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The propagation at high Reynolds number of a heavy, axisymmetric gravity current
of given initial volume over a horizontal boundary is considered in both rotating
and non-rotating situations. The investigation combines experiments with theoretical
predictions by both shallow-water approximations and numerical solutions of the
full axisymmetric equations. Attention is focused on cases when the initial ratio
of Coriolis to inertia forces is small. The experiments were performed by quickly
releasing a known cylindrical volume of dense salt water of 2 m diameter at the centre
of a circular tank of diameter 13 m containing fresh ambient water of typical depth
80 cm. The propagation of the current was recorded for different initial values of
the salt concentration, the volume of released fluid, the ratio of the initial height of
the current to the ambient depth, and the rate of rotation. A major feature of the
rotating currents was the attainment of a maximum radius of propagation. Thereafter
a contraction–relaxation motion of the body of fluid and a regular series of outwardly
propagating pulses was observed. The frequency of these pulses is slightly higher than
inertial, and the amplitude is of the order of magnitude of half the maximum radius.
Theoretical predictions of the corresponding gravity currents were also obtained by
(i) previously developed shallow-water approximations (Ungarish & Huppert 1998)
and (ii) a specially developed finite-difference code based on the full axisymmetric
Navier–Stokes equations. The ‘numerical experiments’ provided by this code are
needed to capture details of the flow field (such as the non-smooth shape of the
interface, the vertical dependence of the velocity field) which are not reproduced by
the shallow-water model and are very difficult for, or outside the range of, accurate
experimental measurement. The comparisons and discussion provide insight into the
flow field and indicate the advantages and limitations of the verified simulation tools.

1. Introduction
The lateral spread of fluid of one density into fluid of a different density forms an

important class of well-known fluid flows termed gravity currents. The driving force
behind such flows is provided by the density contrast between the fluids, which may
arise through thermal and/or compositional differences, and is a ubiquitous feature of
many natural and man-made situations, as reviewed by Simpson (1997) and Huppert
(2000).
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Figure 1. A sketch of the configuration of the system.

Since gravity currents play such a fundamental role in the circulation of the
atmosphere and hydrosphere over a large range of scales and geometric configurations,
their behaviour has been widely investigated by laboratory experiments and a variety
of theoretical models. One area of research, of particular relevance to large-scale
environmental gravity currents, is the influence of Coriolis forces exerted by the
Earth’s rotation. On a smaller scale, the deliberate (and generally more rapid) rotation
of fluids in certain industrial situations can have either advantageous or detrimental
consequences for the desired process, and their design may benefit from an improved
understanding of rotation effects.

The present paper concentrates on the axisymmetric spreading of dense currents
over a rigid, horizontal floor, and deals specifically with how the behaviour of such
flows is modified by the effects of rotation. This work forms a direct extension to
the theoretical description of the same system using inviscid shallow-water equations
presented by Ungarish & Huppert (1998, hereafter referred to as UH), to which the
reader is referred for a more comprehensive introduction.

The new material presented here includes the results of a series of laboratory
experiments and theoretical predictions based on finite-difference numerical solutions
of the full axisymmetric equations, both of which are compared with the previously
obtained results using the shallow-water approximation.

The system under consideration is depicted schematically in figure 1. A layer of
ambient fluid, of constant density ρa, above a solid horizontal surface at z = 0, is in
solid body rotation with angular velocity Ω about a vertical axis of symmetry z. At
time t = 0, a fixed volume of co-rotating denser fluid of density ρc, initially contained
in a cylinder of height h0 and radius r0, is instantaneously released into the ambient
fluid, generating a radially spreading rotating gravity current.

We use a cylindrical coordinate system rotating with angular velocity Ω about the
vertical axis z with a gravitational acceleration of −gẑ. The velocity vector is denoted

by v = ur̂ + vθ̂ + wẑ in terms of the unit vectors r̂, θ̂, ẑ in the radial, azimuthal and
axial directions respectively. The angular velocity in the rotating system is denoted
by Ω = v/r. The driving force is the reduced gravity defined by

g′ = εg, (1.1)

where

ε = (ρc − ρa)/ρa. (1.2)

We are concerned with predicting the behaviour of the current after release, in
particular the radius of propagation, rN(t), the shape of the interface separating heavy
and ambient fluid, h(r, t), and the profiles of the radial and angular velocity. To



Axisymmetric gravity currents in a rotating system 3

facilitate the theoretical description we assume that the flow is axially symmetric,
incompressible and laminar. We concentrate on situations in which the rotational
effects are initially small (the ratio of Coriolis to inertia terms, represented by the
parameter C̄ defined below, is small); in the opposite case very little propagation
occurs and no proper current actually appears. Viscous effects, represented by the
inverse of the Reynolds number defined below, are similarly small.

The investigated configuration contains several special features. First, we empha-
size that the axisymmetric current, even without rotation, is more complicated and
less understood than its rectangular (usually assumed two-dimensional) equivalent.
Second, in a rotating system the counter-intuitive Coriolis-centrifugal forces affect the
flow and hinder the propagation. This produces some features without counterpart
in non-rotating circumstances, such as the existence of a maximum radius, inverse
motion, and (quasi-) steady-state lens structures. These features are not as yet well
understood or even documented. The objective of this work is to elucidate these issues
by using both large-scale experimental and numerical methods.

1.1. The shallow-water (SW) inviscid formulation

Previous investigations of this problem based on the shallow-water inviscid approx-
imation have proved to be extremely versatile in the analysis of gravity currents in
various circumstances. A brief review for the present case, following that formulated
for rotating, axisymmetric currents by UH, is as follows.

The following main simplifications are introduced. A sharp interface is assumed
to divide the current of fixed volume and constant density ρc and the ambient fluid
of constant density ρa. The current domain, 0 6 r 6 rN , 0 6 z 6 h(r, t), is assumed
‘shallow’ (i.e. the ratio of radial to vertical scales rN/h � 1), and the flow inside is
typified by a large Reynolds (also Grashof) number as defined below and amenable
to the Boussinesq approximation (i.e. ε� 1). Consistent with these simplifications, in
the one-layer version used here it is further assumed that the ambient fluid is relatively
very deep, within which u = v = w = 0, and hence the pressure P is hydrostatic and
expressed as

P = ρa(
1
2
Ω2r2 − gz) + P0 (z > h(r, t)), (1.3)

for some constant P0.
In the dense fluid domain, the vertical force balance is also (almost) hydrostatic,

and hence the pressure continuity with (1.3) on the interface defines the connection
between P and h:

∂P

∂r
= ρaΩ

2r + ρag
′ ∂h
∂r

(z 6 h(r, t)). (1.4)

We now take the z-average of the continuity, radial and azimuthal momentum
equations, see (3.2)–(3.3), and eliminate the pressure using (1.4). Letting U,V be the
z-averaged representative velocity variables, which are functions of r and t, we obtain
the approximate dimensionless governing hyperbolic system given by:
the equation of continuity,

∂h

∂t
+
∂

∂r
Uh = −Uh

r
; (1.5)

the equation of radial momentum,

∂

∂t
Uh+

∂

∂r
[U2h+ 1

2
h2] = −U

2h

r
+ C̄2Vh

(
2 +
V
r

)
; (1.6)
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and the equation of azimuthal momentum

