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S U M M A R Y
We study the Rayleigh–Taylor instability of a structure consisting of a buoyant layer of viscous
fluid overlain by a dense perfectly plastic layer (which is represented by a strongly non-
Newtonian fluid with the power-law exponent tending to infinity). The structure is subject to
either horizontal extension or shortening and models rocksalt under a brittle overburden. The
growth rate and wavelength of the most unstable perturbation to the background pure shear
flow are calculated and compared with those of models composed of two viscous layers or
of two perfectly plastic layers. The effects of the viscosity and thickness ratios and density
contrasts between the two layers are assessed. Considering the viscosity of the buoyant layer
to be much less than the effective viscosity of the overlying layer, we obtain the following
results. (i) The instability pattern of the plastic–viscous structure is similar to that of a plastic–
plastic structure. (ii) The characteristic wavelength, corresponding to the most unstable mode,
increases initially with the thickness ratio between the lower and upper layers, but then decreases
by a series of abrupt jumps. (iii) The buckling instability induced by rapid horizontal extension
or shortening overwhelms the gravitational instability and the growth rate of this instability
depends linearly on the effective viscosity ratio. We analyze the energy equation in order to
develop an understanding of the mechanisms of instability as the system varies from a viscous
fluid through a power-law fluid to a perfectly plastic medium. To test our analytical results we
study models of diapirism in the Great Kavir, Iran. We show that a small interdiapir spacing in
the salt canopy province and a wide range of spacings in the salt pillow province of the region
can be explained by the perfectly plastic sedimentary overburden and horizontal shortening.
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1 I N T R O D U C T I O N

Density inversions are common in nature, as when evaporite deposits
(e.g. a layer of rocksalt) are buried under a layer of compacting clas-
tic sediments in depressions of the Earth. An overburden thicker
than about 1 km can become more dense than the evaporite, bring-
ing into existence an unstable geological structure. Perturbations of
the interface between the two layers result in rising diapirs. Two fun-
damental types of instability are of considerable importance in the
evolution of the geological structures: gravitational and buckling
instabilities. Gravitational instability is associated with variations
in density, whereas buckling instability arises from variations of
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viscosity under the action of an applied stress. The two effects thus
compete to determine whether any disturbance will grow or decay.

Studies of natural diapirs have benefited from theoretical analy-
ses and modelling based on the Rayleigh–Taylor (R–T) instability of
viscous layers. Thus, for example, Biot (1965), Biot & Odé (1965)
and Ramberg (1968) developed a theory of gravitational instability
of layered geological media for the case of small perturbations under
various complications (e.g. variable viscosity, variable thicknesses
of layers, compaction and compression). Schmeling (1987) demon-
strated how the dominant (not necessarily characteristic) wavelength
and the geometry of the gravity overturns are influenced by the
shape of the initial perturbation. Lister & Kerr (1989) analyzed
the gravitational instability of a viscous fluid system, highlighting
the dependence of the spacing and growth rate of diapirs on the ge-
ometry of the buoyant structure. Poliakov et al. (1993) and Naimark
et al. (1998) studied numerically the effects of the differential load-
ing of sediments on diapirism.

In these studies the overburden was considered to be a viscous
fluid, whereas the rheology of natural overburdens is more complex
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and is better described as a non-Newtonian fluid (Weijermars et al.
1993). In the case of non-Newtonian power-law fluids the stress
tensor τi j (i, j = x, z) and strain-rate tensor ε̇i j are related by

τi j = C ε̇i j ε̇
1−n

n , (1)

where C is a proportionality factor defined from the thermodynamic
conditions, n is a power-law exponent and ε̇ = (ε̇kl ε̇kl )

1
2 is the second

invariant of the strain-rate. Because the effective viscosity of most
overburdens is very high, the deformation of the overburden is no
longer controlled by dislocation creep, instead it is determined by a
movement of blocks of the overburden along pre-existing faults of
various orientations. The dynamic friction along such faults does not
depend upon the strain rate and such a physical mechanism results in
the rheological model of a perfectly plastic material which does not
exhibit work-hardening but flows plastically under constant stress.
Hence the stress–strain relationship for the overburden obeys the
von Mises equations (Prager & Hodge 1951)

τi j = κε̇i j/ε̇, (2)

where κ is the yield limit. The second invariant of the stress, τ =
(τklτkl )

1
2 , equals the yield limit, κ , for any non-zero strain rate. When

τ < κ , there is no plastic deformation and hence no motion along the
faults. A comparison of eqs (1) and (2) shows that the perfectly plas-
tic rheology can be considered as the limit of non-Newtonian power-
law rheology as n → ∞. In this paper we refer to perfectly plastic
material by this limit with C = κ . We also note that Newtonian
behaviour corresponds to eq. (1) with n = 1.

An objective of our research is to analyze the gravitational
instability of a rheologically stratified structure in order to ex-
plain the non-uniform distribution of salt diapirs in many salt-
bearing sedimentary basins. Several analytical and numerical in-
vestigations have been performed to discover the differences in
growth rates between the R–T instability of a viscous layered sys-
tem and that of a system containing layers of different rheology.
Naimark & Ismail-Zadeh (1989, 1994) and Ismail-Zadeh (1994)
analyzed the gravitational instability of a stratified viscoelastic
Maxwell fluid for both incompressible and compressible materi-
als and defined the rates of diapiric growth. Several numerical
models have been developed to investigate the effects of rheology
on diapir evolution (Podladchikov et al. 1993; van Keken et al.
1993; Daudré & Cloetingh 1994; Poliakov et al. 1996). Leroy &
Triantafyllidis (1996) and Conrad & Molnar (1997) considered the
effect of rheological stratification on gravitational instability, but
these studies did not pursue the idea sufficiently to determine the full
implications.

Another objective of our research is to study the effects of hori-
zontal extension or shortening on the stability of the structure. This
objective is associated with recent advances in salt tectonics, which
highlight the role of horizontal stretching or squeezing of a brittle
overburden in the formation of salt structures (Vendeville & Jackson
1992; Jackson & Vendeville 1994; Jackson & Talbot 1994). A few
physical models were developed to study the effects of lateral move-
ments on salt diapirism where an overburden was considered to be
either a non-Newtonian or a frictional material (e.g., Koyi 1988).
A series of papers (Fletcher 1974; Smith 1977, 1979; Fletcher
& Hallet 1983; Zuber et al. 1986; Ricard & Froidevaux 1986;
Martinod & Davy 1992; Birger 1996) discuss non-Newtonian ef-
fects on finite-amplitude extension and shortening, but these papers
either have not addressed the problem of the R–T instability or have
not evaluated all features of the buckling instability of rheologically
stratified material.

