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The spreading of a two-dimensional, viscous gravity current propagating over and
draining into a deep porous substrate is considered both theoretically and experimen-
tally. We first determine analytically the rate of drainage of a one-dimensional layer
of fluid into a porous bed and find that the theoretical predictions for the downward
rate of migration of the fluid front are in excellent agreement with our laboratory
experiments. The experiments suggest a rapid and simple technique for the determi-
nation of the permeability of a porous medium. We then combine the relationships
for the drainage of liquid from the current through the underlying medium with a
formalism for its forward motion driven by the pressure gradient arising from the
slope of its free surface. For the situation in which the volume of fluid V fed to the
current increases at a rate proportional to t3, where t is the time since its initiation,
the shape of the current takes a self-similar form for all time and its length is pro-
portional to t2. When the volume increases less rapidly, in particular for a constant
volume, the front of the gravity current comes to rest in finite time as the effects of
fluid drainage into the underlying porous medium become dominant. In this case, the
runout length is independent of the coefficient of viscosity of the current, which sets
the time scale of the motion. We present numerical solutions of the governing partial
differential equations for the constant-volume case and find good agreement with our
experimental data obtained from the flow of glycerine over a deep layer of spherical
beads in air.

1. Introduction
Gravity currents occur whenever fluid of one density propagates primarily hori-

zontally into fluid of a different density. In many natural and industrial situations the
intruding fluid flows over an impermeable boundary, but interesting examples also
exist of gravity currents intruding into the interior of a fluid. (These examples also
include the special case of a current flowing along a free surface.) A comprehensive
description of many of these situations and the theory behind analysing them is
presented in Simpson (1977).

The flow of relatively heavy fluid below less-dense fluid lying on a permeable
boundary is also of natural and industrial importance but has received as yet very
little attention. The additional concept introduced by this situation is that fluid can
escape from the gravity current, thereby reducing its volume, as the current propagates
over the permeable boundary. This situation was first considered by Thomas, Marino
& Linden (1998) who, motivated mainly by industrial concerns, carried out an
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experimental investigation of a high Reynolds number salt-water gravity current in
a two-dimensional channel propagating over a wire gauze into fresh water. They
provided a theoretical framework to describe the results of their experiments, which
incorporated the idea that the vertical velocity into the gauze at the base of the
current is directly proportional to the thickness of the current at that point. This
framework was further developed by Ungarish & Huppert (2000) to provide better
agreement between the theoretical predictions and the experimental results of Thomas
et al. (1998).

The aim of the present paper is to consider the propagation at low Reynolds number
of a gravity current over a deep, porous substrate, which we model experimentally by
a layer of spherical glass balls. In order to determine the appropriate relationship for
the vertical velocity into the porous medium, we first consider the one-dimensional,
purely vertical, percolation of a layer of fluid into a porous substrate. We then use
the relationship obtained for the drainage velocity in terms of the thickness of the
current above the porous medium and that of the fluid which has already seeped
into it to investigate theoretically the two-dimensional propagation of a viscous fluid
above an unsaturated (initially air-filled) porous medium.

We analyse the one-dimensional percolation in the next section and show that
the fluid layer above the porous medium, which has a (hydrostatic) pressure which
increases linearly with depth, drains into the porous medium in which the pressure,
predicted by Darcy’s Law, decreases linearly with depth. We describe our experimental
investigations of this situation in § 3 and find good agreement between our theoretical
predictions and experimental results. A consequence of this good agreement, which is
dependent on the value of the permeability of the porous medium, is that we suggest
a new, rapid and simple way of measuring permeabilities. We present the theoretical
development for the two-dimensional propagation of a viscous gravity current over a
deep permeable base in § 4. The current propagates under a balance of buoyancy and
viscous forces in addition to the drainage at the base. The paradigm situation without
drainage was first determined by Huppert (1982). We extend his use of lubrication
theory to analyse the flow with drainage, which can be completed without the use
of any experimentally determined free parameters. For the situation in which the
volume input into the gravity current is proportional to t3, where t is the time since its
initiation, the governing partial differential equaions admit a similarity solution, which
we obtain by numerical integration of the resulting ordinary differential equations in
§ 5. We then determine numerical solutions to the more general, singular, nonlinear
partial differential equations in § 6 and describe our experiments in § 7. Again there is
good agreement between our experimental data and the theoretical rate of propagation
of the current. We summarize the work in the final section.

Our experimental setup is reproduced in millions of homes throughout the world
every morning – albeit in an (approximately) axisymmetric geometry – when honey is
allowed to spread out over, and seep into, freshly made toast. Other more important
examples include the flow of crude oil over a beach, the propagation of a river due
to tidal motions over fresh sand, and the flow of newly erupted lava over fractured
bedrock.

2. One-dimensional percolation: theory
The general problem of fluid draining vertically into a porous medium is formulated

in Bear (1988, p. 303), and is analysed in detail here for the case of a fixed-volume
release. Consider a layer of fluid with initial height h0 above a deep, dry, porous
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Figure 1. A sketch of the flow geometry and associated pressure field for the one-dimensional
percolation of a layer of fluid through a deep porous medium.

medium of uniform porosity φ and permeability k. As sketched in figure 1, the fluid
layer drains through the porous medium in such a way that after a time t it extends
from z = −l(t) < 0 in the porous medium to z = h(t) with respect to a vertical z
coordinate whose origin is at the top of the porous medium. The downward volume
fluxes in the fluid layer and the porous medium are independent of z (by conservation
of mass) and functions only of time. In the fluid layer the pressure p(z, t) can be
assumed to be hydrostatic and hence given by the linear relationship

p(z, t) = p0 + ρg(h− z) (0 < z < h), (2.1)

where p0 is the atmospheric pressure at the top of the layer, ρ is the density of the
fluid and g the acceleration due to gravity.