∂

∂t
Vh+

∂

∂r
UVh = −2Uh

(
1 +
V
r

)
; (1.7)

for the variables of h (height) and U,V (z-averaged velocities) in the current domain.
The convenient scaling used for these equations, as discussed by Ungarish & Huppert
(1999), is to non-dimensionalize r with r0, z with h0, time with r0/(g

′h0)
1/2, U with

(h0g
′)1/2 and V with Ωr0. In this case the dimensionless parameters that enter the

problem are

C̄ =
Ωr0

(h0g
′
0)

1/2
, (1.8)

which expresses the ratio of Coriolis to inertia effects (the inverse of a Rossby number),
and the ratio of the ambient depth, H , to the initial height of the dense fluid, h0. The
viscous terms have been neglected, and therefore the initial representative Reynolds
number,

Re0 = h0(h0g
′)1/2/ν, (1.9)

where ν is the kinematic viscosity of the dense fluid, is assumed to be very large and
hence does not appear in this formulation. The initial conditions are simply

rN = 1, h = 1, U =V = 0 and H given (t = 0). (1.10)

Boundary conditions for the velocities are necessary at r = 0 and r = rN(t). At the
former position U =V = 0. Potential vorticity conservation provides, at r = rN ,

ω(rN, t) = −1 + [1/rN(t)]2, (1.11)

where ω = V/r. In addition, to close the formulation, the semi-empirical Froude
condition for U at the nose (whose position is indicated by the subscript N) must
be introduced. The works of Benjamin (1968), Huppert & Simpson (1980), Härtel,
Meiburg & Necker (2000) and others indicate that, in our non-dimensional form, at
the ‘nose’ of a rectangular current the velocity of propagation is related to the height
by

drN
dt

= Fr × h1/2
N , (1.12)

where the Froude number Fr is given approximately by (Huppert & Simpson 1980)

Fr =

{
1.19 (hN/H 6 0.075)
0.5(H/hN)1/3 (0.075 6 hN/H 6 1).

(1.13)

A straightforward extension is to use (1.13) for the axisymmetric current. Moreover,
UH argued that (1.13) is also valid in a rotating frame (for C̄ � 1 at least). The use
of this Froude condition conveniently closes the SW inviscid single-layer formulation,
but it must be emphasized that there is no clear-cut justification for this step. One of
the objectives of the present investigation is the verification of this postulate.

The solution of the time-dependent SW equations is in general obtained numerically
(by a finite-difference Lax–Wendroff scheme or similar methods). For a quick analysis,
some approximate solutions by asymptotic expansions for small values of C̄, and by
‘box-model’ (momentum-integral methods) are also available; details are given in UH,
Ungarish & Huppert (1999), Hogg, Ungarish & Huppert (2001) and others.

For the rotating case (C̄ > 0) the foregoing SW equations admit a non-trivial
steady-state solution: the dense fluid has a steady-lens shape, with no internal radial
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motion (U = 0), and the external pressure forcing is balanced by centrifugal-Coriolis
internal accelerations sustained by a retrograde azimuthal motion. The steady-lens
structures have been analysed by Flierl (1979), Csanady (1979), Griffiths & Linden
(1981), Choboter & Swaters (2000) and others referenced therein, mostly with regard
to their stability. The pertinent (approximate) results can be simply expressed as

rN = 21/2C̄−1/2, ω = −1 + C̄[1− (1− 1
2
y2)], h = C̄(1− y2), (1.14)

for C̄ � 1, and

rN = 1 +
1

2C̄ , ω = − 1

C̄ exp [2C̄(y − 1)], h = 1− exp [2C̄(y − 1)], (1.15)

for C̄ � 1, where y = r/rN (0 6 y 6 1). Recall that rN, h and ω are scaled with
the initial radius, initial height and angular velocity of the system, respectively. The
dimensional length r0/(2C̄) is defined as the Rossby radius of deformation. In the
large-C̄ (small Rossby number) case this is indeed the deformation of the lens with
respect to the initial radius, and is relatively small. On the other hand, in the case of
small C̄ the deformation of the steady lens with respect to the initial radius is large,
but still much smaller than the Rossby radius of deformation.

The SW results indicate remarkable differences between non-rotating and rotating
gravity currents even for ‘weak’ rotation (small C̄). A non-rotating inviscid current
quickly acquires a nose-up tail-down shape and spreads to infinity. In the rotating
case (with small C̄) the propagation starts as in the non-rotating counterpart, but
after about one tenth of a revolution of the system the nose is pushed down by
Coriolis effects, and the dense-fluid domain tends towards a lens shape. A maximum
radius of propagation, rmax, is reached in less than one half-revolution of the system.
The angular velocity lag in the current is large (ω is close to −1). However, the
connection between the propagating current and the steady lens result is not evident;
the maximal radius exceeds by about 35% the steady lens radius, after which the
available SW formulation becomes unreliable. We note in passing that the ‘box model’
estimate (Ungarish & Huppert 1999) of the maximum radius is given by

rmax ≈ 1.6C̄−1/2 (C̄ � 1). (1.16)

The SW analysis has several advantageous features: the computations are relatively
easy, some analytical investigations are possible, and it admits extensions to various
circumstances, such as to a permeable lower boundary. Most important, the predic-
tions of rN(t) turn out to be in fair agreement with experiments. On the other hand,
this formulation (in its present form, at least) also contains some intrinsic deficiencies:
the accuracy of the approximations is not clearly known, the ‘nose condition’ requires
verification, and only idealized initial conditions can be considered. Perhaps the most
important limitation is the fact that many details of the flow field cannot be captured
by this simplified model. Some of the neglected effects (the Ekman layers, the reverse
flow, the friction at the interface between the current and the ambient) are expected
to become important at certain stages.

Experimental investigations of this problem are also scarce. The flow in the non-
rotating axisymmetric case can be conveniently visualized in a wedge-shaped container
(Simpson 1997; Huq 1996). The influence of the friction on the sidewalls in such
configurations is, however, not well understood. For example, in Huq’s experiments the
initial speed of propagation was substantially larger than the theoretical predictions
for a truly axisymmetric case, and the reason for the discrepancy is not known. On the
other hand, experiments in a rotating frame must be performed in cylindrical tanks



6 M. A. Hallworth, H. E. Huppert and M. Ungarish

and direct observation of the (r, z)-plane is difficult. UH performed some rotating
experiments in a tank of 90 cm diameter containing fresh water, with an inner cylinder
(lock) of 9.4 cm diameter initially containing saltwater to a height of 15 cm. Typical
values of g′ and Ω were 50 cm s−2 and 0.3 s−1 respectively. The measured values
of rN(t) were in fair agreement with the SW theory, but many details could not be
observed in this geometry. In particular, the thickness of the current decreased quickly
(≈ 5 s) to about 1 cm, which both hindered observation and invoked viscous influence
from the Ekman layers which were of similar thickness.

A solid body of experimental data and more sophisticated theoretical formulations
are needed, and so the objective of the present investigation is to throw more light
on the problem by analysing data from large-scale experiments in conjunction with
evaluating numerical solutions of the ‘full’ equations of motion. Such numerical
solutions have been attempted for gravity currents, e.g. by Wang (1985) and recently
by Härtel et al. (1999) – but in very different geometries and parameter ranges; to our
best knowledge, no such attempt has been made for the present problem. Comparisons
of the present results with predictions of the SW approximations are also performed
and discussed.

The paper is organized as follows. The new experiments and a discussion of the
results are presented in § 2. In § 3 the finite-difference code is described and some
results, closely connected with the experimental data, are presented and discussed.
Some concluding remarks are given in § 4.

