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Abstract

Approximate analytical results are obtained for the propagation of an axisymmetric gravity current in
a system rotating around a vertical axis, which occurs when a dense ¯uid intrudes horizontally under a
lighter ambient ¯uid. Situations for which the density di�erence between the ¯uid is due either to
compositional di�erences or to suspended particulate matter are considered; for the the latter, particle-
driven cases, two models for the particle transport, turbulent remixing and laminar sedimentation are
implemented. Attention is focused on situations in which the apparent importance of the Coriolis terms
relative to the inertial terms, represented by the parameter C (the inverse of a Rossby number), is not
large. A box-model approximation is used, in which the current is described as a control volume
composed of a cylinder with a conical ``roof'' subject to global conservation conditions and simplifying
assumptions. This leads to ordinary di�erential equations from which it is possible to calculate readily
such essential features as the behaviour of the radius of propagation, height of the head (nose) and the
amount of settled particles (when applicable). In particular, the limitation imposed by the Coriolis
e�ects on the radius of propagation, the time of attainment of the maximal spread, and the appearance
of an attached reverse motion are properly re¯ected. For the particle-driven case a parametric
dependency between the settling and Coriolis in¯uences is obtained, which allows for a stringent
comparison to be made between the two di�erent particle-transport models. The box model results are
in good qualitative agreement with numerical solutions of the full shallow-water equations, for which a
novel similarity transform is also presented. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Gravity currents occur whenever ¯uid of one density ¯ows primarily horizontally into ¯uid

of a di�erent density. Many such situations arise in both industrial and natural settings, as

reviewed by Simpson (1997). Commonly the current is driven by compositional or temperature

di�erences, to lead to a homogeneous current, or by suspended particulate matter, to lead to a

particle-driven current. Of particular importance are gravity currents a�ected by the rotation of

the environment in which they are created. Indeed, rotational e�ects can play an important

role in industrial settings and will de®nitely play a major role in many large-scale natural

situations such as the cold or warm ocean rings or vortices.

Our aim here is primarily to evaluate, in a simple analytical way, the e�ects of rotation on

the propagation and shape of high Reynolds number homogeneous and particle-driven gravity

currents of ®nite volume in an axisymmetric geometry. This problem has been investigated by

numerical, asymptotical and experimental means by Ungarish and Huppert (1998), and the

present work represents a theoretical extension, which introduces some new techniques for

investigating this and other problems. The paper of Ungarish and Huppert (1998) will be

referred to as UH.

The lock-release system under consideration is sketched in Fig. 1: a deep layer of ambient

¯uid, of density ra, above a solid horizontal surface (bottom) at z = 0, is in solid body

rotation with angular velocity O about the vertical axis of symmetry. We use cylindrical

coordinates r, y, z, co-rotating with the ambient ¯uid and with the solid horizontal bottom; the

gravity acceleration is in the ÿz direction. At time t= 0 a ®xed volume of co-rotating heavier

¯uid, initially in a cylinder (``lock'') of height h0 and radius r0, is released into the ambient

Fig. 1. Schematic description of the system. z is the axis of symmetry. The grey region represents the current at
t= 0, and the initial height is used as the length-scale.
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¯uid. The density di�erence between the ambient and the heavier ¯uid gives rise to
incompatible hydrostatic pressure distributions in the two ¯uids, and hence after the removal
of the lock an axisymmetric current starts to spread radially. Due to conservation of angular
momentum (or potential vorticity) the advancing ¯uid acquires a retrograde angular velocity in
the rotating system. If the ¯uid in the current is a mixture (suspension) of heavier particles in
essentially the same interstitial ¯uid as the ambient, a particle-driven current is formed. While
the current spreads, particles settle out and the e�ective strength of the current, as compared
with a homogeneous current, decays. (We note in passing that the present axisymmetric
rotating current is di�erent in some major features from the sidewall supported currents
reviewed by Gri�ths, 1986.)
An accepted formulation of gravity currents utilizes the framework of the (inviscid) shallow-

water approximation. For the present con®guration, equations of motion for the position of
the interface, h(r, t), and the z-averaged radial velocity, u(r, t), azimuthal velocity, v(r, t) (or
angular velocity, o(r, t) = v/r), and volume fraction of particles, f(r, t), as function of time
and radius, are obtained. A typical system will be presented in the next section, and further
details can be found in UH and references therein. These equations are coupled and nonlinear,
which complicates both solutions and interpretations.
The ®rst objective of this paper is to introduce a new similarity transformation which

reduces the e�ort of obtaining and analysing solutions of the shallow-water inviscid equations.
We show that any available solution for a given set of dimensionless parameters actually
describes a family of cases with di�erent, but correlated, sets of parameters.
The second and main objective of this work is to develop a simpli®ed ``box model'' analysis

for this problem. Box models represent the current as a control volume of a simple
predetermined shape (e.g. in non-rotating circumstances, a rectangle in the two-dimensional
case and a cylinder in the axisymmetric case) subjected to global conservation constraints that
act on the boundaries; the internal structure is assumed to be as simple as possible in
accordance with the boundary conditions and/or other available insight. Box models for non-
rotating particle-driven gravity currents have been developed and discussed by Dade and
Huppert (1995), Bonnecaze et al. (1995) and Hogg et al. (1998). The advantage of a box model
is that it captures in simple, usually analytical, expressions many of the major features of the
behaviour of the current, such as distance of propagation as a function of time, the settled
deposit as a function of distance, and maximal distance of propagation. Although the box
model results may not be in exact quantitative agreement with the numerical solutions of the
shallow water equations, they nevertheless provide correct functional dependencies and trends,
and are hence a useful, analytical tool for preliminary analysis such as designing an experiment
or evaluating a natural phenomenon whose input parameters may not be precisely known
anyway.
To the best of our knowledge, this is the ®rst attempt to develop a box model for a gravity