In this paper we develop a theoretical analysis of the R–T
instability of a buoyant layer of viscous fluid overlain by a per-
fectly plastic material under tension or compression. In particular,
we seek the growth rates of small perturbations to the background
state, and their dependence on the effective viscosity ratio, den-
sity contrast, thicknesses of the layers, background shear strain and
boundary conditions applied. We find exact analytical solutions for
the growth rates of small perturbations and the asymptotics of the
growth rate for large viscosity ratio and small and large wavelengths.
(For convenience, we will use the wavenumber = 2π/wavelength in
the analysis of instability and revert to wavelengths in applications
and discussions). In the next section we derive the governing per-
turbation equations and boundary conditions. We present a stability
analysis of the layered structure in Section 3. In Section 4 we ana-
lyze the energy equation to understand the instability mechanism in a
transition from a viscous fluid to a perfectly plastic medium. In Sec-
tion 5 we apply the analytical models to the salt province of the Great
Kavir (Iran) in order to explain a small average interdiapir spacing
in the salt canopy province and a wide range of the spacings in the
salt pillow province of the region. In Section 6 we discuss our results
and present conclusions of the research. Our findings contribute to
an understanding of rising viscous diapirs through a perfectly plastic
overburden.

2 P E R T U R B A T I O N E Q U A T I O N S
A N D B O U N D A R Y C O N D I T I O N S

We study the R–T instability of a buoyant viscous layer of density
ρ2 and viscosity η2 in −h2 ≤ z ≤ 0 overlain by a perfectly plastic
material of density ρ1 > ρ2 and effective viscosity η1 in 0 ≤ z ≤ h1

(Fig. 1). Hereafter subscripts 1 and 2 refer to the upper and lower
layers respectively. The governing equations are the equations of
conservation of momentum, rheology, continuity and density advec-
tion (Chandrasekhar 1961; Drazin & Reid 1981). Motivated by the
extremely large viscosities of geological materials, we can safely
assume that the inertial terms in the Navier–Stokes equations are
negligible and that the motion is governed by the Stokes equations.
The layered model is subject to either horizontal extension or short-
ening, so that there is a basic background pure shear flow in the
structure. The horizontal forces, acting along the x-axis, induce a
background horizontal strain rate, ˙̄εxx = γ , where γ is a constant
(defined to be positive in the case of extension and negative in the
case of shortening); ˙̄εzz = −γ by virtue of incompressibility of the
material. The remaining component of strain rate tensor, ˙̄εxz , is taken
to be zero for the basic background flow.

Figure 1. A sketch of our analytical model. A small sinusoidal perturbation
is prescribed to the interface of the two layers. η1 and ρ1 are the effective
viscosity and density of the upper layer; η2 and ρ2 are the viscosity and
density of the lower layer. The layers are subject to horizontal extension or
shortening (as indicated by the solid and dashed arrows).
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In order to obtain the equations governing small perturbations of
physical variables, we neglect all products and powers of the pertur-
bations and retain only linear terms. We introduce small perturba-
tions of pressure (δP), density (δρ), components of velocity (u and
w), stress tensor (δτi j ) and strain rate tensor (δε̇i j ). The equations
take the form

− ∂

∂x
δP + ∂δτxx

∂x
+ ∂δτxz

∂z
= 0, (3)

− ∂

∂z
δP + ∂δτxz

∂x
+ ∂δτzz

∂z
= gδρ, (4)

∂u

∂x
+ ∂w

∂z
= 0,

∂δρ

∂t
+ w

dρ

dz
= 0, (5)

δτxx = 2
η̄

n

∂u

∂x
, δτzz = 2

η̄

n

∂w

∂z
, δτxz = η̄

(
∂u

∂z
+ ∂w

∂x

)
, (6)

where g is the acceleration due to gravity; η̄ is an effective viscosity
defined from eq. (1) by 0.5C ˙̄ε

1−n
n , and ˙̄ε = ( ˙̄ε

2
xx + ˙̄ε

2
zz)

1
2 is the second

invariant of the strain-rate for the basic background shear flow. For
the upper plastic and lower viscous layers the effective viscosities are
represented as η1 = 0.5C1 ˙̄ε

−1
(n → ∞) and η2 = 0.5C2 (n = 1), re-

spectively, where C1 and C2 are constants of proportionality. Eq. (6)
represents the anisotropic stress–strain rate relationships for small
perturbations to the basic background stress and strain rate (eq. 1)
for the non-Newtonian power-law rheology (see Appendix 1).

We now consider the boundary conditions. The conditions at the
upper boundary z = h1 are taken to be either no-slip, stress-free or
‘redistribution’. No-slip conditions are obtained from the vanishing
of the components of the velocity expressed by

u1 = w1 = 0. (7)

Stress-free conditions are obtained from the absence of tangential
and normal stress and are expressed by

δτxz,1 = σ̄xx,1
∂ζ

∂x
, (8)

−δP1 + δτzz,1 + ρ1gζ = 0, (9)

where σ̄xx,1 = 4η1ε̄xx,1 = 4η1γ is the component of stress tensor for
the basic background flow (Smith 1975) and ζ is the vertical dis-
placement of the upper boundary defined by ∂ζ/∂t = w1. ‘Redistri-
bution’ conditions are obtained by omitting the stabilizing surface
force ρ1gζ in eq. (9) (Biot & Odé 1965).

At the interface between the upper and lower layers (z = 0) we
require continuity of velocity, tangential and normal stresses ac-
counting for forces due to the density and viscosity discontinuities
at the interface:

u1 = u2, w1 = w2, (10)

δτxz,1 − δτxz,2 = (σ̄xx,1 − σ̄xx,2)
∂ξ

∂x
, (11)

−δP1 + δP2 + δτzz,1 − δτzz,2 − (ρ2 − ρ1)gξ = 0, (12)

where σ̄xx,2 = 4η2γ and ξ is the vertical displacement of the interface
defined by ∂ξ/∂t = w1 = w2. The conditions at the lower boundary
are the usual no-slip conditions:

u2 = w2 = 0. (13)

Note that eqs (8) and (11) include the driving mechanism for the
background flow induced by extension or shortening, while the last

term in eqs (9) and (12) provides the motion of the layered structure
due to the density difference.

Analyzing the disturbance into normal modes, we use a Laplace-
Fourier transform with the kernel exp(ikx + pt), where k is the
wavenumber and p the growth rate of the perturbations. The stability
problem then reduces to determination of the growth rate p as a
function of k. If p has a negative real part for all k, then the system
of layers is stable. If p has a positive real part for some range of k,
then the system is unstable and hence the interfacial displacements
grow exponentially with time. For solutions having this normal-
mode dependence on x and t , eqs (3)–(6) can be reduced to the
equation

(D2 + k2)[η̄(D2 + k2)w(z)] − 4k2D
[
η̄

n
Dw(z)

]
− k2gDρ

p
w(z) = 0,

(14)

where D = d/dz. Assuming the density and viscosity to be constant
within each layer, eq. (14) becomes[

(D2 + k2)2 − 4k2

n
D2

]
w(z) = 0. (15)

In the case of a Newtonian fluid (n = 1) eq. (15) becomes

(D2 − k2)2w(z) = 0, (16)

which has the general solution

w(z) = A2 cosh kz + B2 sinh kz + C2z cosh kz + D2z sinh kz,

(17)

where A2, B2, C2 and D2 are constants.
In the case of a perfectly plastic medium (n → ∞) eq. (15)

becomes

(D2 + k2)2w(z) = 0, (18)

which has the general solution

w(z) = A1 cos kz + B1 sin kz + C1z cos kz + D1z sin kz, (19)

where A1, B1, C1 and D1 are constants.
Boundary conditions defined in eqs (7)–(13) are represented in

the form

w1(h1) = 0, Dw1(h1) = 0, (20)