2. Experiments
2.1. Experimental set-up and procedure

The experiments were conducted in the Coriolis laboratory at the Laboratoire des
Ecoulements Géophysiques et Industriales, Grenoble. The Coriolis turntable is a 14 m
diameter circular platform capable of rotating about a vertical axis with a period of
between 18 and 1000 s, with an accuracy of the rotation rate dΩ/Ω of 10−4. The table
is equipped with a 13.0 m diameter, 1.2 m deep circular tank, which may be filled with
freshwater or brine supplied from large mixing tanks.

All the experiments reported here involved lock-release gravity currents in which
fixed volumes of dense saltwater, initially held behind a central 1 m high cylindrical
lock of radius 1 m, were allowed to intrude into freshwater surroundings following
the rapid vertical removal of the lock. A sketch of the experimental configuration
is presented in figure 2. The lock was specially designed and constructed for these
experiments from a cylinder of lightweight plastic strengthened by four horizontal
steel hoops. The lock could be raised and lowered by means of a pulley system
connecting the uppermost hoop to a manually operated winding spool by four steel
cables. In order to prevent tilting or lateral motion, the lift was guided by four thin
vertical rods fixed 90◦ apart on the floor of the tank, and positioned in contact with
sliding runners secured to the inner wall of the lock cylinder. The basal edge of the
lock was seated on a 1 cm thick foam sealing ring on the tank floor.

The experimental procedure began by filling the entire tank with fresh water to
the desired depth. A vernier screw guage mounted on the perimeter wall allowed
the height of the free surface at the wall Hw to be measured to within ±0.5 mm.
Once the lock cylinder had been lowered and sealed on the tank floor, a known
volume of red-dyed saltwater was then slowly fed into the base of the lock beneath a
circular plate fixed 1 cm above the floor, designed to minimize mixing with ambient
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Figure 2. Elevation and plan schematic of the experimental tank.

fluid upon entry. A sharp, stable interface separating the incoming saltwater from
the overlying fresh ambient inside the lock was thus formed, which slowly rose as
the filling proceded until the desired height was reached. The ambient fluid displaced
during the filling of the lock escaped through a number of 1 cm diameter holes
arranged around the perimeter of the lock wall at the height of the free surface. On
completion of the filling, the final height, h0, of the saltwater interface was read off a
graduated scale on the central column at a radius of ri = 21 cm, and the densities of
both the saltwater and ambient freshwater were measured by hydrometers accurate
to within ±0.0001 g cm−3.

Each experiment was started by rapid vertical lifting of the lock cylinder. The
vertical travel required was achieved after approximately 2.5 manual revolutions of
the crank handle, which could be smoothly and reproducibly completed within about
6 s. In practice, the base of the lock was raised to a height 1 cm below the free surface,
since complete clearance would have generated unwanted surface disturbances. Upon
release, the ensuing gravity current was observed to spread radially across the floor of
the tank. The flow was recorded by two overhead video cameras covering diametrically
opposite sectors of angular width π/4 marked on the tank floor. Each sector was
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Ω h0 H V0 ρc ρa g′ Re0 rmax ωp
Expt (s−1) (cm) (cm) h0/H (m3) (g cm−3) (g cm−3) (cm s−2) C̄2 (×105) (cm) (s−1)

(a) Non-rotating currents
S1 0 41.1 50.10 0.820 1.234 1.0045 0.9995 4.91 0 0.59 – –
S2 0 77.3 80.10 0.965 2.321 1.0042 0.9993 4.81 0 1.52 – –
S3 0 45.8 79.80 0.574 1.375 1.0192 0.9996 19.24 0 1.36 – –
S7 0 45.2 80.00 0.565 1.357 1.0441 0.9995 43.77 0 2.01 – –

(b) Rotating currents
R4 0.0500 46.4 80.27 0.578 1.393 1.0192 0.9996 19.24 0.0282 1.37 550 0.100
R10 0.0500 46.3 79.97 0.579 1.390 1.0107 1.0007 9.80 0.0551 0.99 450 0.102
R12 0.0500 47.0 82.92 0.567 1.411 1.0107 1.0011 9.41 0.0565 0.99 450 0.111
R13 0.0500 47.0 80.03 0.587 1.411 1.0094 0.9995 9.72 0.0514 1.10 – –
R14 0.0500 44.0 81.12 0.524 1.321 1.0094 0.9995 9.72 0.0585 0.91 – –

R11 0.0641 77.0 81.64 0.943 2.312 1.0107 1.0009 9.61 0.0556 2.09 420 0.140

R15 0.0775 46.7 81.67 0.572 1.402 1.0242 0.9996 24.14 0.0533 1.57 450 0.165
R16 0.0775 16.7 82.07 0.203 0.500 1.0242 0.9998 23.94 0.1502 0.39 330 0.165
R17 0.0775 48.0 83.17 0.577 1.441 1.0242 0.9998 23.94 0.0523 1.63 440 0.165

R5 0.1000 46.6 80.10 0.582 1.399 1.0192 0.9998 19.04 0.1135 1.37 370 0.207
R6 0.1000 77.0 81.00 0.951 2.312 1.0194 1.0000 19.03 0.0685 2.93 400 0.207
R8 0.1000 46.1 79.90 0.577 1.384 1.0438 0.9999 43.07 0.0504 2.05 470 0.207

R9 0.1500 46.2 79.51 0.581 1.387 1.0436 1.0004 42.36 0.1149 2.04 370 0.314

Table 1. Initial conditions of the axisymmetric lock-release gravity currents in (a) non-rotating and (b) rotating systems. In all cases r0 = 100 cm.
Also shown are the experimentally determined values of the maximum radius attained by the first radially propagating front and the frequency of the
subsequent fronts for the rotating currents, ωp. C̄ and Re0 are defined by (1.8) and (1.9).
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Figure 3. The initial configurations of lock-release gravity currents. An exaggerated view of the
parabolic bending of the free surface due to rotation is shown as a dashed line to illustrate the
variation in initial height at different radii.

marked with concentric arcs with radial spacings of 50 cm, in addition to 10 cm
graduations along three radial lines (see figure 2). The rates of radial propagation
of the currents were measured by subsequent analysis of the video recordings to
determine the average time of arrival of the current front at fixed distances along
all six radial lines. A third video camera was mounted on the perimeter wall of the
tank above a submerged 45◦ mirror to record a vertical profile of the current along
a radius. This view was illuminated by a vertical laser sheet in the plane of three
vertical scale bars at fixed radii of 200, 250 300 cm, and relied on either red dye or
fluorescein to delimit the current profile.

A total of 17 experiments were conducted, exploring various combinations of initial
conditions of the relevant parameters, namely the rate of rotation Ω, the ambient
depth H , the initial height of the current h0 (and hence V0 = πh0(r

2
0 − r2

i ), where r0,
the radius of the lock, and ri, the radius of the central column, were always fixed at
100 cm and 21 cm respectively), and the reduced gravity g′ = g(ρc − ρa)/ρa. A full
listing of the initial experimental conditions is given in table 1. Four experiments
(prefixed by the letter S) were performed with no rotation. The remaining thirteen
experiments (prefixed by the letter R) were conducted with rotation rates varying
between 0.05 and 0.15 s−1.