current in¯uenced by Coriolis forces. We are concerned with the case of small Coriolis
parameter, C, which expresses the ratio of Coriolis to inertia forces, and will be rigorously
de®ned below.
The paper is organised as follows. In Section 2 we de®ne the dimensionless variables, present

the shallow water governing equations for the gravity current, and show that a simple
similarity transformation exists by which any available (in general, numerical) solution of these
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equations can be extended to represent a family of cases. (Results of these equations will be
used for comparison, but are not the object of the present paper.) In Section 3 we formulate
the simpli®ed box model to obtain an approximate description of the gravity current. Results
of the box model formulation are obtained and discussed in Section 4 for a homogeneous
(saline) current, and in Section 5 for particle-driven currents in both turbulent remixing (model
T) and laminar (model L) particle-transport circumstances. Some concluding remarks which
summarize the new results are presented in Section 6.

2. The dimensionless variables and similarity transformation

We consider gravity currents released instantaneously, at t = 0, from rest behind a lock in a
system rotating with angular velocity O, see Fig. 1. The initial volume of the current (the
released ¯uid) is considered to initially occupy a straight simple shape: the height is h0 behind a
vertical lock which is at radial position r0. This is embedded in a deep layer of ambient ¯uid of
density ra, which is assumed to be (initially and also during the process) motionless in the
rotating system. The major driving force results from the di�erent densities of the current and
of the ambient in the presence of the gravity ®eld, which is expressed by the initial reduced
gravity as

g 00 �
rc�t � 0� ÿ ra

ra
g; �1�

where g is the gravitational acceleration and the subscripts c and a denote values appropriate
to the current and the ambient, respectively. The centrifugal buoyancy e�ects are assumed
negligibly small, and rotation enters the process via the dynamic contribution of the Coriolis
terms; this is typical of many geophysical and even industrial con®gurations. We use rc(t = 0)
in the de®nition above because, in general, the density of the current may change after release.
This is indeed the case in a particle-driven current: we consider it as made up of a mixture of
mono-dispersed particles of density rp which occupy the volume fraction f with a ¯uid whose
density is ra which occupies the volume fraction 1ÿ f, and hence its e�ective density is simply
frp+(1ÿf)ra. If the initial volume fraction is f0 the initial reduced gravity de®ned by Eq. (1)
can be reformulated as

g 00 �
rp ÿ ra

ra
f0g �2�

Due to the density di�erence between the particles and the suspending ¯uid, the particles
acquire a relative sedimentation velocity; under the assumptions that f0W1 and that the
particles are small and of uniform size, the sedimentation velocity is represented by a constant
ws which is obtained from the Stokes settling formula.
In the studies of such problems it is usual to scale: lengths with h0; radial velocity u with

Uref=(h0g
0
0)
1/2; time with Tref=h0/Uref; azimuthal velocity v with Oh0; and particle volume

fraction f with f0. The present scaling is straightforward: the reference length is the initial
thickness of the current, which also determines the pressure head available for subsequent
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motion, and the reference velocity Uref re¯ects the initial velocity of propagation of the current
(in the radial direction). This scaling also has a ``traditional'' merit, but a rescaling of the
variables which seems to better re¯ect the process both mathematically and physically is
suggested below. In any case, during the dynamic process the magnitudes of the dependent
variables, and in particular of the radial velocity and thickness of the current, may change
signi®cantly, and hence the dimensionless variables are not of order unity all the time.
The associated dimensionless parameters are: the settling coe�cient,

b � ws=Uref �3�

the Coriolis coe�cient,

C � OTref �4�

and the initial aspect ratio,

rN�0� � r0=h0 �5�

(all quantities on the right-hand-side are dimensional); hereafter the subscript N denotes the
nose of the current. We focus attention on cases with small b and C, which are the more
interesting ones. If b is not small the particles settle out from the current before signi®cant
propagation takes place; on the other hand, for b4 0 the homogeneous compositional gravity
current is recovered. The in¯uence of C is more complex. This parameter represents the
importance of Coriolis e�ects relative to inertial ones and can be considered as the inverse of
the Rossby number of the ¯ow, Ro= Uref/Oh0. If C is large, the released cylinder of ¯uid is
able to perform only a slight readjustment of its initial conditions, mostly in a vertical
boundary layer of dimensionless thickness 1/C produced by a corresponding radial movement
of the nose from its initial position. This is, moreover, a very unstable situation and, overall,
the name ``current'' seems inappropriate for this type of motion. (See, for example, Gri�ths
and Linden 1981, and note that the dimensional distance h0/2C, or h0Ro/2, is usually de®ned
as the Rossby radius of deformation or adjustment.) On the other hand, when C is small the
heavy ¯uid performs a motion quite similar to that of a classic non-rotating gravity currentÐ
in the ®rst stage of propagation which we shall call ``stage (1)``. However, Coriolis e�ects may
produce signi®cant di�erences from non-rotating currents even for very small values of C. The
most striking di�erence is the existence of a ®nite radius of propagation. The reason is that
during the propagation of the current, the radial velocity of advance and hence the inertial
e�ects decay, while the Coriolis e�ects, in particular these associated with the angular velocity,
grow. In what we call ``stage (2)`` the Coriolis e�ects compete with the inertial e�ects, modify
the shape of the current and slow down its velocity of propagation, and eventually, in ``stage
(3)``, the Coriolis e�ects dominate the motion and completely stop the propagation. In this
context we recall that for a volume of heavy ¯uid on the bottom of a lighter ambient ¯uid
there is a (quasi) ``steady lens'' (SL) solution, with zero radial velocity and r-dependent angular
velocity, and the interface h(r) determined by the balance between Coriolis and hydrostatic
pressure in the inner and outer ¯uids.
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The full governing equations of motion, which must express conservation of volume and
momentum in both the ambient and current regions, are well known. The transport equations
for the particles in the current region, however, are still a matter under discussion and
research. We use here two models for the particle distribution inside the suspending ¯uid. (a)
Model T, for turbulent remixing, assumes that all the ¯uid of the initial current remains part
of the current, in the axial domain 0RzRh(r, t). The dispersed particles settle out from the
current only at the bottom with constant dimensionless velocity ÿbzÃ calculated from the Stokes
formula (hindrance may be incorporated). The remaining non-settled particles are remixed
vertically in the current, so that the volume fraction is homogeneous in the z direction. At the
interface z = h(r, t) there is no relative motion between the current and the particles. (b)
Model L, for laminar sedimentation, assumes that the relative velocity of the particles in the
suspending ¯uid is ÿbzÃ everywhere, like in a quiescent settling tank. The upper interface of the
current is de®ned now by the kinematic shock which follows the boundary between the
particles and the ``pure ¯uid'' domain. By this process some of the interstitial ¯uid of the
current is left behind the interface and becomes part of the embedding ambient ¯uid. From
another point of view, while particles leave the current at the bottom, clear ¯uid leaves the
current at the top.
Model T has been independently introduced by Einstein (1968), Martin and Nokes (1988)

