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The intrusion of a polydisperse suspension of particles over a horizontal, rigid
boundary is investigated theoretically using both an integral (‘box’) model and the
shallow-water equations. The flow is driven by the horizontal pressure gradient
associated with the density difference between the intrusion and the surrounding
fluid, which is progressively diminished as suspended particles sediment from the flow
to the underlying boundary. Each class of particles in a polydisperse suspension has a
different settling velocity. The effects of both a discrete and continuous distribution of
settling velocities on the propagation of the current are analysed and the results are
compared in detail with results obtained by treating the suspension as monodisperse
with an average settling velocity. For both models we demonstrate that in many
regimes it is insufficient to deduce the behaviour of the suspension from this average,
but rather one can characterize the flow using the variance of the settling velocity
distribution as well. The shallow-water equations are studied analytically using a
novel asymptotic technique, which obviates the need for numerical integration of
the governing equations. For a bidisperse suspension we explicitly calculate the flow
speed, runout length and the distribution of the deposit, to reveal how the flow
naturally leads to a vertical and streamwise segregation of particles even from an
initially well-mixed suspension. The asymptotic results are confirmed by comparison
with numerical integration of the shallow-water equations and the predictions of this
study are discussed in the light of recent experimental results and field observations.

1. Introduction
Particle-driven gravity currents occur when a suspension of particles intrudes into a

less dense ambient fluid. In this study we consider the propagation of a relatively dense
intrusion along a horizontal, rigid boundary underlying the ambient fluid. The motion
is predominantly driven by the pressure gradient associated with the density difference
between the suspension and the ambient, which, provided the effects of viscosity are
negligible, is balanced by the inertia of the intruding fluid. Particle-driven gravity
currents have received considerable attention during recent years (see the review of
Huppert 1998). Studies have adopted both experimental and theoretical approaches
to elucidate the physical processes which control these flows (e.g. Bonnecaze, Huppert
& Lister 1993; Hallworth, Hogg & Huppert 1998). There are many examples of
particle-driven flows in natural and industrial settings. These include volcanic ash
flows (Sparks et al. 1997), turbidity currents in the ocean (Simpson 1997) and the
particle-laden plumes arising from water-injection dredging (Hallworth et al. 1998).
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Particle-driven gravity currents are dissimilar from those driven by compositional
difference in fluids because the suspended particles, which contribute to the excess
density, sediment to the underlying boundary as the flow evolves. Thus the density
difference is progressively reduced and the flow eventually ceases, leaving a deposit
of particles on the boundary. In almost all of the analytical work to date it has been
assumed that the suspension of particles possess a single settling velocity. However in
many situations this is a considerable simplification and in virtually all real situations
there is a range of particle sizes, and hence settling velocities. For example, it has been
noted that the presence of a small fraction of fine particles has a marked effect on
the propagation of the particle-driven current at late stages (Harris, Hogg & Huppert
2001). Also, in many geological situations, there will be a large range of different
classes of particles. For instance pyroclastic flows involve particle size ranges from
tens of centimetres to microns. Similarly, turbidities comprise significant fractions of
sand, silt and clay particles, the settling velocity of which differs by many orders
of magnitude. Observations of long-runout turbidite deposits have indicated that a
single event may lead to a segregation of grain sizes, as discussed recently by Wynn
et al. (2002). The proximal regions comprise coarse grains in a wedge-shaped deposit
which are overlain by a layer of finer particles. Conversely the distal deposits are
primarily composed of the finer grained sediment.

A preliminary study of a bidisperse suspension (Dade & Huppert 1995) revealed
that the effect of the smaller particles is to extend and hence thin the current more
rapidly than a monodisperse suspension with the same average settling velocity. This
model is only rigorously applicable, though, when the sizes of the two particle types are
fairly similar. A more complete analysis, which employs the shallow-water equations,
has been used to predict the deposit produced by polydisperse currents (Bonnecaze,
Huppert & Lister 1996). In addition to some numerical solutions they derive a semi-
analytical representation of the distribution of the deposit. This representation arises
from treating the particle-laden current as monodisperse with particles of the average
settling velocity. Such monodisperse flows are well-studied and Bonnecaze et al. (1996)
fit an empirical expression for the shape of the deposit as a function of downstream
distance. Since each type of particle sediments with its own settling velocity, Bonnecaze
et al. (1996) sum appropriately weighed combinations of the distribution of the deposit
to obtain an approximate expression for the overall deposit. What this theory omits
is the possibility that different sedimentation rates may affect the dynamics of the
current. Nevertheless comparison with numerically integrated solutions to the shallow-
water equations for a range of polydisperse currents indicates that this approximation
works fairly well. Part of the aim of this study is to reveal the theoretical basis for
this approach and the range of its validity.