The viscous effects were expected to be small. The initial Reynolds number in
all experiments was typically 105. Continuity indicates that h decays like r−2

N and
therefore the effective Reynolds number, which is proportional to h3/2, see (1.9), is
expected to decrease like r−3

N . According to this estimate, the Reynolds number decays
to about 360 when the current reaches rN = 6.5 (the dimensionless outer radius of
the tank). The accompanying Ekman number, ν/(Ωh2), which expresses the ratio of
viscous to Coriolis forces in the rotating current, varied typically from 10−4 at release
to 10−2 at maximal propagation. (The Ekman boundary-layer length scale (ν/Ω)1/2

was 0.45 cm in the cases with the slowest rate of rotation.)

2.2. Results for non-rotating currents

A sketch of the initial configuration is shown in figure 3. Each release generated an
almost perfectly axisymmetric density current which spread radially across the floor of
the tank. In profile, the current adopted the characteristic shape of a raised, bulbous
head advancing in front of a much thinner tail region. In all the runs reported here,
the flows reached the perimeter wall, whereupon they were reflected and observed
to propagate back towards the centre of the tank. The position of the front of the
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current rN as a function of time t for all four non-rotating currents prior to reflection
off the perimeter wall is plotted in figure 4(a). The data show a decrease in the velocity
of the front with increasing radius (or time), and agree very well with the solutions of
the SW model approximation (plotted as solid curves in figure 4a). For experiments
S1 and S2 the discrepancy is within the range of the experimental errors. For S3
and S7 the SW propagation rate is systematically faster than the experimental value.
This discrepancy can be attributed to the delay introduced by the manual lifting of
the lock cylinder, which is not incorporated in the theory. For S1 and S2 the typical
velocities of propagation are smaller than those of S3 and S7, and consequently the
former are less influenced by the lock removal than the latter.

With the compensation for the lock removal effect in mind, we infer that the SW
theory provides a very good prediction of rN(t) for an instantaneous release of an
axisymmetric current in the parameter range tested by the experiments. This conclu-
sion strongly validates the use of the nose condition (1.12)–(1.13) for axisymmetric
currents. It is remarkable that the SW model used here is of a single-layer type, and
information about the finite depth of the ambient layer is entirely contained in the
value of H/hN which enters the correlation (1.13).

The most simple theoretical treatment of non-rotating axisymmetric gravity currents
is the so-called ‘box-model’ approach developed by Huppert & Simpson (1980), in
which the current is assumed to spread as a series of equal-volume cylinders, and for
the Fr = 1.19 case leads to an expression for the radial propagation as a function of
time given by

r = 1.16(g′V0)
1/4t1/2. (2.17)

Dimensional analysis suggests defining suitable scaling parameters for r and t as

r∗ = V
1/3
0 and t∗ = (g′3/V0)

−1/6 respectively, in which case the dimensionless form of
(2.17) can be written as

R = 1.16T 1/2, (2.18)

where R = r/r∗ and T = t/t∗. The scaled experimental data and theoretical curve
given by (2.18) are plotted in figure 4(b), which shows a satisfactory collapse of the
data beyond the slumping distance of between 3 and 4 lock radii, as explained by
Huppert & Simpson (1980), and Hallworth et al. (1996).

2.3. Rotating currents

A sketch of the initial configuration is shown in figure 3. For each experiment, all
the contained fluid was in solid body rotation prior to release of the gravity current,
which was achieved by spinning up the system for about three hours before each run
(the typical spin-up time scale, H/(νΩ)1/2, was less than 50 min). The rotation caused
a small parabolic bending of the free surface. The value of H given in table 1, which
we consider as the representative height of the free surface, is the initial height at the
radius of the lock calculated by

H = Hw − Ω2(r2
w − r2

0)

2g
, (2.19)

where Hw was the experimentally measured free surface height at rw = 650 cm.
Upon release from the lock, the initial behaviour of the rotating currents was very

similar to that in a non-rotating system, with a decelerating front spreading radially
across the floor of the tank. Beyond a certain radius, however, the deceleration became
noticeably more pronounced than for the equivalent non-rotating currents. Overall,
the propagation appeared nicely axisymmetric. Locally, however, the leading edge
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Figure 4. Non-rotating flows. (a) The radius of the front of the current as a function of time. The
experimental data (symbols) are compared with the corresponding SW prediction (lines). (b) The
collapse of the dimensionless data and the corresponding theoretical ‘box model’ relationship (2.18).

displayed some instabilities. The measured values of the propagation as a function
of time are displayed in figure 5, accompanied, again, by the SW model results. A
noticeable effect is that, as opposed to the non-rotating cases, none of the rotating
currents reached the outer wall of the tank. Evidently, at a certain radius defined here
as rmax, the forward motion at the front ceased, at which point the height of the current
was extremely thin. The SW model predictions of rN(t) are in fair agreement with the
experimental points until the maximum radius is attained (at Ωt ≈ 2 according to the
SW model). Afterwards, the SW theory predicts a contraction.

Remarkably, for a period several seconds prior to the arrest of the initial leading
edge, a reverse flow in the ensuing tail was evident, and the bulk volume of the
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Figure 5. Rotating flows. The radius of the first outwardly propagating front of the current as a
function of time. The experimental data (symbols) are compared with the corresponding SW model
predictions (lines).

current contracted and increased in thickness back towards the centre of the tank.
Thereafter, this newly accumulated central body of fluid relaxed and generated a
second outwardly propagating pulse of fluid with a clearly defined leading edge that
reached and slighly exceeded the previous arrest radius at rmax. This behaviour was
repeated several times, and at least five disrete contractions followed by outward
pulses were observed in each experiment. The radius of the initial front, and the
leading edge of subsequent pulses is plotted as a function of time in figure 6. Analyses
of these plots enables a mean pulse period Tp to be determined for each experiment,
defined as the averaged time interval between the arrival of successive fronts at any
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given radius. The pulse frequency ωp is then defined as

ωp =
2π

Tp
. (2.20)

The experimentally measured values of rmax and ωp are presented in table 1. In
figure 7, the measured pulse frequency is plotted against the rotation rate for each
run. A linear relationship is observed of the form

ωp = cΩ, (2.21)

with the best-fit straight line through the data yielding a value of c = 2.10. It is
also evident that this relationship appears to be completely independent of the initial
values of h0 and g′. The conclusion is that these pulses are a manifestation of the
inertial oscillations in rotating fluids, whose inviscid frequency is 2Ω. Holford (1994)
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Figure 7. The experimentally measured pulse frequency as a function of the rotation rate.

performed experiments on the process of lock-release formation of a steady lens for
large C̄, see (1.15), and recorded oscillations of the interface of frequency 1.9Ω and of
relatively small amplitude. In contrast, the amplitude here is large, about one half the
maximal radius. However, the more precise nature of these pulses could not be well
understood from the experimental observation. The full numerical solution discussed
below suggests that after the contraction of the current, a ring of fluid separates from
the bulk, forms a new head, and propagates again. This may be a manifestation of the
wave breaking, suggested by Killworth (1992) as an essential mechanism for energy
reduction between the initial state and the final steady lens – but this topic was not
pursued here.

3. Navier–Stokes numerical simulations
3.1. Formulation

We use the rotating coordinate system defined in § 1, and introduce the density
function φ(r, t) by

ρ(r, t) = ρa[1 + εφ(r, t)], (3.1)

where ε is the reduced density difference defined by (1.2). We expect 0 6 φ 6 1, with
φ = 1 in the ‘pure’ dense fluid domain and φ = 0 in the ‘pure’ ambient fluid domain.