The pressure distribution in the porous medium satisfies

∂2p

∂z2
= 0 (2.2)

along with the boundary conditions

p = p0 + ρgh (z = 0) and p = p0 (z = −l(t)), (2.3a, b)

where the latter is a consequence of the dry portion of the porous medium being at
atmospheric pressure p0.

Surface tension acting at the base of the saturated portion of the porous medium
causes the pressure there to deviate from atmospheric pressure by ρghr , where hr
is the capillary rise height of the fluid in the porous medium. Note that hr can be
positive or negative depending on whether the fluid wets the porous medium or not.
Its magnitude is less than γ/a, where γ is the magnitude of the surface tension and
a is the effective radius of the pores. An estimate of the relative magnitude of the
contribution of surface tension to the pressure compared with the hydrostatic presure
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Figure 2. The non-dimensional height of the fluid layer percolating through a deep porous
medium as a function of the non-dimensional time for various values of the porosity φ.

is h0/hr ≈ ρgh0a/γ, where h0 is the initial height of the fluid layer. Therefore, surface
tension can safely be neglected provided h0 � γ/ρga ≈ 5 mm in our experiments (see
§ 3 below). By way of contrast, Washburn (1921) identifies the difficulties associated
with dynamic capillary rise, though the paper is spoilt by the inclusion in some parts
of a slip condition at a rigid wall. More modern discussions of the problem can be
found in Delker, Pengra & Wong (1996) and Davis & Hocking (2000).

From (2.2) and (2.3) it follows that the pressure distribution in the porous medium
is linear and given by

p(z, t) = p0 + ρgh(1 + z/l), (2.4)

as sketched in figure 1.
Within the porous medium the flow is governed by Darcy’s law

µv

k
= −∂p

∂z
− ρg, (2.5)

where µ is the dynamic viscosity of the fluid and v is the transport or Darcy velocity,
which is the volume flux of fluid per unit area of porous medium transverse to the
flow. Differentiating (2.4) with respect to z and substituting the result into (2.5), we
find that

v = −(gk/ν)(1 + h/l), (2.6)

where the kinematic viscosity ν = µ/ρ, as cited in Bear (1988). Global conservation
of fluid, while h > 0, links h and l through

h+ φl = h0. (2.7)

Using (2.7) to eliminate l from (2.6) and equating v to dh/dt, we find that

dh

dt
= −(gk/ν)

[
h0 − (1− φ)h

h0 − h
]

(h > 0) (2.8a)

h(0) = h0, (2.8b)
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which has solution

t =
ν

(1− φ)gk

[
(h0 − h)− φh0

1− φ ln

(
1 +

1− φ
φh0

(h0 − h)
)]

. (2.9)

This relationship is plotted in terms of the dimensionless variables

h∗ = h/h0 and t∗ = gkt/(h0ν) (2.10)

in figure 2 for various values of φ. Alternatively, using (2.7), we can obtain a
relationship for l(t) as

t =
νφ

(1− φ)gk

[
l − h0

1− φ ln

(
1 +

1− φ
h0

l

)]
. (2.11)

Expanding the logarithmic term in (2.9) for h ≈ h0, we find that

h∗ = 1− (2φt∗)1/2 + O(t∗) (t∗ � 1). (2.12)

Defining t∗0 as the dimensionless time when the layer of fluid has just drained
(h = 0), we find that

t∗0 =

(
1 +

φ

1− φ lnφ

)
/(1− φ). (2.13)

For t∗ > t∗0 the entire fluid lies within the porous medium, the pressure is uniform
and hence the drainage velocity is a constant, which can be evaluated from (2.5) as
equal to −kg/ν.

An alternative model of drainage into a porous medium (Thomas et al. 1998;
Ungarish & Huppert 2000) assumes that the drainage velocity into a porous medium
due to an overlying fluid layer of depth h can be expressed by

v = −h/τ, (2.14)

where τ is some suitable time scale. For this drainage law, which is appropriate for
drainage through a sieve rather than an extended porous medium,

h = h0e
−(t/τ) (2.15)

and so, in contrast, the layer never totally drains.
Our model can be simply extended to consider the case when h(t) is a given function

of time, corresponding to a situation in which fluid is added to, or removed from, the
system at a specified rate, as discussed in Bear (1988). We present some results briefly
here, which provide a link to the draining gravity currents we examine later in the
paper. Consideration of the flux of fluid into the porous medium across the plane at
z = 0 indicates that

dl

dt
= −v/φ =

gk

ν

(
1 +

h

l

)
, (2.16a, b)

which, if h(t) is prescribed, can be integrated to determine l(t). Alternatively, we can
differentiate with respect to time to yield a first-order differential equation for v(t).
For the special case in which h is held constant at h0 we find that

dv

dt
= − (νv + gk)2φ

νgh0kv
, (2.17)

which has the solution

t∗ = φ

[
ln

(
v∗

v∗ − 1

)
− 1

v∗ − 1

]
, (2.18)
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Figure 3. The non-dimensional velocity as a function of the non-dimensional time for a fluid layer
percolating through a deep porous medium maintained at a constant height.

where

v∗ = −νv/k. (2.19)

The relationship (2.18) is presented in figure 3. We see that v becomes constant at
large time, once l � h. We can therefore anticipate that even if a gravity current is
being fed continuously, a balance might be reached between the supply of new fluid
and its drainage into the underlying porous medium.