and others. Although its rigorous derivation is lacking, this model has been used with
increasing con®dence by various researchers. In particular Bonnecaze et al. (1993, 1995) used
this model for a problem closely related to the present one, and showed that the theoretical
predictions yielded good agreement with measurements on the distance of propagation of the
current versus time and sediment deposited versus distance. However, no measurements of the
volume fraction of particles within the ¯ow are available for more complete validations. In a
rotating current the propagation is hindered by Coriolis e�ects, and hence the vigour of
turbulence may decrease with time and model L may become more relevant. However, for
small values of b, as considered here, the di�erence between the two models in the main stage
of propagation is expected to be small. The results of the present work will throw additional
light on the compatibility between the models T and L.
The full system of equations of motion for the ambient and current domain is of course very

complicatedÐand, to the best of our knowledge, there has been no attempt even to solve it
numerically. The shallow water simpli®cation, in particular for the inviscid limit (which can be
readily justi®ed), yields a more tractable system. This approach was implemented for the
present problem by UH via the following essential steps. The ambient ¯uid is assumed
motionless and in hydrostatic balance, separated from the current below by the interface
z = h(r, t), 0RrRrN(t). In the current region the vertical motion is relatively small and hence
in this direction the pressure gradient is also hydrostatic; this, on account of pressure
continuity on the interface, leads to an essential connection between @p/@r and @h/@r.
Furthermore, the z dependency of the variables in the current domain is eliminated from the
formulation by considering only balances for the z-averaged values. To close the formulation a
special dynamical ``nose condition'', which correlates the speed of propagation to the pressure
head, is necessary; a semi-empirical formula is available, as discussed below.
The resulting inviscid shallow water equations yield a well de®ned problem, as shown for

example by UH. Here we consider in some detail the turbulent remixing model T and indicate
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later how to extend the conclusions to the laminar settling model L. The equations for the
current domain 0RrRrN(t), 0RzRh(r, t) are

ht
ut
ft

vt

2664
3775�

u h 0 0
f u 1

2 h 0
0 0 u 0
0 0 0 u

2664
3775

hr
ur
fr

vr

2664
3775 �

ÿuh=r
C2v�2� v=r�
ÿbf=h
ÿu�2� v=r�

2664
3775 �6�

in terms of the dimensionless variables h, u, f, v as functions of r and t. These equations
represent, in order of appearance, conservation of volume, radial momentum, particles, and
azimuthal momentum. The non-rotating case is recovered for C= 0, v= 0; the homogeneous
current corresponds to b= 0, f= 1.
The boundary conditions for Eq. (2) at the origin are simply u = v = 0. At the nose

r = rN(t) two more complex conditions are prescribed. First, the radial velocity of propagation
is related to the pressure head by the correlation

Fr � drN
dt
=�h�rN; t�f�rN; t��1=2 �7�

where the Froude number Fr is a prescribed constant (the semi-empirical value 1.19 will be
used in the subsequent calculations). The condition (7) for a non-rotating homogeneous current
has a sound theoretical and experimental justi®cation. Benjamin (1968) derived this result from
balances of volume and momentum plus pressure forces in a two-dimensional channel, and
showed that Fr=

���
2
p

in ideal circumstances. There are theoretical and experimental indications
that the extension to particle-driven currents (see Bonnecaze et al., 1993 and the references
therein) and to rotating with small C currents (see UH) is also valid. Of course, in real
circumstances the details of the ¯ow ®eld in the head region are very complicated and hence
Eq. (7) is only an approximation that expresses the global motion, consistent with the shallow-
water simpli®cations. Second, the angular velocity at the nose r = rN(t) is prescribed by

v=r � ÿ1� �rN=rN�0��2 �8�
which can be regarded as the result of angular momentum (or potential vorticity in the
homogeneous case) conservation of the ¯uid moving with the front, as detailed by UH.
The initial conditions associated with Eq. (6) are: h = 1, f= 1; u = v = 0, in the domain of

the current, i.e. 0 < r< rN(0).
The laminar sedimentation model L, as shown by UH is also given by a system of the form

(6) but with a di�erent right-hand side vector, as follows: the second and fourth lines are
unchanged; ÿb is added to the ®rst line; and the third line is replaced by 0. The associated
initial and boundary conditions remain unchanged. An immediate consequence is that f= 1 in
the current during propagation, which is actually a well-known feature of simple laminar
settling in a large container under gravity: the concentration of particles in the (shrinking)
suspension domain remains the initial one throughout the process.
For a given combination of rN(0), b, C (and Fr) the solution of Eq. (6) subject to the above-

mentioned boundary and initial conditions can be obtained by numerical methods. We notice
here that this result is actually relevant to a family of currents. Let G be a positive quantity.
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The transformation