We employ the following dimensionless balance equations:
(i) continuity of volume

∇ · v = 0; (3.2)

(ii) momentum balance

Dv

Dt
+ 2Cẑ × v =

1

1 + εφ

[
−∇p+ φ(εC2rr̂ −F2ẑ) +

1

Re
∇2v

]
, (3.3)

where p is the reduced pressure (in dimensional form, p = P − ρa(0.5Ω2r2 − gz));
(iii) density transport

∂φ

∂t
+ ∇ · vφ = D∇2φ. (3.4)
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The relevant dimensionless parameters, in addition to ε, are the Reynolds number,

Re = UL/ν; (3.5)

the Coriolis to inertia ratio parameter

C = ΩL/U; (3.6)

the global Froude number squared

F2 = g′L/U2; (3.7)

and the dimensionless diffusion coefficient D = 1/Pe = 1/(σRe) where Pe and σ are
the Péclet and Schmidt numbers and g′ is the reduced gravity defined by (1.1). Here L
and U are the scaling length and velocity. Unless specified to the contrary, we employ

L = r0 (the dimensional radius of the lock) and U = (g′r0)1/2 and hence F = 1. The
scale for time is L/U.

We are interested in flows with large values of Re, moderately small C, small ε
and very small D. Actually, the typical physical value of D is negligibly small (recall
that σ � 1 for saline solutions in water) , but here a non-vanishing D is used as an
artificial diffusion coefficient for numerical smoothing of the large density gradients
of the moving interface.

The Ekman number can be defined in terms of the previous parameters by

E = ν/(ΩL2) = (CRe)−1 (3.8)

and is a small number.
In the considered axially symmetric, lock-release problem in a bounded tank open

to the atmosphere, three geometric parameters (in addition to r0 which is the reference
length) appear: the height of the lock, h0; the height of the ambient fluid, H; and the
outer radius of the container, rw.

The initial conditions at t = 0 are

v = 0 (0 6 r 6 rw, 0 6 z 6 H), (3.9)

φ =

{
1 (0 6 r 6 1, 0 6 z 6 h0)

0 elsewhere.
(3.10)

The boundary conditions for t > 0 are

v = 0 (on the bottom and sidewalls); (3.11)

v · ẑ = 0, no tangential stress, p = 0 (on z = H); (3.12)

no stress (on the axis r = 0); (3.13)

and

n̂ · ∇φ = 0 (on all boundaries). (3.14)

These conditions contain some simplifications. The initial interfaces (between the
ambient and dense fluids and also the free surface) deviate from the horizontal
by an amount 0.5εC2r2, cf. (2.19). The free surface may have an additional height
perturbation of magnitude ε during the flow. Neglecting these deviations from the
horizontal is justified for the small values of ε and C2 used in the calculations.
In addition, we assume that the lock is removed instantaneously and without any
perturbation to the fluid. (In experiments the lock lifting takes typically about one
dimensionless time unit and introduces a small delay in the initial motion.)
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We note in passing the fact that the SW model can be regarded as a solution of
the foregoing equations with ε = Re−1 = D = H−1 = 0, and under the assumption
that v = 0 and φ = 0 outside the domain 0 6 r 6 rN , 0 6 z 6 h(r, t), while
inside this domain φ = 1 and [u, v] = [U(r, t),V(r, t)], and the left-hand side of
the axial momentum equation is negligibly small. The scaling here is, for numerical
convenience, slightly different from the more insightful one which was used for the
SW formulation in § 1.1, and in particular Re = (r0/h0)

3/2Re0 and C = (h0/r0)
1/2C̄.

3.2. The finite-difference code

Consider the time advance of a flow field variable denoted by f at time t to the new
value denoted f+ at time t + δt. We use a forward-time, finite-difference technique.
One time step for the momentum equation (3.3) with the Coriolis and pressure terms
treated implicitly and other terms treated explicitly yields

v+ + 2Cδt ẑ × v+ = − δt

1 + εφ
∇p+ + δtX + v ≡ B, (3.15)

where

X = −v · ∇v +
1

1 + εφ

[
(εC2rr̂ −F2ẑ)φ+

1

Re
∇2v

]
. (3.16)

With some simple vector algebra manipulations (as discussed in detail by Ungarish
1993, p. 303), we obtain from (3.15) an explicit expression for v+,

v+ =
1

1 + 4C2δt2

[
B + 4C2δt2(ẑ · B)ẑ − 2Cδtẑ × B] . (3.17)

We next apply the divergence operator to both sides of this expression and impose
the continuity equation (3.2) on v+. The result is an elliptic equation for the pressure
p+ at t+ δt,

∇ · 1

1 + εφ
∇p+ +4δt2C2 ∂

∂z

1

1 + εφ

∂p+

∂z
− ∇ · X − 4δt2C2 ∂

∂z
ẑ · X

−2δtCẑ · ∇× X − 4δtC2 ∂w

∂z
− 2Cẑ · ∇× v − ∇ · v

δt
= 0. (3.18)

(Theoretically the last term on the left is zero, but to prevent accumulation of
numerical errors it is sometimes useful to keep it in the calculations.) The boundary
conditions for (3.18) are of mixed type: p = 0 on the free surface z = H , ∂p/∂r = 0
at r = 0, and n̂ · ∇p+ provided by the substitution of (3.11) into (3.15). Hence the
solution p+ is well defined. Using it, we can straightforwardly obtain the velocity field
v+ from (3.17). The φ+ field can be calculated next using the scalar equation (3.4).
This completes, in principle, the time step advance, and a new cycle can be attempted.
The accuracy of the time discretization is O(δt2).

The spatial discretization is performed on a staggered grid with il radial intervals
and jl axial intervals as sketched in figure 8. The variables p and φ are defined at
mid-cell position denoted (i, j); u and v are both defined at the positions (i± 1

2
, j) (to

allow straightforward implementation of the Coriolis coupling) and w is defined at
(i, j± 1

2
). Both the r and z grid coordinates are stretched by simple mapping functions

r(R) and z(Z). The grids Ri = (i + 1
2
)δR and Zj = (j + 1

2
)δZ are uniform in the

domain (0 6 R 6 rw, 0 6 Z 6 H) with intervals δR = rw/il, and δZ = H/jl. The
truncation error is O(δR2 + δZ2). Dummy cells are added for easy implementation
of the boundary conditions. An illustration of the finite-difference approximation
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approach is (
1

r

∂

∂r
r

1

1 + εφ

∂p

∂r

)
ri,zj

≈ 1

ri

1

r′iδR
(Yi+1/2,j − Yi−1/2,j), (3.19)

where

Yi+1/2,j = ri+1/2

1

1 + εφi+1/2,j

1

r′i+1/2δR
(pi+1,j − pi,j) (3.20)

and r′i is the derivative of r(R) at Ri (substituting i− 1 in place of i yields Yi−1/2,j).
This method of central differences was employed for all terms, except for the

advection terms in the φ transport equation (3.4). For this equation, according to
MacCormack’s explicit method, we used at each time step the predictor–corrector
relationships

φ
p
i,j = φi,j − δt(Advfφf)i,j + δt(Difφ)i,j ,

φci,j = φ
p
i,j − δt(Advbφp)i,j + δt(Difφp)i,j ,

φ+
i,j = 0.5(φi,j + φci,j),

 (3.21)

where Advf and Advb denote the advection terms as approximated by forward and
backward differencing, and Dif denotes the diffusion terms approximated by central
differences.