3. One-dimensional percolation: experimental confirmation
Experiments to compare with the analysis above were conducted in a Perspex tube

of internal diameter 3.4 cm. The tube was filled to a depth of approximately 25 cm
with spherical glass beads with a nominal diameter of 2 mm. A gauze mesh was
attached to the base of the tube to hold the beads in place and to allow displaced
air to escape. Four experiments were performed. For experiments 1 and 4, a volume
V of glycerine, dyed with red food colouring, was poured onto the top surface of the
beads as rapidly as possible from a measuring cylinder. Experiments 2 and 3 were
commenced by placing a cylinder filled with glycerine above the tube containing the
beads. At the base of the cylinder there was a cork which was dislodged to start
each experiment. In all experiments, h and l were measured at regular time intervals
by marking onto the tube the position of the relevant interfaces and then measuring
those distances at the end of the experiment.

The viscosity of the glycerine was measured using a standard U-tube viscometer.
The viscosity of each sample of glycerine was measured at four or five temperatures
over a range of about 4 ◦C. A best fit exponential curve was then fitted to these data.
The fit was extremely good. From this curve the viscosity of the glycerine at the
temperature of the experiment, θ, was calculated. Table 1 summarizes the parameters
in each of the experiments.

The porosity of the beads was measured directly. A known volume, 227 cm3±7 cm3

(corresponding to a tube length of 25.0 cm± 0.2 cm) was sealed at one end and filled
with beads. Water was then poured into the tube to just fill the pore spaces. We found
that 83 cm3 ± 3 cm3 was required. Hence φ was calculated as 0.37± 0.02.
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Quantity Experiment 1 Experiment 2 Experiment 3 Experiment 4

θ (◦C) 21.5± 0.1 22.4± 0.1 21.2± 0.1 21.9± 0.1
V (cm3) 80± 3 72.8± 0.2 88.4± 0.2 67.8± 1
L (cm) 25.1± 0.3 23.6± 0.3 25.8± 0.3 25.2± 0.3
h0 (cm) 8.8± 0.4 8.0± 0.2 9.7± 0.3 7.5± 0.2
ν (cm2 s−1) 9.75± 0.1 9.07± 0.1 9.12± 0.1 9.06± 0.1

Table 1. Parameter values for the one-dimensional percolation experiments.

900

1200

Z

Y

Figure 4. A photograph of experiment 4 near the base of the percolating fluid medium showing
the two extreme interface positions.

Figure 4 shows a photograph of the interface at z = −l, fifteen minutes after
commencement of a typical experiment. Two features are evident. First there is not
a sharp transition between fluid and beads, but between the lines Y and Z there is
a slightly paler region of fluid. This occurred because the interface at Y was subject
to the usual Rayleigh–Taylor instability (Phillips 1991). In addition, the beads do not
pack around the edge of the tube as efficiently as they do in the centre; there is a
region of higher porosity and permeability around the edge. Hence fluid can flow
faster along the edges of the tube than it can down the centre. This would result in
fluid being present throughout the cross-section of the tube above Y, but between Y
and Z it would be present only around the edges, thereby accounting for the paler
region. In experiments 1 and 2 we took the position of the interface at Z while in
experiments 3 and 4 we took Y as the position for the interface. As we show below
it made little difference to the results.

The error in time measurement is about ±0.5 s. The dominant cause of error in
the measurement of l is the uncertainty in the position of the interface, with an
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h1 l1 h2 l2 h3 l3 h4 l4 Ave. Std. dev.

φ 0.284 0.434 0.468 0.396 0.371 0.285 0.319 0.218 0.35 0.3
k1 (cm2 × 10−5) 3.11 4.05 2.81 3.17 3.15 2.57 2.84 1.67 2.9 0.7
k2 (cm2 × 10−5) 2.88 3.29 3.06 2.91 3.15 3.51 2.71 3.14 3.1 0.3

Table 2. Values for φ and k (labelled k1) from a two-parameter regression and values of k (labelled
k2) from a one-parameter regression with φ = 0.37 of the data for h and l otained from experiments
1–4 (indicated by subscripts).
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Figure 5. (a) The drainage of the fluid layer and (b) the depth of the fluid layer within the porous
medium as functions of time for experiment 4. The circles represent experimental data. The curves
marked BF represent the best-fit curves (2.9) allowing both k and φ to be free. The curves marked
R are the best-fit curves for φ = 0.37 allowing k to be free.

estimated error of about 3%. The dominant error in h of about ±0.5 mm is simply
that introduced by the actual acts of marking and measuring the position of the
interface.

