancy,gpf0A remains constant. Alter
natively this constant might be thought of as a shape fa
b 2004 to 131.111.8.96. Redistribution subject to AIP
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which accounts for the deviation of the profile of the curre
from the box-like shape which is assumed in the sim
analysis. The inclusion of this factor of 1.6 has been sho
to work well and to permit the experiments to be accurat
predicted by a simple theory.7 It has negligible effect upon
the magnitude ofg, but must be included in the calculatio
of the time scalet.

The settling velocity of both the silicon carbide and al
mina particles of diameters 23mm and 67mm, respectively,
are calculated using the Stokes’ settling law with a kinema
viscosity appropriate to the interstitial fluid. Their Reynol
numbers, based on diameter and settling velocity, are
than unity and so inertial effects are negligible.

The comparison between the experimental results
the box model prediction is quite good~Fig. 2!, given the
assumptions underlying this model. There is, however, a s
tematic divergence between theory and experiments at
values ofg. These are currents which only become buoy
at distances close to the runout length of currents in the
sence of reversing buoyancy. For such flows it is poss
that entrainment of ambient fluid has begun to have
effect.26,27 The mixing of ambient and interstitial fluid in
creases the density of the suspending fluid within the curr
Thus for the current to become buoyant relative to the a
bient, a greater proportion of the suspended particles m
sediment out of the flow which postpones the point at wh
buoyancy reverses. The entrainment of ambient fluid is
included in this simple model, but nevertheless the b
model has provided a simple conceptual tool for the analy
of reversing-buoyancy gravity currents. It has identified t
two parametersg and L` ~or L* ) as convenient means o
classifying their evolution and making simple, analytical pr
dictions of the lift-off distances.

We also compare the theory for the rate at which
current advances with the experimental measurements
Fig. 3 the dimensionless position of the front,j, is plotted as
a function of dimensionless time,T, for five different values
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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of g. We note that the agreement between theory and exp
ment for currents in the absence of reversing buoya
~g50! is very good. For nonzero values ofg the agreemen
is less good. This is primarily because the box model the
over-predicts the distance at which lift-off occurs. For e
ample the measured dimensionless lift-off distance
g50.22 is 0.54 whereas theory predicts 0.67. Our calcu
tions suggest that had this distance been accurately pred
then the temporal evolution towards lift-off would have be
well modeled.

V. SHALLOW-WATER ANALYSIS

A. Nondimensionalization

The dynamics of gravity currents have often been ma
ematically modeled by the use of ‘‘shallow-water
theory.5,17 These exploit the low aspect ratio of the flow a
permit the hydrostatic approximation to be made in the v
tical. Equations for the conservation of mass, momentum
volume fraction of particles are then given by

]h

]t
1

]

]x
~uh!50, ~19!

]

]t
~uh!1

]

]x S u2h1
1

2
~f2gf0!gp8h

2D50, ~20!

]f

]t
1u

]f

]x
52

vsf

h
, ~21!

where the height, velocity, and volume fraction of particle
denoted byh, u, and f, are now functions ofx and t. The
boundary condition at the nose of the current is given by

du

dt
5Fr~gp8~f2gf0!h!1/2 at x5xN~ t !, ~22!

where the nose is located atxN . Finally, we assume that th
total volume of fluid can be modeled asqta.28 Thus, on the
assumption that the flow is non-entraining, the volume
given by

E
0

xN
hdx5qta. ~23!

In this expression we have accounted for a temporally v
able source of particle-laden fluid.~Note the important case
of a50 and a51, corresponding to constant volume a
constant flux currents, respectively.! This system of equa
tions may be rendered dimensionless by the introduction
the following dimensionless variables

X5x/ l , ~24!

T5t/~vsl /q!1/~a21!, ~25!

H5h/~vs
al /q!1/~a21!, ~26!

U5u/~ l a22q/vs!
1/~a21!, ~27!

where

l 5~gp8f0!~a21!/~2a25!q23/~2a25!vs
~a12!/~2a25! . ~28!
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The lengthscale,l, is the generalized runout length for th
particle-driven gravity current. The adoption of this nond
mensionalisation places all residual dimensionless rat
other thang, into the initial conditions. Numerical experi
mentation has found that the system of equations conve
to a solution which is independent of the precise initial co
ditions, other than the volume of fluid released and its init
excess density, over a relatively short lengthscale.22

For the case of a constant volume release~a50!, we find
that

l 5~gp8f0!1/5q3/5vs
22/5. ~29!