The combination of the foregoing time and space discretizations is the core of
the computer code used in this work. For each time step the discretized form of
the Poisson equation (3.18) for the discretized variables p+

i,j , 1 6 i 6 il, 1 6 j 6 jl,
must be solved. This yields, after the implementation of the boundary conditions,
a block tri-diagonal linear system.† The matrix corresponding directly to (3.18) is
non-symmetric, but upon multiplication of each of the discretized equations for point

† The straightforward numerical implementation of the previously defined ‘open boundary’
condition introduces an O(1/Re) inconsistency in the continuity equation on the interface; however,
since the velocities there are very small, the influence of this numerical error on the motion of the
current is insignificant. This has been numerically verified by tests with a rigid inviscid lid condition
(and p = 0 applied at some computational point instead of on the interface).
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(i, j) by rir
′
iz
′
j a symmetric system can be obtained (in our computation there was no

noticeable difference between the performances of these versions). The linear system
was solved by a bi-conjugate gradient iterative algorithm (Press et al. 1992). The
iterations in the first time step start with 0, and subsequently the pi,j field provides
the starting values for p+

i,j . Some test cases were also run with a direct solver for the
block tri-diagonal system. The computations use real-8 variables. The typical grid has
il = 175 constant radial intervals and jl = 240 stretched axial intervals, with z′1 ≈ 0.7
and z′jl ≈ 1.4; this was motivated by a compromise between computational limitations
and physical considerations, as discussed further below. The typical time step was
δt = 10−3. In several test cases the grid size was changed and the time step was halved,
without causing any significant differences in the results. The diffusion coefficient in
the density transport equation was usually taken as D = 0.3δR2 and D = 0.3δZ2 for
the radial and axial fluxes, respectively, and hence this artificially augmented effect
is expected to be of the order of magnitude of the numerical truncation error in the
physical advection term.

The bi-conjugate gradient method performed typically 200 iterations per time step
to reach the allowed error e = 10−4, where e is the Euclidean seminorm of the residues
divided by the seminorm of the right-hand side of the system of equations. The typical
average relative error, e/(il × jl), in the solution of p+

i,j is therefore less than 10−8.
The choice of the numerical grid parameters was motivated by a compromise

between physical accuracy considerations, see below, and computational limitations.
Essentially, the mesh intervals are considerably smaller than the expected typical
corresponding geometrical dimensions of the simulated current, such as the length
of the ‘head’, the average thickness, and even the Ekman layer thickness (estimated
as 3E1/2). Nominally, the magnitude of the spatial errors δR2 + δZ2 is less than
0.2%, and of the accumulated time-stepping errors Nδt2 (where N is the number of
time steps) is also typically less than 0.2%; the value of δR4 + δZ4 which typifies
the smoothing dissipation terms (see below) is about 10−6, smaller than 1/Re. We
therefore expect that the numerical results provide an acceptable simulation of an
observable gravity-current process, at least during the initial period. Eventually, when
the current becomes thin (say, about 10 axial intervals) and the interface very irregular,
the numerical errors may become significant and even dominant.

In some cases we also encountered a practical numerical restriction on the time
interval, t, for which results could be obtained which is due, apparently, to a nonlinear
instability which appears after some development of the flow. Typically – but not
always – for t ≈ 5, some spurious oscillations appeared, the linear system for pi,j
became almost singular and it was necessary to stop the computation. The addition
of small O(δr4 + δz4) fourth-order derivative dissipation terms in the momentum
equations improved the stability. However, as the major remedy we used an artificial
higher value of viscosity, simply by the artificial reduction of the Reynolds number,
typically by a factor of ten (which still leaves the Reynolds number large so that the
essentials of the flow field are well reproduced).

The numerical code has also been tested on several other problems. Computations
of spin-up (differential and from rest) of homogeneous, two-layer, and stratified
fluids yielded good agreement with independent theoretical and experimental results.
Simulations of gravity currents in a rectangular (two-dimensional) geometry showed
good agreement with SW approximations. These results will be reported elsewhere.

The task discussed here was to simulate the rotating current for the time interval
t ≈ 2C−1 (in dimensional form, Ωt ≈ 2), during which the most significant effects of
propagation and attainment of maximal spread are expected to take place.
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Label r0 (cm) h0 (cm) H (cm) Ω (s−1) C2 C̄2 g′ (cm s−2) Re (×105)

S3 100 45.8 79.8 0 0 0 19.2 4.3
R5 100 46.3 79.8 0.100 0.0526 0.114 19.03 4.3
R14 100 44.0 81.1 0.05 0.0257 0.059 9.72 3.1
R16 100 16.7 83.3 0.078 0.0251 0.150 23.94 5.0
VIR-1 100 46.3 79.8 0.594 1.86 4.000 19.03 4.3

Table 2. Data of configurations in the numerical simulations. For S3, R5 and VIR-1 the value of
Re was reduced by a factor of 10.

3.3. Results of Navier–Stokes numerical simulations (NS)

Table 2 summarizes the configurations for which numerical simulations were carried
out. These configurations were motivated by the measurements performed at the
Coriolis laboratory and the labels refer to the corresponding experiments discussed in
the previous sections. VIR-1 is an exception, a ‘virtual experiment’ with a value of Ω
larger than allowed on the present turntable; this case with large C has been added
as a contrast to the other runs with small C, as an additional test of the predictive
power of the numerical code and the SW approximation.

Consider in detail the configurations labelled R5 and S3 in table 2. The difference
between the cases is the presence of rotation in the case R5. The reference time,

(r0/g
′)1/2

, is 2.3 s and the period of revolution in R5 is 62.8 s. Note that the initial
fractional depth h0/H = 0.57 in both cases.

The numerical grid had typically 175×240 intervals. In dimensional form, the radial
grid intervals were of uniform size δr = 3.7 cm, judged as acceptable because the
typical length of the observed ‘head’ was about 20 cm, and the estimated experimental
error of its position is estimated as about 3–5 cm (the tank floor marks were at
10 cm intervals, see figure 2). The dimensional axial grid intervals changed from
δz = 0.26 cm near the bottom to δz = 0.47 cm near the top free boundary; this is
expected to provide a fair description of the thinning current during a considerable
spread (the average thickness is about 4 cm when the container middle radius 3.25 m
is reached at t ∼ 20 s) and of the Ekman layer (whose thickness for water with
Ω = 0.1 s−1 is approximately 1 cm). The run with the correct Re diverged at about
t = 18 s, and with a 10 times larger artificial viscosity t = 40 s was reached.

Figure 9 displays contour plots of the numerically computed density function,
φ, for two representative gravity currents, the non-rotating S3 and the rotating R5
cases. Also shown are the SW results for the interface h(r) (in the rotating case this
approximation can be used for a limited time interval, until the height of the nose
decays to zero). Figure 10 displays the behaviour of the radius of propagation, rN(t)
obtained by the SW approximation, NS and experiments for these cases.

It is evident that the numerical code captures well the propagation of the current
and the differences between the rotating and the non-rotating cases.

The numerical results point out the very complicated shape of the interface of the
current, which is very different from the usually smooth h(r, t) provided by the SW
approximation. In the rotating case after t = 14 s (Ωt = 1.4) while the head spreads
and becomes less and less prominent, a complex re-arrangement of the fluid in the
tail occurs, which includes contraction toward the centre (t = 28 s) followed by a
forward pulse.