(
D2 + k2 − 4γ k2

p

)
w1(h1) = 0, (21)

(
D + 1

k2
D3 − ρ1g

η1 p

)
w1(h1) = 0, (22)

w1(0) = w2(0), Dw1(0) = Dw2(0), (23)

(D2 + k2)w1(0) = η2

η1
(D2 + k2)w2(0) + 4γ k2

p

(
1 − η2

η1

)
w2(0),

(24)

−
(

1

k2
D3 + D

)
w1(0) + η2

η1

(
1

k2
D3 − 3D

)
w2(0)

= (ρ2 − ρ1)g

η1 p
w2(0), (25)

w2(−h2) = 0, Dw2(−h2) = 0. (26)
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Eq. (16) for the lower layer and eq. (18) for the upper layer with
conditions defined in either eqs (20) and (22)–(26) or eqs (21)–
(26) make up a boundary value problem for the eigenvalue p and
eigenfunction w. Substituting the solutions to eqs (17) and (19)
into the boundary conditions, we obtain a set of linear algebraic
equations S for the constants Ai , Bi , Ci and Di (i = 1, 2). The zeros
of the determinant of the linear system S are the eigenvalues of the
boundary value problem.

Although there are as many eigenvalues p as there are deformable
interfaces, one eigenvalue corresponds to faster growth than any
other. For a given structure (with prescribed density, effective vis-
cosity and thickness values), the growth rate p varies with wavenum-
ber k and reaches a maximum value pmax at some wavenumber kmax

called the characteristic wavenumber. Because the growth rate is
fastest at kmax, this is the only wavenumber that needs to be consid-
ered in applications. Following Ramberg (1968), we assume that the
amplitude of perturbations spaced on the characteristic wavenum-
ber grows sufficiently rapidly relative to other wavenumbers during
the early stages of diapirism (when the linearized formulation is
applicable) that the characteristic wavenumber controls the pattern
of growth during the rest of the diapir evolution (when the lineariza-
tion is not longer valid).

3 S T A B I L I T Y A N A L Y S I S

We introduce the dimensionless quantities (i = 1, 2)

Ni = ηi/(η1 + η2), ν = η2/η1 = N2/N1,

Ri = ρi/(ρ1 + ρ2), Hi = hi/(h1 + h2),

K = k(h1 + h2), Ki = K Hi = khi , (27)

P = pt0, � = 2γ t0, F = (ρ1 + ρ2)g(h1 + h2)t0

2(η1 + η2)
,

G = F (R2 − R1)H2/N1, G1 = FR1 H1/N1.

To illustrate the results we take the following values of the model
parameters: h1 + h2 = 10 km, η1 + η2 = 2 × 1020 Pa s, t0 = 28 kyr,
ρ1 = 2.5 × 103 kg m−3 and ρ2 = 2.2 × 103 kg m−3, where ρ1 and
ρ2 are the typical densities of the sedimentary overburden and rock-
salt, respectively. Consider three cases of conditions at the upper
boundary: (ns) no-slip, (s f ) stress-free, and (rd ) ‘redistribution’.

Figure 2. The growth rate of perturbations versus wavenumber in model ns. The background strain rate � = 10−5. Curves are shown for various values of (a)
the effective viscosity ratio, ν, at H1/H2 = 1 and �R = 0.12; and (b) the density contrast at H1/H2 = 1 and ν = 0.01.

3.1 Model ns: no-slip conditions at the upper boundary

The analytical solution to the stability problem is given in Ap-
pendix 2. Here we discuss the results of the analysis.

First, we study the case when the horizontal background strain
rate, �, is small to prevent significant development of the buckling
instability. Calculations show that reasonable values of � are less
than �0 = 10−4. In this case the gravitational instability acts inde-
pendently of the background pure shear. The (P, K ) relationships
are illustrated in Fig. 2 for various values of (i) effective viscosity ra-
tio, ν, and (ii) density contrast, �R = R1 − R2. The waviness of the
growth rate curves is due to the fact that the perturbation equation
for perfectly plastic materials is a hyperbolic wave equation and the
vertical velocity structure w(z) is oscillatory (see eq. 19). Either a
decrease in the effective viscosity ratio or an increase in the density
contrast results in an increased growth rate.

We have analyzed the gravitational instability of models com-
posed of two layers of viscous fluid and of two perfectly plastic
layers (see Appendix 2) to compare the growth rates of the instabil-
ity with that for the rheologically layered model. Comparison of the
models shows that the behaviour of a viscous layer overlain by a per-
fectly plastic layer depends strongly on the viscosity ratio (Fig. 3).
When the effective viscosity of the upper layer is not greater than
the viscosity of the lower layer, the structure behaves like a system
of viscous layers (see curve pv in Fig. 3, ν = 1), that is, there is
a well-defined mode of maximum instability and the growth rate
vanishes for very small and very large wavenumbers. On the other
hand, when the effective viscosity of the upper layer is much greater
than the viscosity of the lower layer, the instability of the structure
is similar to the instability of perfectly plastic layers, i.e. the curve
of the growth rate versus wavenumber oscillates and approaches a
specific constant for large wavenumbers (see curve pν in Fig. 3,
ν = 10−3).

The characteristic wavenumber initially decreases with the in-
creasing thickness ratio but then increases by a series of abrupt
jumps (Fig. 4a). This behaviour is associated with the waviness of
the growth rate curve (and hence is due to perfect plasticity of the
upper layer) and occurs when the second, third and so on peaks of
the growth rate curve sequentially become higher than the surround-
ing peaks. Therefore, increasing wavenumber with the overburden’s
thickness may explain small interdiapir spacings observed in some
salt-bearing basins. The maximum growth rate initially increases
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Figure 3. The growth rate versus wavenumber for various values of the effective viscosity ratio, ν, at H1/H2 = 1, �R = 0.12, and � = 10−5 in three cases
of ( pv) a viscous layer overlain by a perfectly plastic layer, ( pp) a superposition of two perfectly plastic layers, and (vv) a superposition of two viscous layers.

with increasing thickness ratio; however then it decreases at larger
thickness ratios (Fig. 4b). Decreasing the effective viscosity ratio
increases the maximum growth rate.

In the case of the viscous upper layer, Fig. 5 presents characteristic
wavenumbers (a) and maximum growth rate (b), both plotted versus

Figure 4. The characteristic wavenumber (a) and maximum growth rate (b) versus the thickness ratio, H1/H2, for various values of the effective viscosity
ratio, ν, at �R = 0.12 and � = 10−5 in model ns. Arrows show the abrupt change of the characteristic wavenumber that corresponds to the maximum growth
rate.

thickness ratio for various effective viscosity ratios. The character-
istic wavenumber K is proportional to H1/H2 for H1 � H2 and to
H2/H1 for H1 � H2. The maximum growth rates (Fig. 5b) are less
than those in the case of the perfectly plastic upper layer (Fig. 4b). A
comparison of the two cases shows differences in the characteristic

C© 2002 RAS, GJI, 148, 288–302
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Figure 5. The characteristic wavenumber (a) and maximum growth rate (b) versus the thickness ratio, H1/H2, for various values of the effective viscosity
ratio, ν, at �R = 0.12 and � = 10−5 in model ns in the case of the upper viscous layer.

wavenumber and in the growth rate with decreasing thickness ratio
between the lower and upper layers.