�r � r=G; �t � t=G; �v � v=G; b � bG; �C � CG �9�

leaves the system of governing equations unchanged and the solution valid, provided that the
initial rN(0) is also reduced by the factor G as compared with the original rN(0). For example,
a solution for rN(0) = 1, b= 2 � 10ÿ3, C= 10ÿ1 can be straightforwardly applied to a current
with rN(0) = 2, b= 10ÿ3, C= 5 � 10ÿ2 (here G= 1/2); in both cases the dependent variables
h, u, v/rN(0), f as functions of r/rN(0), t/rN(0) are identical.
This simple and useful transformation (in particular for experimental and natural data) has

not been pointed out explicitly before. It should be mentioned, however, that it has been used
implicitly for the special case b= 0, C = 0 by Rottman and Simpson (1983).
An easy way to implement the bene®ts of this transformation is by henceforth choosing

G � rN�0� � r0
h0

�10�

which is the initial aspect ratio of the current. This is equivalent to the di�erent scaling of the
variables, as follows: h with h0, r with r0 (dimensional), u with Uref=(h0g

0
0)
1/2, time t with

Tref=r0/Uref, v with O r0, f with f0. The free parameters, in addition to Fr, are now

�b � wsr0
Urefh0

�
�Tref

�h0=ws� � brN�0� �11�

�C � �TrefO � Or0
Uref
� CrN�0� �12�

In this scaling r(0) = 1, so that the number of free parameters is formally smaller by one. (In
the basic case of homogeneous non-rotating currents there is actually no free parameter left,
except for the ®xed Fr.)1 Moreover, the physical meaning of this scaling is that the practical
time scale and azimuthal velocity scale are proportional to the initial radius (rather than to the
initial height) of the current. The deeper justi®cation for the importance of r0 to the time scale
lies, apparently, in the dynamics of the initial, inertia-dominated, called the ``slumping'' phase,
of propagation during which gravity waves travel back and forth in the radial direction and
distribute the information that the nose started to move and that the base (r= 0) is stationary;
after this slumping phase, a similarity behaviour, independent of the initial aspect ratio,
appears. These details are, however, not fully investigated for the axisymmetric and rotating
current, and are beyond the scope of the present paper.
In the rotating environment, in addition to the abovementioned Tref time scale, there is

obviously the important time scale Oÿ1. Let us denote by t the time scaled with Oÿ1. It follows
that the connection between the two time coordinates is

1 The conclusions can also be applied to a two-dimensional case by discarding the curvature terms, to the non-
rotating case by letting O= 0, v= 0, and to the homogeneous current by letting ws=0, f = 1 (dimensionless).
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t � Ct � �C�t �13�

and hence, when C is small, t can be considered a ``long'' time coordinate (which attains order
unity for large values of t). We note that the number of revolutions performed by the system
after the release of the current is given by t/2p.2

The disadvantage of system (6) is the need for numerical solutions which require a special
code (UH used a Lax±Wendro� ®nite di�erence scheme) and obscure conclusions on
parametric in¯uence. In general, the results show that for small values of C and b, three major
stages may be distinguished in the motion of the current. (1) In about the ®rst initial tenth of a
revolution, the current spreads radially almost as in a non-rotating frame, but its angular
velocity decreases signi®cantly. (2) In the subsequent tenth of a revolution the radial velocity
decelerates rapidly, and the interface develops a new shape, thinner at the nose and thicker at
the tail. The radius of propagation reaches that of a steady state lens (SL) but continues to
grow. (3) The current propagates slowly, overshoots the SL radius by about 35% while the
height of the head decreases to zero, then shrinks back. An asymptotic approximation for the
second stage was also presented by UH, but its validity is restricted to small values of t and
b/C 2.
The limitations of the foregoing numerical and asymptotical solutions motivated the attempt

for deriving a simpli®ed box model, which, as shown below, provides quick estimates and
further insights for the rotating gravity current.

3. Formulation of the box model

The ®rst step in the formulation of a box model is the de®nition of the ``box'', i.e. the
control volume which represents the current. In the non-rotating case a box with a rectangular
pro®le (a straight cylinder in the axisymmetric case of radius rN(t) and constant height hN(t))
has been successfully used. However, for the present rotating current the simplest successful
representation of the current seems to be a cylinder of radius rN(t) and height hN(t) plus a
conical ``roof'', as depicted in Fig. 2. The necessity for the non-trivial inclined roof has been
inferred from numerical, asymptotical and experimental results, and has mainly two reasons:
(a) the height of the nose must be able to attain a zero value at some ®nite radius of
propagation and within conservation of the initial volume (a ¯at roof would evidently be
unsuitable); (2) the ¯uid in the box must be able to approach a buoyancy±Coriolis balance by
piling up near the centre more than near the periphery. It appears that the chosen geometry is
the simplest one that is able to account for these e�ects; moreover, in the limit C= 0 the ¯at
cylinder box of the non-rotating counterpart is straightforwardly recovered.
The conical surface of the box is given by

h�r; t� � hN�t� � 1

2

1

f�t�C
2�r2N�t� ÿ rN�t�r� �14�

2 The terminology may be confusing: Oÿ1 is also referred to as the inertial time scale. In this case Tref is regarded
as the advective time scale.
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which is obtained as follows. As already mentioned in context of the shallow-water
approximation, the ambient ¯uid is assumed in a hydrostatic state. The heavier current ¯uid,
due to the relatively slow axial velocity, displays also a hydrostatic pressure distribution in the
vertical direction. Continuity of pressure on the interface connects @p/@r with the local
inclination of the interface. On the other hand, when rotational e�ects are dominant, the main
radial pressure gradient is expected to balance the Coriolis and centrifugal acceleration. These
considerations can be expressed as