The rotating current evidently reaches a maximum radius of propagation at t ≈ 28 s
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Figure 9. The NS results for the density function (contour lines and shading) and the SW results
for the interface h(r) (dashed lines), at various times, for cases S3 (a) and R5 (b).
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Figure 10. The radius of propagation as a function of time for experiments S3 and R5, compared
with the corresponding NS and SW predictions. The dotted lines in the numerical R5 results indicate
the thin spread of the head.

(Ωt = 2.8, about 0.45 revolutions of the system). Afterwards, the position of rN(t) is
not well defined because there is no clear ‘head’. For instance, at t = 32 s the bulk
of the heavy fluid is in the domain 0 < r < 2.6 m, but there is also a very thin
residual layer extending up to r = 3.4 m. The interpretation of this layer is not clear.
It may be just a numerical artifact due to lack of resolution, but it may also indicate
(although with very low accuracy) the physical tendency of a thin viscous layer to
stick to the wall. We note in this context that a quite similar qualitative behaviour
was observed in the experiments: after the front of the dyed fluid reaches a clear
maximum, its position becomes eventually more ambiguous and the bulk of fluid
apparently contracts to a smaller radius, leaving behind a residue of faint colour
(probably a thin layer).

In the numerical computations of R5 a new ‘head’ of fluid separated from the
bulk and started to propagate freely at t = 37 s (not shown). We tend to identify the
propagation of this new head with the first of the outwardly propagating pulses, with
a clearly defined leading edge, observed in the experiment. Indeed, in the experiment
such a pulse has been detected at t ≈ 45 s at r ≈ 300 cm.

Comparison between S3 and R5 at t = 23 s shows clearly that in the non-rotating
case, unlike the rotating one, the head region becomes the most prominent feature
of the current; obviously, the distance of propagation is also larger. This is in good
qualitative agreement with the SW approximation which predicts that the Coriolis
effects modify the profile from ‘nose up’ to a ‘nose down’ shape after about the first
tenth of a revolution.

Figure 11 shows the vector plot of the velocity in the (r, z)-plane for R5. Evidently,
at t = 18 s the motion in the main bulk of the current, r < 2.7 m, is toward the centre.
The head region displays a more complex rolling motion in the counter-clockwise
direction. No such motion appears in the non-rotating current.

Consider next the angular velocity field of R5, figure 12. The measurement of
angular velocity inside the propagating current is an extremely difficult task and
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Figure 11. NS results of meridional velocity field for R5 at t = 18 s.
(The unit reference vector is also displayed.)

has never been performed in laboratory experiments, to our best knowledge. The
numerical experiments, on the other hand, provide this information as a standard
part of the solution. We observe that the dense-fluid current has a very distinct
‘signature’ as a region of strong counter-rotation (relative to the rotating system).
This, again, is in good qualitative agreement with the SW z-averaged approximation,
but the NS provide, as expected, more details.

A comparison between results with the present artificial value of Re and with the
correct value (ten times smaller) was also performed for t < 15 s. We found that the
larger artificial viscosity causes a reduction in the distance of propagation rN(t), as
could be expected, but actually the difference is very small. The other details of the
flow field are also very close. The rN(t) predicted by the inviscid, SW equations is
in excellent agreement with the calculations with the original Re. The experimental
rN lags behind the theoretically determined results for t < 15 s, an effect which we
attribute to the non-ideal lifting of the lock.

We think that the various behaviours and effects of the computed flow fields R5
and S3, as well as the agreements with the experiments and SW results, provide a
good validation of our numerical approach. The blurred and even patchy profiles
obtained in the NS, which are very different from the sharp SW predictions, may
raise doubts about the reliability of the numerical solution. However, we think that
this shape indeed reflects the non-smooth behaviour of a real gravity current. This is
illustrated by the experiment R14, in which we used fluorescein and a laser sheet to
visualise the (r, z) shape. Some video records are shown in figure 13 and compared
with numerical results. The impression is that not only the position of the front, but
also the shape of the head are in fair agreement. In particular, we notice that both
the experiment and the computations show that the maximum height of the head
increased by about 5 cm from t = 10 s to 16 s. A detailed comparison is not possible
because we have no measurements of the concentration of salt and fluorescein.

Additional results of interest are obtained from the simulation corresponding to
the experiment R16 in table 2, see figures 14 and 15. In this case the current is
initially ‘deep’, h0/H = 0.2, in contrast with the previously discussed cases, S3 and R5,
where this ratio was 0.57. The shallower current R16 is expected to be slower than
R5. Furthermore, the parameter C̄ of R16 is larger than the one of R5 and hence a
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Figure 12. The angular velocity for R5 at various times (a–c): NS results (field contours) and
(d) SW results (in the dense fluid).

stronger Coriolis hindering on R16 is also expected. The reference time, (r0/g
′)1/2

, is
2.04 s and the period of revolution is 81 s.

We observe excellent agreement between the experimental and numerical results
for rN(t) up to t ≈ 25 s. (At this time the maximal expansion is achieved according
to both the SW and NS results.) The SW predicts a more rapid motion than the
NS. These trends are different from those observed in other cases, namely that there
is a good agreement between the SW and NS, and both are more rapid than the
experiment. The explanation is as follows. Since h0 in the present case is small the
current is little affected by the lock removal delay, and is therefore more compatible
with the ideal lock removal in the NS. This justifies the better than usual agreement
between NS and experimental values of rN(t). On the other hand, this configuration
is more affected by Coriolis effects and viscous friction than usual, because C̄2 = 0.15,
not so small, and the current is thin and hence more influenced by the Ekman
layers (when the current is expanded to 250 cm its average thickness is 2.7 cm, while
3(ν/Ω)1/2 = 1.1 cm). This explains the faster motion of the SW approximation, in
which the nose Froude condition does not take into account Coriolis hindering (UH
estimated this contribution as O(C̄2)) and viscous effects are also discarded. Indeed,
we found that at t = 22 s the computed current displays a coherent negative ω = v/r
profile, but at t = 33 s much of the azimuthal lag has dissipated.

We observe again that when the current is close to the maximum radius of
propagation (t = 20 s) the nose region detaches from the body of the current. The
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Figure 13. Experimental and numerical r, z profile for R14 at (a) t ≈ 10 s and (b) 16 s.

latter remains roughly in the domain 0 6 r 6 250 cm where, again, some contraction–
expansion pulses appear. The second maximum of propagation is attained about
37 s after the first one, which suggests that the frequency of this occurrence is
0.17 s−1 ≈ 2.2Ω, in agreement with the experimental observations.
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Figure 14. The NS results for the density function (contour lines and shading), at various times,
for case R16 (Ωt = 0.50, 0.80, 1.3, 1.6, 1.9, 2.4, 3.2, 4.0, 4.8).

Another feature of interest is the somewhat more compact structure of the interface
in R16. Observations on non-rotating currents indicate that a ‘multiple-front’ structure
appears when the initial depth ratio h0/H is greater than 0.5 (approximately), as in
cases S3 and R5, and a ‘single-front’ structure appears otherwise, as in case R16. This
influence of h0/H seems to apply also to the rotating current, which suggest that this
structure of the interface is determined by the early stage of propagation, when the
Coriolis effects are still unimportant. This topic will be investigated elsewhere.