Fig. 6 shows the growth rate curves versus wavenumber for two
values of the effective viscosity ratio and several values of the back-
ground strain rate. We see that increasing positive � (the extension
rate) results in a decreasing maximum growth rate, while decreasing

Figure 6. The growth rate of perturbations versus wavenumber for two values of the effective viscosity ratio: ν = 10−2 (upper panel) and ν = 10−4 (lower
panel), and various values of the background strain rate, �, at H1/H2 = 1 and �R = 0.12 in model ns.

negative � (the shortening rate) leads to an increasing maximum
growth rate. In the both cases the oscillations of the growth rate
curves grow in amplitude with increasing |�|.

For simplicity, in the further discussion we assume the thicknesses
of the two layers to be equal, that is, 1

2 K = K1 = K2. Consider the
case where the effective viscosity of the upper layer tends to infinity.

C© 2002 RAS, GJI, 148, 288–302
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This case is rather natural for geophysical applications, because the
effective viscosity of the uppermost layers of the Earth is much
greater than the viscosity of the underlying layers (for example, the
viscosity of salt is three to six orders of magnitude less than the
effective viscosity of its overburden). In this case N1 → 1, N2 → 0
and ν → 0.

We find the following asymptotic relation for the growth rate P
at small wavenumbers K

P(K ) = −G
(

1 − 2

K
tan

K

2

)
. (28)

Therefore, P → 0 when K → 0. Considering the limit K → ∞,
we find that

P(K ) = F (R1 − R2)H2 − � sin2 K

2
. (29)

The growth rates of the instability are asymptotically independent
of the viscosity of the buoyant fluid when this viscosity is small
compared to the effective viscosity of the upper layer. While there
is a mode of maximum instability for which the amplitude of the
disturbance grows most rapidly, other modes associated with the
waviness of the growth rate curves have almost the same growth
rate for large wavenumbers. Hence, it is to be expected that viscous
diapirs rising through a perfectly plastic overburden will have a
variety of wavelengths rather than a single characteristic wavelength.

3.2 Model s f : stress-free conditions
at the upper boundary

The solution to the stability problem is given in Appendix 3. Here
we discuss the results of the analysis.

Fig. 7 illustrates the curves of the growth rate versus wavenumber
for various values of effective viscosity ratio. The positive growth
rate has a maximum at the characteristic wavenumber, and the rate
is higher than the rate found in model ns of no-slip conditions at
the upper boundary. This has an obvious interpretation: a stress-free
surface is less resistant to deformation than a rigid one. We also find
that the smaller the effective viscosity ratio, the larger the positive
growth rate and the amplitude of the curve waviness.

Figure 7. The growth rate versus wavenumber for various values of the
effective viscosity ratio, ν, at H1/H2 = 1, �R = 0.12, and � = 10−5 in
model s f.

We have found that the dependence of the characteristic
wavenumber and maximum growth rate on the thickness ratio is
similar to the case of model ns in that the characteristic wavenum-
ber initially decreases and then increases by a series of abrupt
jumps, while the maximum growth rate initially increases and then
decreases with increasing thickness ratio. It should be noted that
Ricard & Froidevaux (1986) also found an increase of wavenumber
with thickness of an upper layer of non-Newtonian power-law fluid
(n = 103) in the case of an absence of density inversion.

There are four cases reflecting the effects of gravity and hori-
zontal shear straining: (1) a layered structure with density inversion
is subject to horizontal shortening; (2) a structure with no density
inversion is subject to horizontal shortening; (3) a structure with
density inversion is subject to horizontal extension; and (4) a struc-
ture with no density inversion is subject to horizontal extension.
In the first case (Fig. 8) the growth rates are always positive for
ν = 0.1 and small values of �, whereas they can be either positive
or negative for the smaller value ν = 10−4. For all values of ν con-
sidered, the peak corresponding to the initial maximum growth rate
increases in amplitude with the basic background strain rate �, while
the other peaks of the growth rate curve increase faster causing a
jump (or jumps) in the preferred wavenumber. In the second case
(see Fig. 9), the growth rates are always negative for the small �

but then become both positive and negative for larger �. A simi-
lar behaviour is found for the case of extension. For all the cases
considered, at large basic strain rates (� > 10−4) the structure tends
to exhibit ‘resonance’ behaviour, as described by Smith (1979) in
the case of folding. Hence, the buckling instability induced by rapid
horizontal straining overwhelms the gravitational instability.

The curves of maximum growth rate versus effective viscosity
ratio, ν, are presented in Fig. 10 for various values of the basic
background strain rate,�. For small values ofν the maximum growth
rate increases linearly with decreasing ν. This agrees with the results
obtained by (Smith 1979, p. 287), who showed that the dynamic
growth rate of perturbations of the interface between a perfectly
plastic layer and viscous surroundings depends linearly on viscosity
ratio in the presence of pure shear flow and the absence of gravity.

We have found the asymptotic solution for the growth rates for
small and large wavenumbers (see Appendix 3). The growth rates
P+ → 0 and P− → −G1 when K → ∞ and � → 0. If ν � 1 and
K → ∞ we obtain

P±(K ) = ±�

ν
sin

K

2
. (30)

The growth rate defined by the eigenvalues P± can be positive or
negative depending on the sign of � and the trigonometric function,
and it reaches a maximum value Pmax = abs(�)/ν at K = π + 2πk,
where k = 1, 2, . . . , ∞.

In summary, the layered structure behaves like a viscous system
at large values of effective viscosity ratio, ν, and small background
strain rate, �, and approaches perfectly plastic behaviour at suffi-
ciently small values of ν and large values of �.

3.3 Model rd : ‘redistribution’ condition
at the stress-free upper boundary

The ‘redistribution’ condition was first proposed by Biot & Odé
(1965) to model the geological processes of erosion and redeposition
of sediments. Let us assume that the upper boundary of the structure
is kept flat by a process in which any hills developing on the upper
surface of the overburden are scraped off, and the scraped-away
material is deposited in the adjacent surface depressions. If the forces
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Figure 8. The growth rate versus wavenumber in the case of horizontal shortening and density inversion (�R = 0.12) for two values of the effective viscosity
ratio, ν = 0.1 (upper panel) and ν = 10−4 (lower panel) for various values of the basic background strain rate, �, at H1/H2 = 1 in model s f.

Figure 9. The growth rate versus wavenumber in the case of horizontal shortening and the absence of density inversion (�R = −0.12) for various values of
the basic background strain rate, �, at H1/H2 = 1 and ν = 10−4 in model s f.
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Figure 10. The maximum growth rate versus the effective viscosity ratio for various values of the basic background strain rate, �, at H1/H2 = 1 and
�R = 0.12 in model s f.

per unit area acting on the upper stress-free boundary are assumed
to be proportional to the height of the column of material (added or
removed), the contribution of gravity in eq. (9) is exactly balanced
by the force due to the redistributed material (Biot & Odé 1965).
Hence the redistribution implies that the stabilizing surface force at
the upper stress-free boundary should be neglected.