@p

@r
1f

@h

@r
1C2o�2� o�r �15�

where o= v/r is the angular velocity of the heavier ¯uid relative to the rotating system. We
also assume that f and o are functions of t only. Thus, in view of the boundary condition (8),

o�t� � ÿ1� �rN�0�=rN�t��2 �16�
which makes o(2 + o)1ÿ 1 a good approximation for rN(t)/rN(0)>2, say. Within these
assumptions and approximations, Eq. (15) yields h as a simple function of r, from which we
extract the average slope ÿ[h(r = 0)ÿ hN]/rN. This slope is used as the constant inclination of
the conical roof in Eq. (14).
The volume of the current per unit azimuthal angle can be expressed in view of Eq. (14) as

V�t� �
�rN�t�
0

h�r; t�r dr � 1

2
r2N�hN �

1

6

1

f�t�C
2r2N� �17�

subject to the initial condition

V�0� � 1

2
rN�0�2 �18�

The ``unknowns'' of the current are now rN(t), hN(t) and f(t), for given parameters rN(0), C
and b. To calculate them we apply to the simpli®ed current the following constraints:

Fig. 2. The ``box'' control volume with a sloping roof which is used for the rotating gravity current.
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1. Conservation of volume, V in the homogeneous current and in the T model particle-driven
case, V remains unchanged during the propagation. In the L model V decreases due to the
pure ¯uid that leaves the suspension at the upper interface.

2. The dynamic correlation between the pressure head and the nose velocity, see Eq. (7),

drN
dt
� Fr�hN�t�f�t��1=2 �19�

3. Conservation of particles, which governs the changes of f(t). This is not a trivial condition
only for the turbulent remixing model T in which signi®cant changes of f are expected to
occur during the propagation. On the other hand, the homogeneous current is envisaged as
the limit of unsettled particles; hence for this case the particle-conservation constraint is
simply reduced to f= 1. Similarly, f= 1 when settling is in accordance with the laminar
model L; this is a straightforward result of the full corresponding shallow-water equations
of motion, and also a well-known feature of laminar settling in a tank.

The details of the solution are presented separately for the homogeneous (saline) and particle-
driven currents.

4. The homogeneous current

In a homogeneous current the density excess remains constant. In the present formulation
this is equivalent to a constant homogeneous distribution of heavier but non-settling particles
(b= 0), and hence we require

f�t� � 1 �20�

The volume of the current is conserved during the propagation, which on account of Eqs. (17±
18) and (20) can be expressed as

2V�t� � r2N�hN �
1

6
C2r2N� � rN�0�2 �21�

Hence

hN � rN�0�
rN

� �2

ÿ 1

6
C2r2N �22�

The dynamic nose condition, see Eq. (19), is

drN
dt
� Fr�hN�t��1=2 �23�

The initial condition is the prescribed

rN�t � 0� � rN�0� �24�
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There is a small O(C 2) inconsistency between (22) at t = 0 and the initial condition
h(r, t= 0) = 1; this can be ignored because we are interested in the behaviour of the current
for large t, when the in¯uence of Coriolis e�ects is signi®cant. This inconsistency is actually an
intrinsic consequence of the approximations used for the formulation of the present model: in
the shape of the control volume we incorporate the Coriolis in¯uence in the form that is
expected to dominate at larger times (in particular by the approximation o1ÿ 1), and, for
simplicity, apply the same functional result also at short times. Therefore, at a certain short
time instant (and in particular at t= 0) we may neglect the terms associated with C, but we
must keep these term in their time-dependent context because they become important
eventually. We consider this inconsistency as rather a ``cosmetic'' inconvenience; actually, in
the box model approximation there are other inaccuracies of perhaps the same and even larger
magnitude that we accept during the formulation, but which are less prominent during the
solution. We shall keep the signi®cance of this inconsistency in mind during the analysis.
Eq. (22) clearly indicates that in a rotating current the height of the nose decreases more

strongly with rN than in the non-rotating case C= 0. Moreover, it is seen that hN may become
zero, and hence there is a maximal possible spread controlled by the Coriolis e�ect given by

rmax

rN�0� �
61=4

�C1=2
�25�

This maximal radius is about 11% larger than the steady lens radius indicated by the exact
analysis (see Flierl, 1979; Csanady, 1979, UH). However, Eq. (25) is not expected to reproduce
the radius of the lens; UH showed that the current actually spreads beyond the lens radius, to
a locus that was not explicitly de®ned (the excess was estimated as about 35%).
The explicit behaviour of rN as a function of t can now be obtained. To this end we

eliminate hN from Eqs. (22) and (23) to obtain an equation for rN(t); after some algebra and
on account of the initial condition (24), the result is

rN�t� � 1

c1=2
�sin�cl2t� � crN�0�2�1=2 �cl2Rp=2� �26�

where

c � 1���
6
p 1

rN�0�C l � �2FrrN�0��1=2 �27�

We recall the de®nition (13) of t, the time coordinate scaled with the angular velocity of the
system. We can therefore reformulate the argument of sin in Eq. (26) as

cl2t � 2���
6
p Fr

� �
t �28�

which leads to the conclusion that the propagation of the current is correlated to the rotation
of the system. Indeed, the maximal value of rN according to Eq. (26) is achieved at

tM � p
���
6
p

4Fr
11:6 �29�
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i.e. in about 0.3 revolutions of the system. This is in fair agreement with numerical solutions of
Eq. (6) and experiments.
There is a small O(C) discrepancy between the maximal radius of propagation according to