A recent set of laboratory experiments in which dilute suspensions made of two
particle sizes were released into relatively shallow water has been conducted by
Gladstone, Philips & Sparks (1998). They find that the presence of fine particles
significantly extends the flow. Gladstone & Woods (2000) propose that a simple ‘box’
model, which incorporates a modified Froude number condition at the nose, provides
a good model for the propagation over several multiples of the initial length of the
current.

The aim of this paper is to investigate the similarities and differences that are
produced when a gravity current is driven by such a polydisperse distribution of
particles, rather than particles of a single size. We analyse mathematical models of
the flow, using the expansion techniques developed for monodisperse flows (Harris
et al. 2001). From the analysis, we discover that the approach of Bonnecaze et al.
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(1996) is equivalent to the inclusion of only two terms in an appropriate Taylor
series expansion. However, we also find that other statistics of the particle distri-
bution may play an important role in characterizing the runout of some suspensions.
In this paper we first present a ‘box’ model analysis of polydisperse gravity cur-
rents (§ 2). This extends the studies of Dade & Huppert (1995) and Gladstone &
Woods (2000) and reveals when it is appropriate to model a polydisperse suspen-
sion by a monodipserse suspension with an average settling velocity. In § 3, we
consider the shallow-water model of gravity current motion. This permits the res-
olution of the internal characteristics of the flow. By recasting the equations in
terms of new independent variables and by forming Taylor series expansions for
the dependent variables, we are able: to deduce how to characterize the behaviour
of the current as a function of the particle distribution; to derive approximate
expressions for the velocity and height profiles, which obviate the need for numeri-
cal integration of the governing equations; and to elucidate why ‘box’ models work
so well. We confirm the asymptotic analysis by comparison with results from the
numerical integration of the shallow-water equations. We find that the asymptotic
results accurately reproduce the evolution of the flow until only a relatively small
proportion of the initial suspended particles remains in the flow. Finally in § 4,
we discuss the new results in the light of the experiments by Gladstone et al.
(1998) and some recent field observations of Wynn et al. (2002). We also include an
Appendix in which we develop the analysis for a continuous distribution of particle
sizes.

2. Polydisperse box model
We study the gravity current formed by the intrusion of a suspension of polydisperse

particles over a horizontal boundary. We assume that the suspension is sufficiently
dilute for the effects of particle–particle interactions to be insignificant. A concentrated
flow may behave differently. For example, Hallworth & Huppert (1998) found that
particle-laden flows with initial volumetric concentrations of particles in excess of
0.15 exhibit significant differences in their dynamical behaviour from dilute flows. We
assume that the particle Reynolds numbers of the suspended particles are much less
than unity and hence neglect the effects of the inertia of the particles. The timescale
of the response of the particle velocity to changes in the interstitial velocity field is
then much shorter than the timescale on which the velocity field itself changes. We
also assume that each particle is advected horizontally by the buoyancy-driven flow
and sediments vertically with a constant settling velocity.

We consider a polydisperse suspension in which there are n different classes of
particles. (We obtain specific results for the somewhat simpler case of a bidisperse
suspension in § 2.1 and for a continuous distribution of particle sizes in Appendix A.)
We denote the volume fraction and density of the ith class of particles by φi and ρpi,
respectively. The reduced gravity of the suspension is therefore given by

g′ = g

n∑
i=1

αiφi, (2.1)

where αi ≡ (ρpi − ρa)/ρa is the density of the ith class of particles relative to the
density of the ambient fluid. In this section in order to develop ideas and obtain
simple, but powerful, analytical relationships, we adopt a ‘box’ model approach for
modelling gravity current motion and hence propose evolution equations for integral,
or horizontally averaged, properties of the current. (A shallow-water model, which
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resolves the internal structure of the dynamics, is presented in § 3.) We thus consider
the evolution of the length, l(t), and height, h(t), of the intrusion as well as the volume
fraction of each class of suspended particles, φi(t). The equations which govern the
motion are analogous to those for a monodisperse current (see Harris et al. 2001). On
the assumption that there is no entrainment of ambient fluid into the gravity current,
we may write

hl = A, (2.2)