Figures 5(a) and 5(b) present data for h0−h and l as functions for t for experiment 4,
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Figure 6. (a) The non-dimensional decrease in the height of the fluid layer and (b) the
non-dimensional depth of percolation as functions of non-dimensional time for each of the four
experiments.

a typical experiment. We determined estimates for φ and k by finding those values for
which (2.9) and (2.10) most closely followed the experimental data in a least-squares
sense. The resulting best-fit curves are drawn in figures 5(a) and 5(b) and labelled BF.
Table 2 shows the two values of φ and k estimated in this way from the data for each
experiment. As can be seen from the best-fit curve in the case of experiment 4 (and
from all the residuals, all of which were greater than 0.998), the best-fit curves match
the data very well. However, the variations in the values determined for φ from each
experiment were rather large, even though the average of 0.35± 0.08 was close to the
directly measured value of 0.37. Consequently a second series of curves was fitted in
which φ was specified as 0.37 and the error minimized with respect to k only. The
mean values of k and the standard deviations are shown in the final columns of table 2.
The new set of best-fit curves for experiment 4 are shown in figures 5(a) and 5(b) and
marked R.

From the curves it is clear that there is little difference between the first set and
the second. This indicates that the curves are rather insensitive to changes in φ and
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Figure 7. The experimentally determined porosity, evaluated from φ = (h0 − h/l), as a function of
non-dimensional time for the first three experiments. The dashed lines I and J indicate one standard
deviation on either side of the mean.

hence that estimates of φ from the curves are not likely to be accurate. Note that for
the first two experiments, for which measurements were taken at the top of the paler
region, the average value of k is (3.04± 0.09)× 10−5 cm2, while for the second pair of
experiments, for which measurements were taken at the very bottom of the fluid, it is
(3.13± 0.2)× 10−5 cm2. These values are not significantly different. We therefore take
3.1× 10−5 cm2 to be the value of the permeability determined from our experiments.

Figures 6(a) and 6(b) present plots of 1 − h∗ and l∗ = l/h0 against t∗ for the
data from all our experiments along with (2.9) and (2.11) using φ = 0.37 and
k = 3.1× 10−5 cm2. The data are seen to collapse very well. (Error bars have not been
shown on these plots for the sake of clarity but they are certainly large enough to
explain any variations between experiments.)

A number of empirical relationships connecting k and φ have been suggested. One
of the simplest and most frequently used is the Carman–Kozeny equation (Dullien
1979; Phillips 1991)

k =
D2φ3

180(1− φ)2
, (3.1)

where D is the mean diameter of the particles in the porous medium. The diameter
of 30 balls was measured using vernier callipers and the mean diameter found to be
0.204±0.003 cm. Taking φ = 0.37±0.02 gives an estimate, using the Carman–Kozeny
equation, of k = 3.0 ± 0.5 × 10−5 cm2, which is in good agreement with our direct
experimental measurements. Another relationship, originally proposed by Rumpf &
Gupte (1971) and reviewed in Dullien (1979), for randomly packed spheres with
porosities between 0.35 and 0.65 is given by

k =
1

5.6
D2φ5.5. (3.2)

With the values indicated above, this leads to a mean value of k of 3.1 × 10−5, not
dissimilar to that obtained from using (3.1).

A different estimate of φ can be obtained using (2.7). The ratio (h0 − h)/l should
equal φ and figure 7 shows a plot of (h0 − h)/l against t∗ for each of the first three
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Figure 8. A sketch of the coordinate system used to evaluate the flow of a two-dimensional
gravity current over a deep porous medium.

experiments. (For experiment 4, h and l were measured at different times, preventing
such an estimate.) Except at early times (t∗ < 0.1), the deduced values of φ become
reasonably constant and consistent with the previously estimated value of 0.37±0.02.
At early times there are deviations from this, especially with experiment 2. This is not
surprising however, since at early times the values of h0−h and l are small, and hence
difficult to measure accurately, as well as being considerably influenced by the way in
which the experiment was started. Releasing fluid in the way it was for experiment 2
will certainly not lead to the idealized situation of the entire head of fluid resting on
the interface at t = 0. This is reflected in figure 7 where the experimental data deviate
most markedly at early times.

4. Advection plus drainage: theory
We consider now the two-dimensional flow of a viscous gravity current over a deep

porous medium, as sketched in figure 8. In addition to the horizontal advection of fluid
above the porous medium, there is also vertical drainage into the underlying medium.
With the approximations of lubrication theory (Batchelor 1967) which are valid once
the horizontal length becomes very much greater than the vertical thickness, the
velocity profiles for the vertical and horizontal flows can be derived independently.
They are then interrelated by the fact that the drainage, which is dependent on the
local thickness of the current above the porous medium, reduces the thickness and
hence changes the propagation of the current.

The horizontal velocity profile, which experiences no slip at z = 0 and no tangential
stress at z = h, in the current is given by

u(x, z, t) = −1

2

(g
ν

) ∂h
∂x
z(2h− z) (0 6 z 6 h). (4.1)

From local continuity, u, h and v are related by

∂h

∂t
+

∂

∂x

(∫ h

0

udz

)
= v(x, 0, t), (4.2)

where, as discussed in § 2,

v(x, 0, t) = −(gk/ν)(1 + h/l) = −φdl

dt
. (4.3a, b)

Note that the horizontal component of flow in the porous medium, which is driven
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by the horizontal gradient of the hydrostatic pressure exerted by the overlying fluid,
is (kg/ν)∂h/∂x. This has magnitude much less than v ∼ kg/ν and is therefore ignored
in this analysis. Note too that surface tension at the base of the saturated region can
be ignored once (h+φl)� hr . We neglect its effects here but discuss them later in the
context of our experimental results. Substituting (4.1) and (4.3a) into (4.2), we obtain

∂h

∂t
− 1

3

(g
ν

) ∂

∂x

(
h3 ∂h

∂x

)
= −(kg/ν)(1 + h/l) (4.4)

as a partial differential equation linking h and l in addition to (4.3b).
Finally, the total conservation of fluid, on the assumption the fluid is input so that

the total amount is given by V = qtα for some constant q and α, requires∫ L

0

(h+ φl)dx = qtα, (4.5)

where L(t) is the length of the current.
The relationships (4.4) and (4.5) can be reduced to those derived by Huppert

(1982, 1986, 2000) for the flow of a viscous gravity current propagating over a rigid
horizontal boundary by setting the right-hand side of (4.4) to zero (zero drainage
velocity) and setting φl = 0 in (4.5).