Eqs. (25) and (26), which is attributed to the abovementioned inconsistency in the initial
conditions.
For small values of t but large t [twrN(0)] Eq. (26) can be expanded into

rN�t� � lt1=2 1ÿ 1

18
Fr2t2 �O�t4�

� �
�30�

This reproduces a non-rotating similarity-type propagation retarded by Coriolis terms whose
initial in¯uence turns out to be O(t 2). A similar functional behaviour has been derived in the
asymptotic treatment of the shallow-water equations by UH, with substantially more e�ort.
Their result, for comparison, is

rN�t� � Kt1=2 1ÿ f

12

1

�1� Fr2=12�Fr
2t2 �O�t4�

� �
�31�

where the ratio K/l = (1ÿ Fr 2/4)1/4 and f = 0.6 for Fr= 1.19. Both the functional and
quantitative agreements between Eqs. (30) and (31) are good. The disadvantage of Eq. (31) is
the restriction to small values of t, which corresponds to the major stage (2) of the
propagation, which has been mentioned in Section 2, during which the Coriolis terms become
important but not dominant [the O(t 4) term is not known]. On the other hand, the result (26)
of the box model predicts the behaviour of rN(t) also for stage (3) of motion during which the
Coriolis terms become dominant, until the decay of hN to zero.
Another feature that is, surprisingly, well reproduced by the box model is the trend of the

inner part of the current to shrink, i.e. a negative radial velocity appears in the region r< r2(t)
for t>t2. To obtain the relevant behaviour we start with the global continuity equation (cf.
the ®rst line of Eq. (6))

@h

@t
� 1

r

@

@r
ruh � 0 �32�

from which

uh � ÿ 1

r

�r
0

@h�r 0; t�
@t

r 0dr 0 �33�

Substitution of Eq. (16) and some algebra yields

uh � 1

2
r ÿ dhN

dt
� C2 drN

dt
rN ÿ1� 1

3

r

rN

� �� �
�34�

and by virtue of Eq. (22) this is reduced to

uh � rrN
drN
dt

rN�0�2
r4N
ÿ 1

3
C2 1ÿ 1

2

r

rN

� �� �
�35�
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This expression is negative for

r

rN
< 2 1ÿ 3

C2

rN�0�2
r4N

� �
�36�

When rN=rmax, see Eq. (25), the entire current, r/rN<1, has negative u; for smaller rN the
reverse motion is only in a portion of the current. Combining Eq. (36) with Eq. (26), we can
estimate the time, t2, when a negative u ®rst appears at the centre, i.e. when the right hand side
of Eq. (36) changes sign, as

t2 � 1

2
tM10:80 �37�

Thus, at half the time of maximal propagation, a reverse motion starts in the current; when
at maximal spread, all the ¯uid in the current has acquired a negative radial velocity. We
expect that subsequently the current shrinks to the lens shape, but this cannot be analysed by
the present model.
The foregoing value of t2 is about 10% below the asymptotic result of UH. It is indeed

remarkable that the box model provides the correct features of the reverse motion.

Fig. 3. Homogeneous current, rN [=rN(t)/r0] versus t [=t/r0], numerical (Ð) and box model (- - -) results for
C=0.1.
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As an example, we considered the current with

�C � 0:1; Fr � 1:19 �38�
The numerical solution of the full shallow water equations on a 100 point grid was used for
comparison. Fig. 3 displays the behaviour of rN/rN(0) as a function of t. Both the numerical
and the box calculations display a similar pattern and both attain maximal spread at t=16
(t = 1.6), although the box model prediction rmax/rN(0) = 5.0 is below the numerical value of
6.1. Concerning negative u, the box model predicts that it will ®rst occur at t=8, and that at
t=10 it will be present in the region 0 < r/rN<0.66. In the numerical computations a negative
value of u was ®rst detected at t=8 (although not at the centre) and at t=10 in the region
0.46 < r/rN<0.59. The positive u near the centre indicates that the initial conditions (or
``slumping phase'') did not decay su�ciently at these times. Given that the box models are
expected to be relevant for large t and small C the agreement in this comparison seems
satisfactory. In other test cases, not shown here, we indeed observed that the agreement
improves when C is reduced.

5. Particle-driven currents

Particle-driven non-rotating currents and homogeneous rotating currents both have a limited
radius of propagation, which is O(bÿ1/4) and O(Cÿ1/2), respectively. In the former case, as
shown by Bonnecaze et al. (1993, 1995), this occurs because the heavier particles settle on the
bottom, and hence the buoyant force of the current decreases to zero as the suspension runs
out of particles. In the latter case, as shown above, the Coriolis acceleration stops the
propagation. The combination of Coriolis hindering and buoyancy reduction due to particle
settling is expected to produce an even smaller radius of propagation than that resulting when
only one e�ect is present. However, under the combined action of both e�ects the current will
attain the maximal spread while still containing a ®niteÐperhaps signi®cantÐamount of
unsettled particles. The details depend on the values of the parameters C and b, and actually
on the value of the ratio C/b 2 and, to a lesser extent, on the type of particle transport model,
as indicated by the following analysis.