where A is the volume of the current per unit width. The speed of the front of
the current is given by the Froude number condition (Benjamin 1968). In this study
we assume that the dense, particle-laden fluid is intruding through a much deeper
ambient fluid. Thus we may neglect the motion of the overlying ambient and the
Froude number takes a constant value. Huppert & Simpson (1980) suggest that the
Froude number is equal to 1.2, although the structure of the analysis which follows
does not depend crucially upon this value. Hence we write

dl

dt
= Fr(g′h)1/2, (2.3)

where Fr denotes the Froude number. Finally we specify evolution equations for
the volume fractions of each class of particles. Following studies of sedimentation
from turbulent suspensions (Martin & Nokes 1998) and the models of monodisperse
particle-driven currents (Bonnecaze et al. 1993), we assume that the particles remain
well-mixed throughout the depth of the current and that they settle to the underlying
boundary at a known settling velocity, vsi, for each particulate class. In this model
we neglect the re-entrainment of deposited particles into the current. (Erosive flows
have been recently studied by Eames et al. 2001.) Hence the evolution of each volume
fraction is given by

dφi
dt

= −vsiφi
h
. (2.4)

To this system of equations we add the initial conditions that the current starts with
vanishing initial length, and a specified volume fraction for each class of particles.
Thus

l = 0 and φi = φi(0) at t = 0. (2.5)

Note that these initial conditions, together with (2.2), causes the initial height to
become infinite. However, it has been shown in previous studies (e.g. Hogg, Ungarish
& Huppert 2000) that provided the final runout of these currents far exceeds the
initial length, then it is an acceptable approximation to enforce l = 0 as an initial
condition. (It is also possible to employ a non-zero initial condition for the current
but the clarity of the analysis which follows is significantly reduced.)

In order to highlight the essential aspects of the analysis, we render (2.2)–(2.4)
dimensionless by scaling lengths with respect to A1/2 and times with respect to
(A1/2/g′0)1/2, where g′0 is the initial volume fraction. Furthermore we introduce a
scaled volume fraction given by

ψi =
αiφi

n∑
j=1

αjφj(0)

. (2.6)

Eliminating h(t) from (2.2)–(2.4) and assuming l(t) now denotes the dimensionless
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length, we find that the governing equations are given by

l1/2
dl

dt
= Fr

(
n∑
i=1

ψi

)1/2

, (2.7)

dψi
dt

= −βiψil, (2.8)

where the dimensionless settling velocities are given by βi = vsi/[A
1/2g′0]1/2. These

equations contain the most important feature of polydisperse flows: the current is
driven by the sum of the contributions to the buoyancy force from each of the different
particle types (2.7), while the volume fraction of each different particle type decays
according to the individual dimensionless settling speed of that class of particles (2.8).

To analyse this system of equations, we first define an average settling velocity. The
reason for introducing an average settling velocity is to investigate whether the runout
of the polydisperse systems may be approximated by an ‘equivalent’ monodisperse
current. (Such an approach has been employed by Bonnecaze et al. 1996.) We shall
see later that the range of validity of this approximation is governed by the magnitude
of the initial variance of the particle distribution. At onset, the loss of suspended
sediment per unit length δψi in a dimensionless time δt is given by

δψi = −βiψi(0)δt, (2.9)

and the total loss of sediment per unit length by

n∑
i=1

δψi = −δt
n∑
i=1

βiψi(0). (2.10)

This shows that the early behaviour of a polydisperse current will be the same as a
monodisperse current with an average settling velocity β̄, where β̄ is defined by

β̄ =

n∑
i=1

βiψi(0). (2.11)

Hence in dimensional terms, we define an average settling velocity, v̄s, which is given
by

v̄s =

n∑
i=1

vsiαiφi(0)

n∑
i=1

αiφi(0)

. (2.12)

Note that this quantity is somewhat different from the average sedimentation speed
of the suspension, although the two are identical if the densities of all the classes of
particulate are identical. It is nevertheless convenient to define β̄ by (2.11) because
the natural timescale for the evolution of the current is based upon the initial reduced
gravity of the suspension.