Finally, we consider the simulation labelled VIR-1 for the case with a large value
of the Coriolis influence parameter, C̄ = 2 (a small Rossby number). We use the
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Figure 16. NS results for the density function at various times, case VIR-1 (Ωt = 2.0, 4.1, 5.4, 6.1).

same geometry and fluids as in R5, but with a much larger angular velocity. (This
brings us to the parameter range investigated by Holford 1994.) Since a small amount
of propagation was expected, the NS was performed with rw = 2.5. Again, artificial
higher viscosity was used.
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Figure 16 indicates that the numerical code captures well the special features of this
case: the Coriolis influence is very strong and therefore the amount of propagation
of the current is small. The Rossby radius of deformation in the VIR-1 case is
r0/2C̄ = 0.25 cm, and the actual propagation exceeds it by about 30%. The maximum
propagation is achieved at about t = 4.6 s (Ωt = 2.7), and afterwards a contraction–
expansion motion of the lens-shaped bulk, with small oscillations of the interface,
appears. Considering the first cycle of vertical displacement of the interface at the
centre (whose amplitude is 4 cm), we estimated that the period of the oscillation is
6.9 s, i.e. the frequency is about 1.5Ω. All this numerically simulated behaviour is
consistent with the experimental observations of Holford (1994, § 3.6.2) concerning
formation of lenses with large C̄. The angular velocity results in the VIR-1 case
indicate that significant variations from the initial solid body rotation occur only in
the region of the head, as expected. However, the pattern of ω in this region is quite
irregular (unlike the smooth steady-lens solution) perhaps due to the influence of the
various shear mechanisms which act during the formation of the head.

The propagation of the current by more than one Rossby radius in this case is
unlike the small C̄ case where the radius of propagation is smaller than the Rossby
radius of adjustment. This is consistent with the analysis of the quasi-steady lens (UH,
§ 3). On the other hand, there are also similarities between the small-C̄ case R16 and
large-C̄ case VIR-1 as follows. In both cases the maximum propagation is achieved
at about Ωt = 2 (about 0.4 revolution of the system); a physical interpretation of this
behaviour is given in the Appendix.

4. Concluding remarks
We investigated the motion of axisymmetric high-Reynolds-number gravity currents

produced by the instantaneous release of a cylinder of dense fluid into a less-dense
ambient fluid above a horizontal bottom. The system was considered to be at rest
or rotating with constant angular velocity. The work combined experiments in a
large tank (13 m diameter, with a layer of ambient water of about 80 cm, in which
a cylinder of 2 m diameter of salt water was released), with theoretical simulation
by: (a) a special-purpose code for finite-difference numerical solution (NS) of the
full axisymmetric equations of motion, and (b) the shallow-water (SW) approximate
solution developed by UH.

The analysis was focused on small values of the parameter C̄ which represents
the ratio of Coriolis to inertia terms. The results reconfirm the significant differences
between rotating and non-rotating gravity currents even for small values of this
parameter.

The spreading of the current as a function of time was the major experimental
result. In all cases, the experimental radius-of-propagation results were in very good
agreement with both the full numerical and the SW theoretical predictions for the
main period of radial spread. The (rather small) discrepancies can be attributed to the
non-ideal release of the dense fluid in the experiment. The conclusion is that in the
SW approximation the use of the ‘nose’ Froude condition (1.12)–(1.13) developed for
rectangular non-rotating currents is also appropriate for axisymmetric and rotating
gravity currents with small C̄.

Moreover, the experiments in the rotating configurations show that the flow field
displays large-amplitude oscillations, with a frequency slightly larger than the inertial
2Ω. These oscillations are not captured by the available SW formulation, and, to our
best knowledge, have not been reported before for flows with small values of C̄.
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On the other hand, the experiments pose certain technical difficulties which limit the
obtainable information. The present experiments were expensive and time consum-
ing, restricted by various geometry and angular velocity constraints, and, typically,
provided little information about the shape of the interface and velocity field. These
problems cannot be easily overcome, and are expected to become more acute when
additional effects, such as stratification, are of interest. Therefore, in order to gain
reliable information about the above-mentioned properties, it is important to supple-
ment the laboratory experiments with ‘numerical’ counterparts based on the solution
of the full governing equations of motion. In this respect we conclude that the present
NS code indeed provides a means for useful ‘numerical experiments’. We mention
that a numerical computation for a large value of C̄, which is beyond the practical
capability of the laboratory device, was also successfully performed. However, due to
computational and stability limitations, further numerical improvements and verifica-
tions are necessary for making the present numerical computations a versatile tool of
simulation and a substitute for laboratory experiments. Still, we must keep in mind
that an axisymmetric code imposes on the attainable results limitations which are
incompatible with some of the complex features displayed by a real gravity current
(such as the formation of lobes and edge instability waves).

The comparison of numerical and experimental results with shallow-water z-
averaged results shows significant differences in the details of the flow field: in
the numerical results there is not a smooth shape of the interface, the velocities in
the current are strongly z-dependent, and there is a strong rolling motion in the head
region. In these respects the numerical results seem in fair qualitative agreement with
the experiments. We conclude that a great deal of information beyond SW results is
needed in the analysis and design of processes in which the details of the internal
flow in the current may be of importance.

The clearly detected combination of large-amplitude oscillations (with a frequency
slightly larger than the inertial 2Ω) and complex internal motion (rings of fluid
seem to break away from the bulk during the expansion–contraction effect) raises
doubts about the convergence of the lock-released rotating gravity current to a
steady-lens structure, and its stability. In other words, the steady-lens solution of the
SW formulation is apparently not a regular limit of the instantaneous lock-release
problem (at least when the value of the parameter C̄ is small). This problem is left
for a future study.

We thank Dominique Renouard, Henri Didelle, Rene Cartel and Johny Mang for
their help with the experimental system at Grenoble. The research was supported by
the TMR-EU, EPSRC and by the Fund for Promotion of Research at the Technion.

Appendix. Estimate of time to attain rmax

It is surprising that the value of rmax for the rotating axisymmetric current is
attained at t ∼ Ω−1 for both mild and strong Coriolis influence, i.e. C̄ � 1 and
C̄ � 1. The explanation is as follows.

The situation C̄ � 1 is the simpler case. The steady-lens analysis in UH shows
that rmax − r0 ≈ r0/2C̄ < r0. Thus, rmax is achieved during the initial ‘slumping’ phase
of the gravity current, during which the speed of propagation is U ∼ (g′h0)

1/2. The
corresponding (rmax − r0)/U is ∼ 2/Ω.

For the C̄ � 1 case the steady-lens analysis indicates that rmax ≈
√

2r0/C̄1/2 � r0.
During this considerable spread the current is expected to be mainly in its self-similar
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phase, thus

rN(t) ≈ 2kr
1/2
0 (g′h0)

1/4t1/2,

where k = [Fr2/(4 − Fr2)]1/4 ≈ 1 (for Fr = 1.19). This similarity-type propagation
attains the above value of rmax at t ∼ 2/Ω.

These crude considerations underestimate the correct time of propagation to rmax

because they do not account for the deceleration introduced by the Coriolis forces.
However, the indication that rmax is attained in a time interval ∼ Ω−1 for both
large and small values of the parameter C̄ remains valid. Note that the values of C̄
considered in this paper do not truly lie in the asymptotic ranges of ‘very small’ and
‘very large’ (in table 2, 0.15 6 C̄ 6 2).
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