This is identical, up to a multiplicative constant, to th
lengthscaleL` of Sec. III. For a constant flux current~a51!,
we find that

l 5q/vs . ~30!

Note that this lengthscale is independent of the initial
duced gravity of the particle-laden fluid.

As noted above, the adoption of this nondimensionali
tion renders the governing equations free of any parame
other thang. The distance at which lift-off occurs is the
solely a function ofg, provided the current has evolved su
ficiently so that the precise initial conditions do not influen
the flow. This was confirmed by the numerical integration
the equations using a two-step Lax Wendroff scheme5 until
the volume fraction was reduced tof0g at any point within
the current. At this location, the flow has become buoy
relative to the ambient fluid. Numerical experimentation
dicates that the location at which the buoyancy first rever
is within the tail of the current. Thereafter the shallow-wa
model of the flow is no longer valid, because the vertic
fluid motions are no longer negligible. In Fig. 4~a!, we plot
the dimensionless position of the nose,xN(t)/ l , when lift-off
occurs.

As reported by Sparkset al.14 integration of the shallow-
water equations up to this time leads to predictions of lift-
distance which are slightly too small forg<0.1 and slightly
too large forg>0.1. We note that the box-model prediction
of Secs. III and IV are prone to similar errors.

B. Asymptotic analysis

In the case of constant volume~a50!, particle-driven
gravity currents, Hogget al.22 have developed asymptoti
series solutions to the shallow water Eqs.~19!–~21!. These
expansions exploit the small settling velocity of the partic
relative to the initial velocity of the buoyancy-driven flow
They indicate how sedimentation of particles affects the fl
and alters the dynamics from those of a compositional gr
ity current. Hurzeleret al.15 have proposed empirical rela
tionships for the spreading of reversing buoyancy curre
based on dimensionless variables that are relevant to flow
compositional gravity currents. Their relationships inclu
the effect of particle sedimentation via an empirical evalu
tion of the experimental data. In contrast, the asympto
analysis presented below develops a theoretical model of
spreading and yields a different expansion. We show, h
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ever, that this expansion, which emerges from the equat
of motion, is also compatible with the experimental data.

In the absence of particle settling (vs50) for a current
moving within a relatively deep ambient fluid so that t
frontal Froude number is constant, the equations admit
following similarity solution29

xN05K@gp8f0q~12g!#1/3t2/3, ~31!

u05 2
3K@gp8f0q~12g!#1/3t21/3U0~y!, ~32!

h05 4
9K

2q@gp8f0q~12g!#21/3t22/3H0~y!, ~33!

where the similarity variable isy5x/xN0 , the constantK
5@27 Fr2/~1222 Fr2)] 1/3 and the functionsH0(y) andU0(y)
are given by

H0~y!5
y221

4
1

1

Fr2
and U0~y!5y. ~34!

The variables have the suffix 0 to indicate that they will fo
the first term of an asymptotic series. Following the conce
outlined in Hogget al.,22 we now consider a nonzero settlin
velocity and develop series expansions which show how

FIG. 4. ~a! The dimensionless position of the nose of the current when
buoyancy first reverses. The solid line arises from numerical integratio
the shallow-water equations~Sec. V A!. The dotted line comes from the
asymptotic theory of Sec. V B.~b! The lift-off distance, scaled by the maxi
mum runout length of the particle-driven current when there is no buoya
reversal, as a function ofg. The solid curve comes from numerical integr
tion of the shallow-water equations, while the dotted curve correspond
the box model calculation.
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flow evolves from a homogeneous gravity current as a re
of particle sedimentation. The dimensionless expansion
rameter is given by22

t5
vs~gp8f0q!1/3t5/3

qK2 . ~35!

Note that this is the dimensionless time proposed in~25! up
to the constant factor ofK2. The leading-order expansio
will be valid up to a critical value oft. However, because th
settling velocity is much less than the initial current veloc
this corresponds to relatively long dimensional times. T
study of Hogget al.22 was for the case of identical interstitia
and ambient densities~g50!. However their analysis may b
extended by proposing the expansion series of the form

xN5K@gp8f0q~12g!#1/3t2/3@11X1t~12g!22/31¯#, ~36!

u5 2
3K@gp8f0q~12g!#1/3t21/3@U0~y!1t~12g!22/3U1~y!

1¯#, ~37!

h5 4
9K

2q@gp8f0q~12g!#21/3t22/3@H0~y!1t~12g!22/3

3H1~y!1¯#, ~38!

f511t~12g!1/3f1~y!1t2~12g!2/3f2~y!1¯ . ~39!