To proceed, we rescale these polydisperse equations using the box-model scalings
for a monodisperse current presented by Harris et al. (2001) with β̄ in place of
the single dimensionless settling velocity in the monodisperse study. These scalings
render the runout length of the monodisperse current to be unity. In this way we are
able to investigate whether polydisperse currents may be accurately represented by
monodisperse currents with an appropriate average settling velocity. We re-scale the
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dimensionless length and times in the evolution equations (2.7) and (2.8) by

l ∼
(

5Fr

β̄

)2/5

and t ∼ 2

β̄

(
5Fr

β̄

)−2/5

. (2.13)

Writing S(t) = [l(t)]5/2, we obtain the evolution equation for the length of the current,

dS

dt
= S2/5γ(S), (2.14)

where

γ(S) =

(
n∑
i=1

ψi(S)

)1/2

. (2.15)

In this expression we have treated the volume fractions as functions of S(t). Each of
the individual volume fractions is given from (2.8) by the solution of

dψi
dS

= −2ψiVi/γ(S), (2.16)

where Vi = βi/β̄.
To obtain a first insight into how a polydisperse suspension affects the length of

the current it is instructive to determine the form of γ(S) for small values of S . We
expand both γ(S) and ψi(S) as Taylor series in S , noting that for a monodisperse
current we obtain the exact results ψ = (1 − S)2 and γ(S) = 1 − S . For polydisperse
currents, we obtain

γ(S) = 1− S + σ2S2 + O(S3), (2.17)

where σ2 is the initial variance of the distribution of settling velocities relative to the
square of the mean settling velocity,

σ2 =

n∑
i=1

(Vi − 1)2ψi(0). (2.18)

The maximum length attained by the current, termed the runout length, is determined
by the solution to γ(S) = 0 and below we demonstrate how this may be calculated
as a function of statistics of the initial distribution of particles. From (2.17), we also
note that for sufficiently small values of S , γ(S) = 1 − S + O(S2) and so the current
behaves like a monodisperse current with an effective settling velocity β̄. Thus, during
the early phases of the flow it is adequate to approximate the polydisperse current by
a monodisperse current with the average settling velocity of the particles. However as
the length of the current increases, this approximation becomes invalid. The effects
of a distribution of particle sizes will be first observed when σ2S2 = O(1). Since we
have rescaled the length of the current so that runout is such that S = O(1), we may
conclude that a polydisperse current behaves like a monodisperse current of average
settling velocity when

σ2 � 1. (2.19)

This is an important result for discriminating between different flows. Currents created
in the laboratory will always contain particles of different settling velocities due to
slight differences in shape and size. By calculating the variance of the distribution
of settling velocities we can check whether the current may be effectively modelled
as monodisperse. For polydisperse suspensions with a much larger variance, we are
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interested in what effects are produced by other statistics of the particle distribution
as explained below.

To commence, we note that the unknown function γ(S) may be eliminated from
(2.16) by dividing the equation for one volume fraction by another. Thus each of
the individual volume fractions may be expressed in terms of just one new unknown
function. The result, which can be verified by direct substitution, is

ψi(S) = ψi(0)a(S)Vi , (2.20)

where the unknown function a(S) satisfies the same equation as derived for the
monodisperse box model,

da

dS
= −2a(S)/γ(S), (2.21)

with

γ(S) =

(
n∑
i=1

ψ(0)a(S)Vi

)1/2

. (2.22)

Thus for a bidisperse suspension, if the ratio of the settling velocities is R, then the
volume fraction of the heavier particles decays R times faster than that of the lighter
particles. This result was noted by Dade & Huppert (1995), although their subsequent
analysis is somewhat different. In § 3, we shall see that a similar and more powerful
result also holds true for the shallow-water equations.

We note that the maximum extent of the current, S
2/5
m , is given when a = 0. Hence

Sm =
1

2

∫ 1

0

(
n∑
i=1

ψi(0)aVi

)1/2

a
da. (2.23)

By substituting a = exp(−2y), this may be written

Sm =

∫ ∞
0

(
n∑
i=1

ψi(0) exp (−2Viy)

)1/2

dy. (2.24)

Recall that
∑n

i=1 ψi(0) = 1 and
∑n

i=1 ψi(0)Vi = 1, so that the integral may be expanded
in terms of moments of the initial distribution of particles. We find that

Sm = 1 + 2M2 − 4M3 + 4(2M4 − 3M2
2 ) + · · · , (2.25)

where Mn =
∑n

i=1 ψi(0)(Vi − 1)n.
It is also a straightforward task to integrate (2.21) numerically for any given initial

distribution of particles to determine the function a(S) and thereby all the volume
fractions as functions of the distance propagated. A further numerical integration of
(2.14) can then be performed if the evolution of the current length as a function of
time is required.