5.1. Model T

The assumption of the turbulent remixing model T is that some particles settle to the bottom
with velocity b, while the remainder are remixed vertically; and hence f depends on r and t. In
the box model, we assume that the volume fraction is independent of r, which implies that the
unsettled particles are actually remixed in the volume V of the current. The particle balance in
terms of the volume fraction f(t) can therefore be expressed as

dVf
dt
� ÿ 1

2
bfr2N �39�

where the right-hand-side is the rate of settling of particles, while the propagation is given by
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drN
dt
� Fr�fhN�1=2 �40�

and the global volume conservation is provided by Eq. (17)

V�t� � 1

2
r2N�hN �

1

6
C2 1

f
r2N� � V�0� �

1

2
rN�0�2 �41�

(Since a dilute suspension, f0W1, is considered the volume of the sedimented particles has an
insigni®cant contribution to the volume balance of the entire suspension.) We eliminate hN
from Eqs. (40) and (41), replace V in Eq. (39) with V(0) on account of Eq. (41) and obtain,
after some algebra, a system for the time-behaviour of the volume fraction and radius of
propagation

df
dt
� ÿ

���
6
p �b

�C2
Z2f �42�

dZ2

dt
�

���
2

3

r
Frf1=2 1ÿ Z4

f

� �1=2

�43�

which can also be combined into one equation for the dependency of the radius of propagation
on the volume fraction,

dZ4

df
� ÿ 2Fr

3

�C2

�b

� �
1

f
�fÿ Z4�1=2 �44�

where

Z � 6ÿ1=4 �C1=2�rN=rN�0�� �45�
and again,

t � Ct �46�
These equations are subject to the initial conditions

f � 1; Z � 6ÿ1=4 �C1=2; at t � 0 �47�
For CW1, as considered here, the initial condition for the variable Z (and actually for Z 4) is

well approximated by 0. Consequently, the solution of Eqs. (42)±(44) subject to Eq. (47), for a
given Fr, depends essentially only on the ratio b/C 2. During the propagation of the current f
decreases while Z increases and the current stops when Zmax=fmin

1/4 <1. The relative amount of
settled particles from the suspension is 1ÿf.
The limiting cases are

1. For b/C 240 a homogeneous rotating current with f= 1 is recovered. For this case, as
already seen in the previous section, Zmax=1, i.e. [rN/rN(0)]max=61/4Cÿ1/2.

2. For b/C 2}41 a non-rotating particle-driven current is recovered. For this case the box
model developed by Bonnecaze et al. (1995) yields [rN/rN(0)]max=(8Fr/b)1/4.
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Results for intermediate values of b/C 2, obtained by numerical integration of Eq. (44), are
displayed in Fig. 4. We observe that the value of fmin decreases strongly with b/C 2 for small
values of this parameter, and fmin=0.4 for b/C 2=1. The curve denoted (1) indicates the
in¯uence of settling relative to the Coriolis-controlled (with no settling) radius of propagation;
this e�ect is relatively weak, with a reduction of only 20% as b/C 2 attains 1. The curve
denoted (2) indicates the in¯uence of Coriolis e�ects relative to the maximal settling-controlled
(i.e. with no rotation) radius of propagation; the reduction is about 30% at b/C 2=1 and
becomes more pronounced as b/C 2 decreases. The intersection of curves (1) and (2) at
b/C 211.6 suggests that the current can be considered Coriolis-dominated for b/C 2<1.5 and
settling-dominated for larger values of this parameter.
Numerical solutions of the full shallow-water equations under lock-release initial conditions,

with small C, not shown here, are in good qualitative agreement with the box model results.
The quantitative agreement, however, is poor. The box model overestimates the in¯uence of
settling on the maximal rN, and underestimates the settled amount. For example, at
C 2=b=0.01 the reduction of maximal rN due to settling is 13% in the numerical run and 27%
in the box model; the relative settled amounts when the maximal radius is achieved are 78%
and 59%, respectively. The reason for this discrepancy seems to be the considerable settling
during the initial slumping phase and the dependency of f on r in the more accurate solution.
The quantitative agreement improves as C decreases with b/C 2 kept constant.

5.2. Model L

The assumption employed in the laminar settling model L is that the particles in the current
suspension behave as in a quiescent settling tank: they sediment in the entire domain with
relative velocity b. Sediment is deposited on the bottom and pure ¯uid is released at the
suspension±ambient interface z = h(r, t). Thus the volume V of the suspension domain
decreases due to the pure ¯uid which leaves at the interface to combine with the ambient, but
in this shrinking domain the volume fraction of the particles remains unchanged at f= 1.
The volume balance on account of this mechanism can therefore be expressed as

dV
dt
� ÿ 1

2
br2N �48�

while the propagation is given by

drN
dt
� Fr�hN�1=2 �49�

and the global volume conservation is provided by Eq. (17)

V�t� � 1

2
r2N�hN �

1

6
C2r2N� �50�

We eliminate hN from Eqs. (49) and (50), and obtain, after some algebra, a system for the
time-behaviour of the volume and radius of propagation
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Fig. 4. (caption opposite)
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d�2 �V�
dt
� ÿ

���
6
p �b

�C2
Z2 �51�

dZ2

dt
�

���
2

3

r
Fr�2 �V�1=2 1ÿ Z4

2V
� �1=2

�52�

which can also be combined into one equation for the dependency of the volume on the radius
of propagation,

dZ4

d�2 �V� � ÿ
2Fr

3

�C2

�b

� �
��2 �V� ÿ Z4�1=2 �53�

where

�V � V=rN�0�2 �54�
and again,

Z � 6ÿ1=4 �C1=2�rN=rN�0�� �55�

t � Ct �56�
These equations are subject to

�V � 1

2
; Z � 6ÿ1=4 �C1=2; at t � 0 �57�

As for the model T, when CW1 the initial value of Z is well approximated by 0, and hence the
solution of Eqs. (51)±(53) subject to Eq. (57), for a given Fr, depends essentially only on the
ratio b/C 2. During the propagation of the current the volume �V decreases while Z increases
and the current stops when Zmax=(2 �Vmin)

1/4<1. The relative amount of particles which have
settled out of the suspension is 1ÿ 2 �V. Comparing Eqs. (51)±(53) with Eqs. (42)±(46), we
notice that the variable 2 �V(t) in the model L plays a very similar role to the variable f(t) in the
model T. Moreover, when 2 �V and f are close to their initial value of 1 the di�erence between
the governing equations for these variables is small; we therefore expect a close agreement
between the behaviours of the current according to either the T or L models for as long as the
relative amount of settled-out particles is small. This is con®rmed by the solution.
The limiting cases are

1. For b/C 240 the homogeneous rotating current with constant 2 �V=1 is recovered. For this
case, as already seen in the previous sections, Zmax=1, i.e. [rN/rN(0)]max=61/4Cÿ1/2.