The stability equation for P is also quadratic as in the case of the
stress-free boundary condition and, as before, we consider here only
the most positive root of the equation. Fig. 11 illustrates the curves
of the growth rate plotted versus wavenumber for several values of
�. As is the case with the stress-free upper boundary (model s f ), the
initial maximum growth rate increases in amplitude with the basic
background strain rate. At the same time the other peaks of the
growth rate curves increase more rapidly causing a jump (or jumps)
in the preferred wavenumber. At large strain rates (� > 10−4) the
structure tends toward ‘resonance’ behaviour. The growth rate of
small perturbations is slightly larger in this model than in the model
s f (see Fig. 8, ν = 10−4), because the extra surface force due to
the process of material redistribution accelerates the gravitational
instability (Biot & Odé 1965).

Figure 11. The growth rate versus wavenumber for several values of the basic background strain rate, �, at H1/H2 = 1, �R = 0.12, and ν = 10−4 in model
r d.

4 E N E R G Y A N A L Y S I S

In this section we investigate the mechanism of the instability as the
system changes from a viscous fluid to a perfectly plastic material
through examination of the disturbance–energy equation (Joseph
1976). Consider the equations of conservation of momentum for
small perturbation, eqs (3) and (4), in the form

−∂δP

∂xi
+ ∂δτi j

∂x j
+ δρFi = 0, (31)

where x1 = x, x2 = z, F1 = 0, and F2 = −g. By multiplying the
equation by ui , summing over i and integrating over a domain �,
we obtain∫

�

[
−ui

∂δP

∂xi
+ ui

∂δτi j

∂x j
+ uiδρFi

]
dx1 dx2 = 0, (32)

where u1 = u and u2 = w. We consider that the perturbation velocity
is given by
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u1 = sin kx1[−αcosβkx2 + βsinβkx2] exp(αkx2),

u2 = cos kx1 cos βkx2 exp(αkx2), (33)

where

α =
(

1

n

) 1
2

, β =
(

n − 1

n

) 1
2

, (34)

and the magnitude of the velocity has been scaled to O(1). Now, by
integrating by parts the first and second terms of the integral, we
find that∫

�

[
δP

∂ui

∂xi
− δτi j

∂ui

∂x j
+ uiδρFi

]
dx1 dx2

+
∫

S

[−u jδP + uiδτi j ] dSj = 0, (35)

where S is the curve bounding � and dSj represents a vector normal
to the element of curve dS and whose absolute magnitude is equal to
dS. The first two terms of the area integral represent the rate at which
energy is dissipated by viscosity in each element of the domain
�; the third term represents the rate at which the gravity does work
on the elements in �; and the two terms of the line integral represent
the rate at which the total stress does work on the curve S.

We choose the domain � = [0, 2π/k] × [0, −∞) to correspond
to one wavelength of the velocity field eq. (33). Simple calculations
show that the first and third terms of eq. (35) equal zero for all values
of the power-law exponent, n. Consider the second term:

EV
n = −

∫
�

δτi j
∂ui

∂x j
dx1 dx2

= −4η̄

∫
�

[
1

n

(
∂u1

∂x

)2

+ 1

4

(
∂u1

∂z
+ ∂u2

∂x

)2
]

dx1 dx2

= −2πη̄(n + 1)n−3/2. (36)

Hence EV
1 = −4πη̄ in the case of a viscous fluid (n = 1), EV

100 =
−0.202πη̄ in the case of a non-Newtonian power-law fluid (n = 100)
and EV

∞ = 0 in the case of a perfectly plastic material (n = ∞). The
fourth term is found to be

ESP
n = −

∫
S

u jδP dSj = −
∫

S

δP (u1 dS1 + u2 dS2)

= 2πη̄(n − 1)n−3/2. (37)

ESP
1 = 0 in the case of a viscous fluid, E S P

100 = 0.198πη̄ in the case
of a non-Newtonian power-law fluid and E S P

∞ = 0 in the case of a
perfectly plastic material. Now consider the last term in eq. (35):

E ST
n =

∫
S

uiδτi j dSj

=
∫

S

[
2η̄

n
u1

∂u1

∂x
+ η̄

2
(u1 + u2)

(
∂u1

∂z
+ ∂u2

∂x

)]
dS1

+
[

η̄

2
(u1 + u2)

(
∂u1

∂z
+ ∂u2

∂x

)
+ 2η̄

n
u2

∂u2

∂z

]
dS2

= 4 π η̄n−3/2. (38)

Therefore E ST
1 = 4πη̄ in the case of a viscous fluid, E ST

100 = 0.004πη̄

in the case of a non-Newtonian power-law fluid and E S
∞ = 0 in the

case of a perfectly plastic material. Thus, for all values of n the
integral of viscous dissipation is always balanced by the integral of
the mechanical work done at the boundary of domain �. All terms in
eq. (35) tend to zero as n → ∞ (perfect plasticity), because we have
fixed the velocity amplitude at unity in eq. (33) and the resistance
to strain decreases as n increases.

Figure 12. Map showing the spacing of salt structures in the Great Kavir,
Iran. Diapirs in the canopy province are shown in dark gray, diapirs in the
pillow province are black, and other diapirs are shown in light gray (after
Jackson et al. 1990).

5 A P P L I C A T I O N T O S A L T D I A P I R I S M
I N T H E G R E A T K A V I R

The Great Kavir salt province in Central Iran is one of the well
studied regions of salt tectonics (see Jackson et al. 1990). The
distinguishing feature of the province is that the diapirs in the
Great Kavir have smaller average interdiapir spacing than any other
group of mature diapirs known. To explain this difference in inter-
diapir spacing Jackson et al. (1990) developed analytical models of
diapirs in two subareas of the province: the first was the cluster
of diapirs forming the salt canopy; and the second to the east was
immature salt diapirs or salt pillows (Fig. 12). Assuming a viscous
rheological model and the same viscosity for salt and its overburden,
they concluded that the small interdiapir spacing in the Great Kavir
can only be reproduced with no viscosity contrast between the salt
layer and its overburden.

To test whether a perfectly plastic overburden can explain the
different spatial characteristics of the salt province, in this section
we analyze models of the same two subareas in the Great Kavir,
introducing an effective viscosity of the overburden which increases
with its thickness. Also we study the effects of horizontal shortening
on the instability of the models, since there is regional shortening in
the Great Kavir (Jackson et al. 1990). Hence the buckling instability
may play a part in the evolution of the salt structures.

In the analytical models we divide the generalized stratigraphic
column for the Great Kavir region (Jackson et al. 1990) into two
layers: Late Eocene—Early Miocene salt (the lower layer) overlain
by Miocene terrigenous sediments (the upper layer). A layer beneath
the salt consists predominantly of Eocene volcanics and is assumed
to be effectively rigid.