Note that these expansions forxN(t) andf(x,t) are qualita-
tively similar to the solutions of the box models~13! and
~14!. They entail identical groups of dimensional variabl
and proceed in identical powers of times. They differ, ho
ever, in the precise numerical value of the constants mu
plying the dimensional groups. Such a difference, though
not surprising given the assumptions underlying the ‘‘bo
model.

By substituting these series into the governing equati
and equating powers oft, we can show that

f1~y!5
227

20H0~y!
~40!

and X1520.18 for Fr51.19. The functionsH1(y) and
U1(y) satisfy a second-order, boundary-value different
equation and are given in Hogget al.22 This calculation re-
veals the structure of the internal dynamics of a partic
driven gravity current and provides an expression for the r
of propagation of the front of the current~36!. It is found to
be proportional tot2/3 at very short times with a correctio
term proportional tot7/3. In contrast, by the adoption of di
mensionless variables which are appropriate to comp
tional gravity currents, Hurzeleret al.15 propose an empirica
expression for this rate of spreading. They suggest that

xN5C1@gp8f0q~12g!#1/3t2/3$11C2@ tgp8~12g!#1/2

3q21/41¯%, ~41!

whereC1 , C2 are experimentally determined andC2 is itself
a function of settling velocity. While the first term of thi
expression is in agreement with~36!, the second is different
We suggest that~36! is in fact the correct spreading rule.

At second-order the volume fraction is given by
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f2~y!5F 729

800H0~y!2 1
27H1~y!

~12g!40H0~y!2

2
27U1~y!

~12g!100H0~y!2

dH0~y!

dy G . ~42!

Note that in this expression the factor of~12g! does not
appear uniformly in each of the terms. The distribution
particles arises from a combination of advection by the fl
and sedimentation through the current to the underly
boundary. These are related to the density difference
tween ambient and interstitial in different ways. AtO(1) the
only effect of a density difference~i.e., nonzerog! is to
rescale the reduced gravity. However this is not so atO(t)
because the perturbation to the volume fraction involve
different power of~12g! than the perturbations to the velo
ity and height. This arises because the first-order volu
fraction is determined only by the leading-order heig
while the first-order height and velocity fields are in balan
with the pressure gradient associated with the density di
bution within the flow. AtO(t2) the lower order perturba
tion functions all contribute to the expansions and so exp
sions of the form~42! are found. We use these asympto
series to calculate the position of the nose when the cur
first becomes buoyant. First, we establish the value oft for
which the volume fraction within the current first falls belo
g. This value is then substituted into the spreading rule~36!
to yield the lift-off distance. In Fig. 4~a!, it may be noted that
the asymptotic series gives excellent agreement with the
merical integration of the shallow-water equations up
g'0.5. For smaller values ofg, the asymptotic series di
verges sharply from the numerics. It should be emphas
that these series are developed for the regimet!1. Thus
additional terms in the series may be required to model
evolution of the current at larger values oft. These will be
required for currents withg!1. Such currents run out ove
long distances and for long times before their buoyancy
verses. For such flows, we expect their rate of growth to
modeled by the inclusion of additional terms in the spread
law. Thus we expectxN5c1t2/3(11c2t5/31c3t10/31¯),
wherec1 , c2 and c3 are appropriate constants.~See Hogg
et al.22 for a discussion of those values oft for which the
first-order terms in the series are sufficient to provide
accurate representation of the flow.!

To illustrate the use of this analysis we consider how
volume fraction evolves throughout the current forg50.5.
Our analysis indicates that this is the smallest value ofg for
which the leading-order solutions provide an adequate re
sentation of the flow up to the point of buoyancy reversal.
Fig. 5 we plot the volume fraction,f, as a function of the
similarity variable,y, at times which correspond tot50, 0.1,
0.2 and 0.37. At the final time plotted~t50.37!, the volume
fraction has just fallen belowg. Hence the current has jus
become buoyant relative to the ambient at this time and s
lifts off. Note that the reversal in buoyancy first occurs in t
tail of the current. Thereafter a shallow-water model of t
flow is inappropriate because the horizontal lengthscales
no longer far in excess of the vertical lengthscales.

Finally we demonstrate that the spreading rule for
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front of the current~36! is consistent with the experimenta
data. For example, we plot the length of the current a
function of time for experiment M23/1 in Fig. 6 and compa
with it the asymptotic series of the formc1t2/3(12c2t5/3).
For this current, we find thatc1538 cm s22/3 and c2

50.00044 s25/3, while g50.22. We note that the compariso
between the first-order series and the experimental dat
fairly good, although is no better than the ‘‘box’’ mode
predictions. However, there is a clear indication that this
ries is being used beyond its domain of validity since there
a local maxima att'50. While additional terms in the serie
may be calculated, the domain of the first-order series m
be simply extended by writingxN(t)5c1t2/3/(11c2t5/3).
This truncated continued fraction provides an improved r
resentation of the temporal dependence of the length of
current.