Equations (4.4) and (4.5) contain five physical parameters, g, ν, k, q and φ. The
first four can be eliminated from the equations leaving φ as the only parameter, which
makes the determination and interpretation of the solutions much easier. This is done
by introducing the non-dimensional quantities

η = h/SV , ζ = l/SV X = x/SH and T = t/St, (4.6a–d )

where the vertical, horizontal and temporal scales SV , SH and St are given by

S6−2α
V = 3q2ν2αk1−2α/g2α, S6−2α

H = q4ν4α/(31−αg4αk3α+1), S6−2α
t = 3ν6q2/(g6k5).

(4.7a–c)

Substituting (4.6) and (4.7) into (4.3b), (4.4) and (4.5), we obtain

∂η

∂T
− ∂

∂X

(
η3 ∂η

∂X

)
= −

(
η + ζ

ζ

)
, (4.8)

∂ζ

∂T
=

(
η + ζ

φζ

)
, (4.9)

and ∫ XN

0

(η + φζ)dX = Tα, (4.10)

as the governing equations in dimensionless form, where the dimensionless front of
the current XN = L/SH .

The associated boundary conditions are

η = ζ = 0, η3 ∂η

∂X
→ 0 (X = XN). (4.11a–c)

The third of these boundary conditions is a statement of conservation of mass at the
nose of the current: that there is no sink of fluid there.

We note that the scalings (4.7) become undefined at α = 3, a significant value, as
we shall show below. Only for α = 3 does (4.8)–(4.10) have a similarity solution for
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which effects due to spreading, as expressed by the second term on the left-hand side
of (4.8), continually balance effects due to drainage, as expressed by the term on the
right-hand side.

At early times, the dominant balance in equation (4.8) when α < 3 is between the
terms on its left-hand side, and η � ζ, which gives the asymptotic scalings

η ∼ T (2α−1)/5, XN ∼ T (3α+1)/5, ζ ∼ T (α+2)/5, t� 1. (4.12)

This can be verified by direct substitution, which shows that although the drainage
term on the right-hand side of (4.8) is singular as t → 0, being proportional to
T−(3−α)/5, the terms on the left-hand side are more singular, being proportional
to T−2(3−α)/5. This means that, for α < 3, the dynamics of the gravity current are
dominated by spreading at early times and the solutions are asymptotic to the
non-draining similarity solutions calculated by Huppert (1982).

In particular, for α = 0, the entire right-hand side of (4.8) is negligible as t→ 0, and
ζ is negligible compared with η on the right-hand side of (4.9) and in the integrand
of (4.10). The solution of the resulting equations is

η ∼ T−1/5s
2/3
N

[
3
10

(1− Y 2)
]1/3

, (4.13)

φζ2 ∼ 5
(

3
10

)1/3
T 4/5s

2/3
N Y 4

∫ 1

Y 2

u−3(1− u)1/3du, (4.14)

where

XN = sNT
1/5, sN =

[
1
5

(
3
10

)1/3
π1/2Γ

(
1
3

)
Γ
(

5
6

) ]−3/5

' 1.411 (4.15a, b)

and Y = X/XN(t). This provides the initial conditions for the full numerical solution
described below.

At late times, when α < 3, the second term on the left-hand side of (4.8) is negligible;
the current stops spreading and simply drains into the porous medium in the manner
described in §§ 2 and 3. The transition between the early spreading behaviour and
the late draining behaviour occurs when T 3−α = O(1), which imples that T = O(1),
since α < 3. This is equivalent to a dimensional time t ∼ St. For the important case
of α = 0, this transition time is

tT ∼ νq1/3

gk5/6
, (4.16)

which increases with the viscosity and with the initial volume of the current, as might
be expected.

It is also clear from these scalings that all the terms in (4.8) balance for all time
when α = 3. This unique balance gives rise to a similarity solution.