The density and total thickness of the overburden are assumed
to be ρ1 = 2.36 × 103 kg m−3 and h1 = 3 km, respectively. On the
grounds that an increasing thickness of overburden implies an in-
creasing yield stress κ (and hence an increasing effective viscosity
at constant strain rate), we assume that the effective viscosity of
the overburden increases linearly with the thickness of the over-
burden. Hence, the effective viscosity of the overburden varies in
the range of 1.25 × 1018 to 2 × 1020 Pa s depending on the over-
burden’s thickness. We note that we wish to analyze the spacing of
diapirs (for which the effective viscosity ratio is relevant) rather than
the absolute growth rates of perturbations. Study of growth rates is
problematic because of the difficulty in assigning absolute viscosity
values to the layers.
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Figure 13. The characteristic time versus the characteristic wavelength from the linear analysis of the Great Kavir salt canopy province for two values of the
compressional strain rates: 10−18 s−1 (solid line) and 10−16 s−1 (dashed line). Diamonds and stars mark several stages in the overburden evolution.

Lengths and effective viscosities are non-dimensionalized with
respect to the thickness h2 and viscosity η2 = 1017 Pa s of the salt
layer. The relations tc = t∗/P (t∗ = 143 yr) and Lc = 2πh2/K are
used to convert the dimensionless maximum growth rate P and
characteristic wavenumber K to the dimensional characteristic time
tc and characteristic wavelength Lc, respectively.

5.1 Interdiapir spacing in the salt canopy province

The average interdiapir spacing is measured to be Lc = 5.9 km in
the canopy province of the Great Kavir. Because the exact time
of diapirism initiation is poorly known, we examine a sequence
of models with the increasing thickness of the overburden in or-
der to find a thickness which would correspond to the character-
istic wavelength Lc of the Great Kavir salt diapirs in the canopy
province. The density and thickness of the salt layer are assumed to
be ρ2 = 2.23 × 103 kg m−3 and h2 = 4 km, respectively.

Fig. 13 presents the curves of characteristic time versus char-
acteristic wavelength for various thickness ratio and two cases of
compressional regime. As predicted by the theory (Section 3), the
characteristic wavelength increases with total overburden thickness
while the latter is less than salt thickness. This is in agreement with
the results obtained by Jackson et al. (1990). The characteristic time
decreases rapidly while the thickness of the overburden is less than
about 1.5 km (see Fig. 13, solid line) and later it decreases slowly
until the overburden reaches its total thickness (3.0 km). The charac-
teristic wavelength of the total thickness is 10.8 km, which is greater
than the observed spacing in the canopy province. At h1 = 1.2 km
the characteristic wavelength is about 5.9 km (close to the observed
spacing). Following Jackson et al. (1990), we believe that the char-
acteristic wavelength was locked in at this stage of the regional evo-
lution, and hence it can predict the diapir spacing in the province.
The idea that wavelengths can be locked in was developed in stud-
ies of thermal convection (e.g., Howard 1966). ‘Locking in’ means
that a specific characteristic wavelength becomes dominant even
though the wavelength is altered later due to changing conditions
(e.g. increasing thickness of the overburden).

For a given thickness of the overburden horizontal shortening
(with strain rate γ = 10−16 s−1) reduces the characteristic wave-
length (see Fig. 13, dashed line) relative to the case of slight short-

ening (γ = 10−18 s−1), while the characteristic time changes slightly.
In this case the characteristic wavelength is close to the observed
spacing of diapirs at h1 = 1.9 km.

5.2 Interdiapir spacing in the salt pillow province

The area is characterized by immature salt structures (with the re-
duced thickness of the initial salt layer) and regional folding on a
wavelength of 17 km. The interdiapir spacing varies from 4 to 20 km
(Jackson et al. 1990). Linear analysis of viscous layered structures
cannot predict a wide range of characteristic wavelengths. That is
the reason why we apply our model to explain the variety of the
interdiapir spacing.

In the model we consider that ρ2 = 2.27 × 103 kg m−3 and h2 =
1.5 km. Note that the total thickness of the overburden now is two
times greater than the thickness of the salt layer. In this situation
the characteristic wavelength increases initially to about 17 km with
increasing overburden thickness to about 2.3 km (see Fig. 14, solid
thin line) and then decreases abruptly to about 8.5 km (Fig. 14,
solid bold line). This behaviour is associated with the perfect plas-
ticity of the overburden. The characteristic time decreases initially
with the overburden thickness until h1 = 1.25 km, then increases
until h1 = 2.4 km and decreases again until h1 = 3.0 km. Hence, the
thickness of the overburden ranging from about 0.75 to 1.0 km and
from 2.4 to 3.0 km can predict the characteristic wavelength in the
same range of 8.5 to 10.5 km.

In the case of horizontal shortening (γ = 10−16 s−1) the charac-
teristic wavelength and the characteristic time are reduced relative
to the case of slight shortening (γ = 10−18 s−1). The characteristic
wavelength increases to about 19 km while h1 ≤ 2.8 km (Fig. 14,
dashed thin line) and then decreases abruptly (Fig. 14, dashed bold
line) with the thickness of the overburden. Therefore, the model
can predict a wide range of interdiapir spacing observed in the salt
pillow province of the Great Kavir.

6 D I S C U S S I O N A N D C O N C L U S I O N

This study is of considerable relevance to problems of the dynam-
ics of salt structures in sedimentary basins. Understanding the ge-
ometries, kinematics and evolution of salt diapirs would be useful

C© 2002 RAS, GJI, 148, 288–302



January 10, 2002 16:43 Geophysical Journal International GJI1612

Gravitational and buckling instabilities 299

Figure 14. The characteristic time versus the characteristic wavelength from the linear analysis of the Great Kavir salt pillow province for two values of the
compressional strain rates: 10−18 s−1 (solid thin and bold lines) and 10−16 s−1 (dashed thin and bold lines). Diamonds, stars and circles mark several stages in
the overburden evolution.

to geoscientists who deal with crustal deformations. Although the
shapes and patterns of salt structures can be very complex, the basic
physical phenomena of diapirism can readily be explained by the
gravitational instability of lighter salt underlying denser overburden.
If the interface between the two layers is disturbed, the underlying
low density salt flows upward due to the density inversion.

We analyzed the instability of a buoyant viscous layer underlying
a dense perfectly plastic layer whose thickness h1 increases in time.
During sedimentation, the thickness of the salt overburden grows
with respect to the initial thickness of salt layer. We assumed that
the sedimentation was rapid compared to the timescale of diapirism.
Hence the spacing between diapirs (the distance between the crests
of two neighbouring diapirs) will be defined by the characteristic
wavelength of the perturbations of the interface between the salt
layer and its overburden. The analytical results show that the char-
acteristic wavelength is short when the overburden is thin. Initially
it becomes longer with increasing thickness of the overburden but
then shortens again when the thickness of the overburden becomes
greater than the salt thickness. Such a reduction of the characteristic
wavelength can explain the surprisingly small distance between salt
diapirs as well as a wide range of interdiapir spacings observed in
the Great Kavir in Iran (Jackson et al. 1990).

We showed in model ns that the modes of instability associated
with a waviness in the growth rate curve have almost the same growth
rate for a range of small wavelengths in the case η1 � η2. Hence,
initial perturbations of the salt/overburden interface may generate
a mixture of diapirs with different wavelengths rather than diapirs
with one characteristic wavelength associated with a well-defined
maximum growth rate. This provides a possible origin for the non-
uniform distribution of mature diapirs.