FIG. 5. The distribution of the volume fraction of particles within the cu
rent at various times forg50.5, calculated using asymptotic analysis. No
that the current has become buoyant relative to the ambient att50.37.

FIG. 6. The length of the current as a function of time~g50.22!. The data
points correspond to the experimentally measured positions; the solid c
to the spreading rule of the formc1t2/3(11c2t5/3), where the constantsc1

and c2 are theoretically determined; and the dotted curve to the sprea
rule of the formc1t2/3/(12c2t5/3).
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VI. CONCLUSIONS AND APPLICATIONS

In this study we have performed laboratory experime
on particle-driven gravity currents which exhibit reversi
buoyancy. We measured the rate of propagation of the
rent and the distance from the source at which the cur
becomes buoyant relative to the ambient fluid and ‘‘li
off.’’ These experiments supplement those of Sparkset al.14

We have developed a simple theory for the dependenc
the lift-off distance upon the initial characteristics of the r
leased fluid and suspended particles. It was shown to be
venient to calculate the lift-off distance, relative to the ma
mum run-out distance of a current for which the buoyan
did not reverse, as a function ofg. This parameter,g, mea-
sures the density difference between the ambient and in
stitial fluids relative to the initial excess density of the cu
rent due to the presence of the particles.

Gravity currents that exhibit reversing buoyancy occ
as turbidity currents in which particles, suspended in re
tively light coastal water, flow through deep oceanic wate
These currents are important mechanisms for the transpo
sediment from the continental shelf into deep ocean bas
Reversing buoyancy currents also occur as pyroclastic fl
from volcanic sources which loft to form coignimbrit
clouds.30 As a final example, they may also occur within a
estuarine environment when sediment-laden, fresh wate
discharged into saline water. Consider, for example, the
charge into an estuary of a relatively heavy, particulate p
lutant which is suspended in fresh water. Typical values
the densities of the particulate and fluid phases are 3 g c23

and 1 g cm23, while the saline estuary has a density of 1.
g cm23. We consider a volume of 1000 m3 which is dis-
charged uniformly across a channel of width 10 m. The vo
metric concentration of particulate is 0.05 and the partic
have a settling speed of 0.1 cm s21. If this current did not
exhibit reversing buoyancy then the run-out distance of
current is 500 m. However, the interstitial fluid is less den
than the estuarine fluid and thus, as the particles sedim
from the flow, the current eventually becomes buoyant re
tive to the ambient. For this scenario,g is 0.2 and so the
current is predicted to lift off after a distance of approx
mately 350 m. Predictions of the lift-off of flows of thi
nature may be simply determined from the ‘‘box’’ mod
analysis of this study. The method should provide a valua
tool for investigators studying environmental problems su
as the dispersal of a pollutant or the transport of sedime

Finally, we note that a future class of models for the
flows of reversing buoyancy gravity currents could inves
gate the entrainment of ambient fluid;27 a more complex de-
scription of the velocity field within the head of the flow; an
a model of particle sedimentation which takes account of
relationship between the vertical distribution of particula
matter and the intensity of fluid turbulence.
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APPENDIX

The Froude number at the front of a current is a functi
of the depth of the current relative to that of the ambient flo
@see Eq.~2!#. In laboratory studies of gravity currents gene
ated by a lock-release of heavy fluid, it is possible for t
current to propagate so that initially its depth relative to t
ambient exceeds 0.075, but then in the latter stages its de
falls below this value. In this case the box model must a
count for both regimes. By adopting the dimensionless va
ables introduced in Sec. III A, we find that

E
0

j 5

2
u3/2f ~u!du5F~g!, ~A1!

where

f ~u!5H 1 for u.x*
2 Fr~A/HL`u!1/3, for u,x* ,

~A2!

Fr51.19 andx* 5A/(0.075HL`). Hence we find that

joff5H @13F~g!x
*
21/3/15#6/13, for j,x*

@F~g!2~2x
*
5/2/13!#2/5, for j.x* .

~A3!

We compare the theoretically predicted and experimenta
determined dimensionless lift-off distances in Fig. 7. We fin
that this ‘‘combined’’ theory has slightly improved the cor
respondence between theoretical and experimental resul
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