5. The similarity solution for α = 3

By writing down order-of-magnitude expressions for each term in (4.8)–(4.10), it is
straightforward to show that a similarity form of solution only exists for α = 3. In
this case a suitable similarity variable can be written as s = X/T 2 and corresponding
relationships for η and ζ are of the form

η = Tψ(s) and ζ = Tχ(s). (5.1a, b)
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Substituting (5.1) into (4.8)–(4.10), we obtain

ψ − 2sψ′ − 3ψ2ψ′2 − ψ3ψ′′ = −(1 + ψ/χ) (5.2)

χ− 2sχ′ = (1 + ψ/χ)/φ (5.3)

and ∫ sN

0

(ψ + φχ)ds = 1, (5.4)

where primes denote differentiation with respect to s and sN = XN/T
2, which indicates

immediately that for α = 3, L is proportional to t2.
The equations (5.2)–(5.4) were solved numerically using the computer algebra

package Mathematica, with the built-in numerical differential equation solver NDSolve.
The equations were first manipulated to give the more convenient set of coupled first-
order differential equations

y′1 = y2, (5.5a)

y′2 = (y1 − 2sy2 − 3y2
1y

2
2 + 1 + y1/y3)/y

3
1 , (5.5b)

and

y′3 =
1

2s

(
y3 − y1 + y3

φy3

)
, (5.5c)

where the variables y1, y2 and y3 are related to ψ and χ by y1 = ψ, y2 = ψ′ and y3 = χ.
A new function y4, representing the total volume of the gravity current between the
point η and its nose, at sN , was defined as

y4 =

∫ sN

s

(y1 + φy3)ds. (5.6)

Differentiating (5.6), we obtain

y′4 = −(y1 + φy3) (5.7)

as the fourth, coupled, first-order, ordinary differential equation. The appropriate
boundary conditions associated with (5.5) and (5.7) are

y1 = y3 = 0, y3
1y2 → 0 (s = sN) and y4 = 1 (s = 0). (5.8a–d )

In order to determine the explicit solutions to (5.5) and (5.7) it was first necessary to
evaluate sN . This was done by integrating the equations backward from s = sN to s = 0
with varying values of sN until the boundary condition (5.8c) was satisfied. Because
of the singularity at s = sN it was necessary to commence the integrations with the
asymptotic representations, which can be derived directly from (5.5) and (5.7),

y1(s) ∼ [6sN(sN − s)]1/3, y2(s) ∼ − 1
3
(6sN)1/3(sN − s)−2/3, (5.9a, b)

y3(s) ∼
(

81

32s2Nφ
3

)1/6

(sN − s)2/3, y4(s) ∼ 3
4
(6sN)1/3(sN − s)4/3 (s ↑ sN). (5.9c, d )

Figure 9 graphs the calculated values of sN as a function of φ. Once the value of sN
has been obtained, numerical integration of (5.5) and (5.7) starting with (5.9) yields
ψ and χ. Figure 10 presents a plot of ψ and χ for φ = 0.5 (for which sN = 0.574).
For s larger than about 0.3, ψ > χ – in the forward portion the height of the current



Two-dimensional viscous gravity currents flowing over a deep porous medium 373

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

φ

sN

Figure 9. The value of sN as a function of φ for α = 3.
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Figure 10. The self-similar shape of the gravity current for φ = 0.5 and α = 3.

above the bed exceeds that in the porous medium (in accord with (5.9a, c)) – while
for s less than approximately 0.3 the opposite is true.

6. Numerical solutions for α = 0

When α 6= 3, it is necessary to solve the partial differential equations (4.8)–(4.10).
There are difficulties associated with the fact that the boundary X = XN , the nose of
the current, is moving and that the solutions are singular there. These were overcome
by first mapping the domain [0, XN] onto [0, 1]. The resulting equations were solved
numerically using a predictor-corrector scheme with first-order convergence. The
details of this procedure are described in the Appendix. Aspects of the code were
tested by using it to predict the length of a non-draining gravity current, and
comparing the results to the analytic solutions (Huppert 1982), and to predict the
one-dimensional drainage into a porous medium described in § 2. In both cases,
excellent agreement between the numerical and analytical results was obtained.

Figure 11 shows a plot of Xmax, the maximum length of the gravity current XN , as
a function of φ for α = 0, as obtained from the numerical integration. In particular,
XN = 0.858 at φ = 0.37. Figure 12 shows the evolution of the shape of a gravity
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Figure 11. The value of Xmax as a function of φ for α = 0.

X
0 0.2 0.4 0.6 0.8 1.0

–2

–1

0

1

2

3
t* = 0.002

0.017

0.116

η

–ζ

Figure 12. The evolution of the shape of the current for α = 0 and φ = 0.37. In the current shown at
t∗ = 0.002, when XN = 0.4, spreading dominates drainage and the similarity solutions (4.13)–(4.15)
give a good aproximation to the shape of the current. In the current shown at t∗ = 0.116, when
XN = 0.8, the current has almost arrested and is dominated by drainage.

current of constant volume (α = 0) for a porosity of 0.37, the porosity of the bed
used in the experiments.

7. Experimental investigations
We conducted experiments in two Perspex tanks whose cross-sections are sketched

in figure 13. Each tank was 15.1 cm ± 0.05 cm in width. Before the start of each
experiment the region labelled B was filled with thoroughly washed and dried spherical
glass beads of nominal diameter 2 mm. The bed was carefully flattened and levelled.
The region labelled F, behind the lock, was filled with glycerine dyed with red food
colouring. The length of the lock could be varied by the insertion of a second gate
R. At t = 0 the gate G was raised, which allowed the gylcerine to flow from the lock
onto the beads. About a second later the gate G was rapidly replaced. This procedure
was carried out because the theoretical model assumes that the gravity current is
entirely underlain by a porous bed and if the gate were not replaced then there would
be a section of the gravity current, that part still in the lock, which is above an
impermeable surface. The volume of fluid released was calculated from measurements
of the height of the liquid in the lock before and after the gate was opened.