The interplay between the gravitational and buckling instabilities
was also a subject of our study. We showed that the buckling insta-
bility replaces the R–T instability for sufficiently rapid horizontal
stretching or squeezing of the rheologically layered structure. We
find that this transition can occur at strain rates in the range 10−16 to
10−15 s−1, which are reasonable values for the deformations of the
overburden on a geological time scale and agree with estimations
obtained by Conrad & Molnar (1997).

We derive the following conclusions, on the assumption that the
effective viscosity of the upper perfectly plastic layer is greater than
the viscosity of the lower layer.

(i) The nature of the gravitational instability of a rheologically
stratified structure composed of a perfectly plastic layer and underly-
ing viscous layer is defined by the behaviour of the plastic material.

(ii) Salt diapirs rising through a perfectly plastic overburden are
expected to have different wavelengths rather than a single charac-
teristic wavelength.

(iii) The characteristic wavelength corresponding to the most un-
stable mode increases initially with the thickness ratio between the
lower and upper layers, but then decreases by a series of abrupt
jumps.

(iv) When the background rate of horizontal extension or short-
ening is sufficiently fast, a buckling instability overwhelms the grav-
itational instability, and the growth rate of the diapirs then depends
linearly onthe effective viscosity ratio.

(v) A perfectly plastic sedimentary overburden and horizontal
shortening can explain the small average interdiapir spacing in the
salt canopy province and the wide range of spacing in the salt pillow
province of the Great Kavir, Iran.

Our analytical study of gravitational and buckling instability of a
structure consisting of a viscous layer overlain by a perfectly plastic
layer brings to light two distinct types of behaviour: it deforms
viscously for small values of the effective viscosity ratio ν and yields
plastically when the ratio is higher. Real rocks of course display
more complex rheology than a perfectly plastic material. However,
we consider our study of particular special situations as an essential
step in understanding the dynamics of rheologically stratified natural
structures.
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Biot, M.A. & Odé, H., 1965. Theory of gravity instability with variable
overburden and compaction, Geophysics, 30, 213–227.

Birger, B.I., 1996. Stability of the lithosphere during horizontal compres-
sion (in Russian), in Modern Problems of Seismology and Geodynamics,
pp. 3–21, eds Keilis-Borok, V.I. & Molchan, G.M., Nauka, Moscow.

Chandrasekhar, S., 1961. Hydrodynamic and Hydromagnetic Stability,
Oxford University Press, Oxford.

Conrad, C.P. & Molnar, P., 1997. The growth of Rayleigh-Taylor instability
in the lithosphere for various rheological and density structures, Geophys.
J. Int., 129, 95–112.
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A P P E N D I X A : S T R E S S – S T R A I N R A T E
R E L A T I O N S H I P F O R S M A L L
P E R T U R B A T I O N S

We consider the perturbations to the basic background stress, τ̄i j ,
and strain rate, ˙̄εi j , in the case of a non-Newtonian fluid. Making use
of eq. (1) and retaining only linear terms in the expression for the
second invariant of strain rate tensor and stress tensor, we obtain

ε̇ = [( ˙̄εkl + δε̇kl ) ( ˙̄εkl + δε̇kl )]
1
2 ≈ ( ˙̄εkl ˙̄εkl + 2 ˙̄εklδε̇kl )

1
2

= ( ˙̄εkl ˙̄εkl )
1
2

(
1 + 2

˙̄εklδε̇kl

˙̄εkl ˙̄εkl

) 1
2

≈ ˙̄ε

(
1 +

˙̄εklδε̇kl

˙̄ε
2

)
,

τi j = τ̄i j + δτi j = C ε̇
1−n

n ε̇i j

≈ C ˙̄ε
1−n

n

(
1 +

˙̄εklδε̇kl

˙̄ε
2

) 1−n
n

( ˙̄εi j + δε̇i j )

≈ C ˙̄ε
1−n

n

(
1 + 1 − n

n

˙̄εklδε̇kl

˙̄ε
2

)
( ˙̄εi j + δε̇i j )

≈ C ˙̄ε
1−n

n ˙̄εi j + C ˙̄ε
1−n

n

(
δε̇i j + 1 − n

n

˙̄εkl ˙̄εi j

˙̄ε
2 δε̇kl

)
.

Hence

τ̄i j = 2η̄ ˙̄εi j ,

δτi j = 2η̄

(
δikδ jl + 1 − n

n

˙̄εkl ˙̄εi j

˙̄ε
2

)
δε̇kl ,

where η̄ = 0.5C ˙̄ε
1−n

n . For the pure shear flow ˙̄εxx = − ˙̄εzz �= 0 and
˙̄εxz = 0, and hence, taking into consideration of the incompressibil-
ity of the fluid, we derive

C© 2002 RAS, GJI, 148, 288–302



January 10, 2002 16:43 Geophysical Journal International GJI1612

Gravitational and buckling instabilities 301

δτxx = 2
η̄

n
δε̇xx , δτzz = 2

η̄

n
δε̇zz, δτxz = 2η̄δε̇xz .

Thus, unlike a Newtonian fluid, small perturbations of the basic
background stress are described by anisotropic rheological relation-
ships in the case of a non-Newtonian power-law fluid.

A P P E N D I X B : S O L U T I O N S T O T H E
S T A B I L I T Y P R O B L E M S : M O D E L n s

B1 Instability of a viscous layer overlain
by a perfectly plastic layer

In order to obtain the dimensionless growth rate P , we calculate
the determinant of the linear system S. After simple algebra the
determinant is reduced to |pi j | where

p11 = P + G(K1 − tan K1)/K2 − �(1 − ν)K1 tan K1,

p21 = −tan K1 P − GK1 tan K1/K2 − �(1 − ν) (K1 + tan K1),

p31 = (1 − K2 tanh K2)P, p41 = K2 P,

p12 = ν(K1 − tan K1), p13 = tan K1,

p14 = νK1 tan K1, p22 = −νK1 tan K1, p23 = 1,

p24 = ν(K1 + tan K1), p32 = −tanh K2 + K2,

p33 = −K2, p34 = K2 tanh K2, p42 = −K2 tanh K2,

p43 = 1 + K2 tanh K2, p44 = −K2 − tanh K2.

On expanding this determinant, simplifying it, and equating it to
zero, we find the growth rate of perturbations to be

P(K ) = −N1 − �N2

D ,

where

N1 = G[(K1 − tan K1)A1 + K1 tan K1A2]

N2 = (1 − ν)K2[K1 tan K1A1 − (K1 + tan K1)A2],

D = K2[A1 + tan K1A2 + (1 − K2 tanh K2)A3 − K2A4],

and A1 = p(2,3,4)(2,3,4), A2 = p(1,3,4)(2,3,4), A3 = p(1,2,4)(2,3,4), and
A4 = p(1,2,3)(2,3,4) are minors of degree 3 of the matrix ‖pi j‖.