2. For b/C 241 the non-rotating particle-driven model L current is recovered. For this case
the box model yields [rN/rN(0)]max=[8Fr/(3 b)]1/4. (This is by about 24% smaller than for

Fig. 4. Model T: fmin and maximal radius of propagation versus b/C 2. (1) shows rmax/(rmax for b = 0); (2) shows
rmax/(rmax for C= 0). Part (a) of the ®gure is an expanded section of part (b).
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Fig. 5. (caption opposite)
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the T model because the settling is proportional to f and is more e�cient when f remains
1. There is, on the other hand, an increase in the velocity of propagation when f is larger,
but here the in¯uence is as f 1/2. Overall, the current runs out of particles over a shorter
distance according to model L than to model T.)

Results for intermediate values of b/C 2, obtained by numerical integration of Eq. (53), are
displayed in Fig. 5.
We observe that the value of 2 �Vmin decreases strongly from the initial value 1 with b/C 2 for

small values of this parameter, and 2 �Vmin=0.3 for b/C 2=1. The curve denoted (1) indicates
the in¯uence of settling relative to the Coriolis-controlled (with no settling) radius of
propagation; this e�ect is relatively weak, with a reduction of only 24% as b/C 2 attains 1. The
curve denoted (2) indicates the in¯uence of Coriolis e�ects relative to the maximal settling-
controlled (i.e. with no rotation) radius of propagation; the reduction is about 10% at b/C 2=1
and becomes more pronounced as b/C 2 decreases. The intersection of curves (1) and (2) at
b/C 210.6 suggests that the current can be considered Coriolis-dominated for b/C 2<0.6 and
settling-dominated for larger values of this parameter. Comparison with the similar graphs for
the T model indicates that the predictions of both models regarding the settled amount
(1ÿ 2 �Vmin and 1ÿ fmin) and the maximal radius are very close for small values (up to about
0.5) of the parameter b/C 2. For larger values of this parameter the sedimentation e�ects are
more pronounced in the model L.
Numerical solutions of the full shallow-water equations are consistent with the predictions of

the box model, in particular regarding the similarities and di�erences between the L and T
models. However, we were unable to perform a thorough comparison between the numerical
and the box-model for the ®nal stages of the motion (attainment of maximal radius) because of
a failure of the available formulation of the shallow-water approach for the L model. It turns
out that for values of C 2 and b which are not very small, the additional fall of the interface
due to the particle settling actually reduces the thickness of the current to zero in the central
region according to the L model; this is physically acceptable, but it invalidates the usual
boundary conditions applied at the centre r = 0, and gives rise to the need for an additional
investigation which is beyond the scope of the present work.

6. Concluding remarks

We have developed a simpli®ed analysis to describe the propagation of an axisymmetric
gravity current in a rotating environment, driven by a buoyancy relative to the ambient ¯uid
which is a result of either a di�erent composition (temperature) or presence of suspended
particles. We showed that a simple similarity transformation extends any solution of the full
inviscid shallow-water equations for these problems to a family of cases. (This result is
applicable also to non-rotating and two-dimensional circumstances.) However, the shallow-

Fig. 5. Model L: minimal relative volume, 2 �Vmin and maximal radius of propagation versus b/C 2. (1) shows rmax/
(rmax for b = 0); (2) shows rmax/(rmax for C= 0). Part (a) of the ®gure is an expanded section of part (b).
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water equations require numerical integration by special codes, which obscure insight and
quick estimates.
We hence developed a ``box model'' approach to overcome these disadvantages, at least for

the practical cases when the ratio of Coriolis to inertial e�ects is small, CW1. The shape of the
box used here is a cylinder with a conical roof. The negative inclination of the roof is an
essential component for the incorporation of rotational e�ects, and models the in¯uence of the
buoyancy-induced pressure gradient inside the current to compensate for the adverse rotation-
induced pressure in the ambient that grows during the propagation. After about 0.3
revolutions of the system, the height of the current's nose is reduced to zero and the
propagation stops. The box model reproduces this behaviour with reasonable accuracy;
moreover, it indicates correctly that a reverse radial motions appears.
For a compositional-driven homogeneous current these features are given by simple

analytical expressions for the maximal radius of propagation and time of its attainment, Eqs.
(25) and (29), and of the locus of reverse motion and its time of appearance, Eqs. (36) and
(37).
For the particle-driven current we considered two particle-transport possibilities, the

turbulent remixing model T and the laminar settling model L. We showed that in both cases
the essential parameter for the e�ect of sedimentation is the ratio b/C 2. Analytical expressions
can be easily obtained for the limiting cases 0 and 1 of this parameter (i.e. the compositional-
driven rotating and the particle-driven non-rotating cases). Intermediate circumstances require
simple numerical integration of one or two ordinary di�erential equations, as presented in
Figs. 4 and 5. We showed that for small values of b/C 2 (say, below 0.5) there is little di�erence
between the predictions of the T and L models regarding the maximal radius of propagation
and the corresponding amount of settled particles. As b/C 2 increases, the in¯uence of settling
becomes more signi®cant in model L than in model T, but the di�erence in the maximal radius
of propagation reaches only about 24% in the extreme case b/C 241.
The degree of agreement of the present box-model results with numerical solutions of the

full shallow-water equations for the rotating current is satisfactory, which suggests that the
results can be used in practical circumstances where the global details of the motion are of
primary interest.
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