Two-dimensional viscous gravity currents flowing over a deep porous medium 375

R G

F

B7.1 cm

9.9 cm

10.8 cm

89.9 cm

8.2 cm

Figure 13. A schematic diagram of the apparatus used in the two-dimensional experiments.

Figure 14. A photograph of an experiment.

At regular time intervals the length L of the gravity current from the gate G was
measured by placing marks on the tank at the position of the front of the gravity
current. These positions could then be measured accurately after each experiment.
The front of the gravity current, as shown for a typical experiment in figure 14, was
not perfectly straight but showed some irregularities. There was therefore some degree
of uncertainty as to the position of the front of the gravity current. We measured
the frontmost point of the leading edge but the front, across the tank, would on
average have been some way behind that. This lack of two-dimensionality manifested
itself predominantly in experiments with smaller volumes though the ‘fringe’ of the
current in all the experiments was less than 5% of the total current length. The error
in t reflects the difficulty of taking a measurement at exactly the right time and an
estimate is ±0.2 s.

Observations were also made of the flow within the porous medium. Finger-like
Rayleigh–Taylor instabilities were seen protruding from the bottom of the flow. It
was difficult to estimate the length of these since they were within the bulk of the
porous medium. However, by about t = 15 minutes they may have been as long as
5 cm. These instabilities can be seen at the side of the tank in figure 14. After the
experiment had finished, the top layer of beads could be removed and the instabilities
viewed from above. The regularity in the spacing of the fingers was worthy of note.

Seven experiments were carried out, five in the small tank and two further ones in
the larger tank. The experiments covered a range of q from 31 to 201 cm3 and of ν
from 7.2 to 11.4 cm2 s, where ν was measured as described in § 3. Table 3 presents the
values of θ, ν and q for each experiment as well as the constants SV , SH and St given
by (4.7) for α = 0 with g = 981 cm s−2 and k = 3.1× 10−5 cm2.

All the raw data for the length of the currrents as functions of time are presented
in figure 15. The non-dimensionalized data of XN as a function of T are presented
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Figure 15. The raw data of the positions of the front of the gravity current L as functions of time
for the seven experiments described in table 3.
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Figure 16. The dimensionless extent of the current XN as a function of dimensionless time for
the seven experiments shown in figure 15. The solid curve is the theoretical prediction determined
from the numerical integration of (6.2)–(6.5). The dashed curve shows the non-draining similarity
solution.

in figure 16, along with the theoretical curve evaluated using the techniques of the
previous section. For comparison, the non-draining similarity solution is shown with
a dashed curve in figure 16. Unlike the similarity solution, valid for α = 3, all the
experimental gravity currents and the theoretical prediction, came to rest in finite
time. As can be seen, generally the results collapse very well and agree admirably
with the theoretical curve. The data all lie above the theoretical curve, much of it
within the 5% error estimated in the length of the fringe. A significant error may
also have been produced by the fact that the current had covered almost half its
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Experiment θ (◦C) q (cm2) ν (cm2 s−1) Sv (cm) SH (cm) St (s)

1 23.3 31 7.2 0.67 46.4 158.3
2 21.6 64 9.4 0.85 75.2 263.2
3 20.7 48 9.5 0.77 62.1 241.7
4 22.1 122 9.3 1.06 115.6 322.8
5 21.4 97 9.8 0.98 98.8 314.6
6 22.6 142 8.9 1.11 127.9 325.0
7 22.4 206 9.0 1.26 163.9 372.0

Table 3. Parameter values for the seven experiments on draining viscous gravity currents.

final run out while the lock gate was still open. A further source of error may
come from the neglect of surface tension in the present theoretical model. Note that
the run-out distance would be greater than predicted here if the fluid did not wet
the porous medium so that the pressure at the base of the flow were greater than
atmospheric and drainage retarded. A quantitative assessment of this awaits further
developments of the theory to incorporate surface-tension effects, which is currently
being undertaken by Ms Sharon Kahn. In total however, our theoretical concepts
and numerical solutions seem to capture the main aspects of the flow in the correct
quantitative way.

8. Summary
This paper has presented the results of two related studies. First we examined the

one-dimensional drainage of a layer of fluid through a deep porous medium. The
pressure field in the fluid layer is governed by the hydrostatic relationship and we
used Darcy’s equation to model the motion inside the medium. Thus, while the fluid
moves downwards everywhere, the total pressure increases downwards in the fluid
layer and decreases downwards in the porous medium. For the situation in which the
total volume of fluid remains constant, we showed that at small times the change
in height is proportional to

√
t, where t is the elapsed time since the initiation of

the experiment. This contrasts with the flow regime at very long times for which the
flow velocity is linear. For the situation in which fluid is added to the system at the
appropriate rate to ensure that the top of the fluid layer remains fixed, we calculated
that the flow rate decays with time to tend to a constant value.

By carrying out a series of experiments in which we allowed glycerine to percolate
through a bed of beads we have obtained very strong empirical support for the model.
As a by-product, the experimental procedure we developed suggests an easy way to
estimate the permeability of a porous medium, especially if its porosity has previously
been measured. Our estimates for permeability were consistent between experiments
(four experiments allowed us to estimate the permeability to within 3%) and were
consistent with the Carman–Kozeny and Rumpf–Gupte empirical relationships for
estimating permeabilities. We are confident that this method can easily be extended
to measure the permeability of other porous media. This will be especially useful
in situations for which no appropriate empirical relationships exist for estimating
permeabilities, for example of media in which the constituent particles vary in size
and shape.