B2 Instability of two layers of viscous fluid

The first three conditions at the interface between layers, z = 0, are
represented by eqs (23) and (24) with � = 0. The fourth condition
should account for vertical forces due to the density discontinuity
at the interface

−
(

1

k2
D3 − 3D

)
w1 + η2

η1

(
1

k2
D3 − 3D

)
w2 = (ρ2 − ρ1)g

pη1
w2.

(B1)

Eq. (16) for the lower and upper layers together with the conditions
defined in eqs (20), (23), (24), (26) and (B1) constitute the boundary
value problem for the eigenvalue p and eigenfunction w. Substitut-
ing eq (17) into the boundary conditions, we obtain a set of linear
algebraic equations for the constants Ai , Bi , Ci and Di (i = 1, 2).
Making use of the dimensionless quantities introduced by eq. (27),
and after simple algebra, the determinant of the system is reduced
to |pi j | where

p11 = P(1 − K1 tanh K1) − G(K1 − tanh K1)/K2,

p21 = −P K1 − GK1 tanh K1/K2,

p31 = P(1 − K2 tanh K2), p41 = P K2,

p12 = −ν(K1 − tanh K1), p13 = K1,

p14 = νK1 tanh K1, p22 = −νK1 tanh K1,

p23 = 1 + K1 tanh K1, p24 = ν(K1 + tanh K1),

p32 = − tanh K2 + K2, p33 = −K2,

p34 = K2 tanh K2, p42 = −K2 tanh K2,

p43 = 1 + K2 tanh K2, p44 = −K2 − tanh K2.

On expanding this determinant, simplifying it and equating it to
zero, we find the growth rate of perturbations to be

P(K ) = −Nv

Dv

,

where

Nv = −F (R2 − R1)H2[(K1 − tanh K1)A1 − K1 tanh K1A2)],

Dv = K2 N1[(1 − K1 tanh K1)A1 + K1A2

+ (1 − K2 tanh K2)A3 − K2A4].

B3 Instability of two perfectly plastic layers

The first three conditions at the interface between the layers, z = 0,
are represented by (23) and (24). The fourth condition should ac-
count for vertical forces due to the density discontinuity at the
interface:

−
(

1

k2
D3 + D

)
w1 + η2

η1

(
1

k2
D3 + D

)
w2 = (ρ2 − ρ1)g

pη1
w2.

(B2)

Eq. (18) for the lower and upper layers together with conditions (20),
(23), (24), (26) and (B2) constitute the boundary value problem for
the eigenvalue p and eigenfunction w. Substituting eq. (19) into the
boundary conditions, we obtain a set of linear algebraic equations
for the constants Ai , Bi , Ci , and Di (i = 1, 2). Making use of the
dimensionless quantities introduced by eq. (27), and after simple
algebra, we can reduce the determinant of the system to |pi j | where

p11 = P + G(K1 − tan K1)/K2 − �(1 − ν)K1 tan K1,

p21 = −P tan K1 − GK1 tan K1/K2 − �(1 − ν)(K1 + tan K1),

p31 = P, p41 = P tan K2,

p12 = tan K1, p13 = ν(K1 − tan K1),

p14 = νK1 tan K1, p22 = 1, p23 = −νK1 tan K1,

p24 = ν(K1 + tan K1), p32 = − tan K2,

p33 = −K2 + tan K2, p34 = K2 tan K2,

p42 = 1, p43 = −K2 tan K2, p44 = −K2 − tan K2.

On expanding this determinant, simplifying it, and equating it to
zero, we find the growth rate of the instability to be

P(K ) = −Np

Dp
,

C© 2002 RAS, GJI, 148, 288–302



January 10, 2002 16:43 Geophysical Journal International GJI1612

302 A. T. Ismail-Zadeh, H. E. Huppert and J. R. Lister

where

Np = G[(K1 − tan K1)A1 + K1 tan K1A2)]

− �(1 − ν)K2[K1 tan K1A1 − (K1 + tan K1)A2],

Dp = K2[A1 + tan K1A2 + A3 − tan K2A4].

We have found that the growth rate P → 0 for K → 0 and P →
F (D1 − D2)H2 − � sin2 K/2 for K → ∞ where K/2 = K1 = K2.

A P P E N D I X C : S O L U T I O N T O T H E
S T A B I L I T Y P R O B L E M : M O D E L s f

In order to determine the growth rate of the perturbations, the de-
terminant of the linear system S should be equated to zero. On
expanding this determinant and after tedious algebra, we find the
stability equation

α0 P2 + α1 P + α2 = 0,

where

α0 = −ν2 K1

(
1 + tan2 K1

)(
1 + K 2

2

(
1 − tanh2 K2

))
,

α1 = ν
{
GK1

(
1 + tan2 K1

)(
K2

(
1 − tanh2 K2

) − tanh K2

)/
K2

− �(1 − ν)K1

(
1 + tan2 K1

)
K 2

2

(
1 − tanh2 K2

)
− tan K1(G1 + �K1 tan K1)K 2

2

(
1 − tanh2 K2

)
− tan K1(G1 tan K1 − �K1)

(
K2

(
1 − tanh2 K2

) + tanh K2

)
+ �K1

(
K 2

2

(
1 − tanh2 K2 + tan K1

(
K2

(
1 − tanh2 K2

)
− tanh K2

)) − G1

(
tan K1 K 2

2

(
1 − tanh2 K2

)
− K2

(
1 − tanh2 K2

) + tanh K2

)}
− ν2

{
G1

(
K1

(
1 + tan2 K1

) − tan K1

)
− �K1 tan2 K1

}(
1 + K 2

2

(
1 − tanh2 K2

))
,

α2 = ν
{
G1

(
K1

(
1 + tan2 K1

) − tan K1

) − �K1 tan2 K1

}
×{

G
(

K2

(
1 − tanh2 K2

) − tanh K2

)/
K2

− �(1 − ν)K 2
2

(
1 − tanh2 K2

)}
+ {G(G1 tan K1 − �K1)/K2 − �(1 − ν) (G1 + �K1 tan K1)}
× tan K1

{
K 2

2

(
1 − tanh2 K2

) − tanh2 K2

}
.

The equation has two roots defined by

P± = − α1

2α0
± D

1
2 , D =

(
α1

2α0

)2

− α2

α0
.

The roots correspond to a pair of perturbation eigenmodes and
depend on the following governing parameters: effective viscos-
ity ratio ν, horizontal strain rate �, two constants G and G1, and
wavenumber K = Ki/Hi . If R1 > R2, one of the roots is positive
for all K in the case when � < �0.

We now derive the asymptotic formulae of the roots of the stability
equation when K → 0 and K → ∞ (for simplicity we assume K1 =
K2 = K/2). First, considering the case when wavenumbers K are
small, we obtain

α1

2α0
= K 2

2ν(4 + K 2)
[ν(G1 − 2�) − G21 + 3G1 − �],

α2

α0
= K 4

2ν2(4 + K 2)2
{(G1 − �) [(1 + ν)G21 + ν(1 − ν)�]

− (1 − ν)�G1}.
Hence both roots P± → 0 when K → 0 for all values ν, G1, G21,
and �. In the case when the wavenumbers K are large, we find
that

α1

2α0
= G1

2
− �

2
sin2 K

2
,

α2

α0
= −�2(1 − ν)

ν2
sin2 K

2
.
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