Second we investigated and considered the flow of a two-dimensional, viscous
gravity current propagating over a deep, porous substrate by considering the local
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effect on the conservation of fluid due to draining through the porous substrate. When
the total volume of the current increases like t3 (where t is the time since the initiation
of the current) the shape of the current is self-similar for all time. In this case the
length of the currrent, xN , is proportional to t2. The similarity variable evaluated at
the position of the nose sN depends only weakly on the porosity of the bed, varying
by only about 20% across a range of ‘physically reasonable’ porosities. For a porosity
of 50% we calculate that sN = 0.574. When the volume of the current increases faster
than t3 it will advance for all time. When the volume increases slower than t3 the
nose of the gravity current will sink below the porous bed and after reaching some
maximum length, xmax, the front of the fluid above the porous medium will recede.
For the case of a release of constant volume q per unit width, we calculate that the
total run-out distance is Xmax = (q4/3k)1/6f(φ) where k is the permeability and f(φ)
is a weak function of the porosity φ, having a value of 0.858 at φ = 0.37 and varying
by about 30% across the full range of porosities. It is interesting to note that Xmax is
independent of the viscosity of the fluid, which only influences the rates of flow.

We performed a number of experiments in which we measured the length of a
dyed glycerine gravity current flowing over a bed of spherical beads, for the situation
in which the total volume is constant. We varied both the viscosity and the volume
of the glycerine. The experimental data were in good agreement with the theoretical
predictions.

Numerous extensions of the basic concepts presented here are immediately sug-
gested. First, an analysis considering axisymmetric currents could be undertaken.
Second, the drainage law will be valid for, and could be applied to, gravity currents
propagating at high Reynolds number over a porous bed (into which it drains at
low Reynolds number) (Thomas et al. 1998 and Ungarish & Huppert 2000). Third,
the effects of an initially saturated porous medium could be considered. Fourth, an
evaluation of the propagation of a viscous current down a permeable slope could
be investigated. Finally, there are numerous natural and industrial situations of fluid
flow over porous media.

It is a pleasure to thank Dr M. A. Hallworth for his enthusiastic help and guidance
in performing the experiments reported here. We are grateful to J. R. Lister for
alerting us to the physical origin of the front condition (4.11c) and to R. C. Kerr
and M. Ungarish for their helpful comments on an earlier version of the manuscript.
This work started as a summer student project for J. M. A, generously supported by
a grant from Trinity College, Cambridge.

Appendix. Transformations used in the numerical analysis
The coordinate transformation Y = X/XN converts (4.8)–(4.10), in the case α = 0

to

∂η

∂T
− Y ẊN

XN

∂η

∂Y
− 1

X2
N

∂

∂Y

(
η3 ∂η

∂Y

)
= −

(
η + ζ

ζ

)
, (A 1)

∂ζ

∂T
− Y ẊN

XN

∂ζ

∂Y
=
η + ζ

φζ
, (A 2)

XN =
1

V
, (A 3)
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where

V =

∫ 1

0

(η + φζ)dY . (A 4)

These are subject to the boundary conditions

η = ζ = 0 at Y = 1,
∂η

∂Y
= 0 at Y = 0. (A 5)

These equations are singular at Y = 1, where η ∼ (1−Y )1/3 and ζ ∼ (1−Y )2/3, cf.
(5.9). To eliminate these singularities, we write

Y = 1− u3 (A 6)

whence

∂η

∂T
+

(
1− u3

3u2

)
ẊN

XN

∂η

∂u
− η3

9X2
Nu

4

∂2η

∂u2

+
2η3

9X2
Nu

5

∂η

∂u
− η2

3X2
Nu

4

(
∂η

∂u

)2

= −
(
η + ζ

ζ

)
, (A 7)

∂ζ

∂T
+

(
1− u3

3u2

)
ẊN

XN

∂ζ

∂u
=
η + ζ

φζ
, (A 8)

XN =
1

V
, (A 9)

where

V = 3

∫ 1

0

(η + φζ)u2du. (A 10)

These are subject to boundary conditions

η = ζ = 0 at u = 0,
∂η

∂u
= 0 at u = 1. (A 11)

We used second-order, centered differences for the spatial derivatives and an explicit
time step. Although the solutions for η and ζ are analytic in u, some of the coefficients
in the equation are singular at u = 0, which reduces the order of the numerical scheme
and, in fact, introduces errors of O(1). This was overcome by using the asymptotic
expressions

η ∼ η1u+ η2u
2, ζ ∼ ζ2u

2, (A 12a, b)

where

η1 = (3XNẊN)1/3, ζ2 =

(
3XNη1

2φẊN

)1/2

, η2 =
3XN

8ẊN

η1

l2
, (A 13a, b, c)

to represent the solution between u = 0 and u = (∆u)1/2. The asymptotic expressions
are accurate to O(∆u) over this range and the numerical scheme has an error of O(∆u)
over the range [(∆u)1/2, 1]. Thus, overall, the truncation error is O(∆u).

The speed of the boundary ẊN was calculated in a predictor step by taking the
difference between XN at the current and previous time steps and dividing by ∆t.
During the corrector step ẊN was calculated as the difference between XN at the end
of the predictor step and the current step and dividing by ∆t.

The scheme was found to converge to three significant figures with a grid spacing
of 80 intervals on the range u ∈ [0, 1].
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