Alternatively, we may use an iterative scheme, as described in Harris et al. (2001),
to generate approximations for the length and volume fractions as functions of time.
As we do not have analytic expressions for the volume fractions, for each iterate we
have to solve (2.16) first and then use this approximation in (2.15). The method for
deriving the results is identical to the monodisperse box model (Harris et al. 2001).
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Writing τ = (3t/5)5/3 and denoting the iterates for S and ψi by Sn and ψin, we find

d

dτ

(
5
3
S

3/5
n

)
= τ−2/5γ(Sn−1, ψn−1), (2.26)

d

dτ
(log ψin) = −2ViS

2/5
n−1. (2.27)

Starting from S0 = 0 and ψ0 = 1, we obtain the first iterates

S1(t) = τ and ψi1(t) = ψi(0) exp(−2Viτ). (2.28)

The result for ψi1 expresses the fact that for small times each different particle type
sediments independently, as if it were from a homogeneous current. This follows
because at early times the decrease in the driving buoyancy force caused by sedimen-
tation has not yet influenced the development of the current. Calculating the second
iterate, we obtain

S2(t) =

[
3

5

∫ τ

0

τ′−2/5

( n∑
i=1

ψi(0) exp(−2Viτ
′)
)1/2

dτ′
]5/3

. (2.29)

Since each settling velocity produces a different rate of exponential decay, it is
not possible to represent this approximation in terms of gamma functions, as was
possible for the monodisperse currents (cf. Harris et al. 2001). We may obtain a
good approximation to the third iterate by making a Taylor series expansion of the
decaying exponential term as employed in Harris et al. (2001). This enables us to
write down the following approximation of the current length l̃(t):

l̃(t) =

[
3

5

∫ τ

0

τ′−2/5

( n∑
i=1

ψi(0)(1 + Viτ
′2/4) exp(−2Viτ

′)
)1/2

dτ′
]2/3

. (2.30)

This expression is more complicated than the simple expressions derived in terms of
gamma functions for monodisperse currents. However, it can be integrated numerically
for any initial distribution of particles.

The deposit arising from the passage of these particle-driven flows may be simply
calculated as follows. In terms of dimensional variables, the distribution of the mass
per unit area is given

η(x) =

∫ ∞
t∗

n∑
i=1

ρpivsiφi(t) dt, (2.31)

where t∗ is defined by l(t∗) = x and corresponds to the time at which the current first
reaches a downstream location x. In the expression above, observe that the deposit
depends on the sum of the deposition from each of the classes of particles. On
the assumption that the densities of each class of particles are identical, we render
the deposit, η, dimensionless with respect to ρpA

1/2 and further re-scale by a factor

(2/β̄)(5Fr/β̄)−2/5 (cf. (2.13)). Next we change the variable of integration to S and
denote the re-scaled dimensionless distance and deposit by X and Υ , respectively to
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obtain the distribution of the deposit,

Υ (X) =

∫ Sm

S∗

n∑
i=1

Viψi

S2/5

[
n∑
i=1

ψi

]1/2
dS, (2.32)

where S∗ = X5/2 and Sm corresponds to the runout length of the gravity current, given
by γ(Sm) = 0. Note that the assumption of identical particle densities serves only to
simplify the analysis and need not be invoked.

2.1. Bidisperse currents

So far the analysis has been for a general polydisperse gravity current in which there
are n different class of particles. We now examine the box-model solutions when there
are just two classes of particles with different settling velocities. We have already
noted that the crucial difference between poly- and monodisperse currents is that the
rate of sedimentation is different for each of the classes of particles. The more slowly
sedimenting particles mean that the excess density of the current is maintained over a
longer distance and hence the current propagates further than predicted if it had been
treated as monodisperse with the average settling velocity of suspension. We have
also noted that this effect is more pronounced if the variance of the initial distribution
of settling velocities is large compared to the square of the mean settling velocity. For
bidisperse currents it is possible to make further analytical progress, which we pursue
in this section. (We compare some of the deductions from this analysis with some of
the deductions arising from the experimental study of Gladstone et al. 1998 in § 4.)

We assume that the re-scaled volume fractions of particles are given by

ψ1 = f and ψ2 = 1− f, (2.33)

where 0 6 f 6 1. Furthermore the ratio of the dimensionless settling velocities is
given by β2/β1 = λ, and λ < 1 on the assumption that the first class of particles
has a greater settling velocity than the second. (Assuming the particles are of the
same density, we shall refer to the first class as the coarse particles and the second as
the fine particles.) The variance of the settling velocities in the suspension is initially
given by

σ2 =
f(1− f)(1− λ)2

[ f + λ(1− f)]2
. (2.34)

We note that the variance vanishes, as it must, if the particles have identical settling
velocities λ = 1, of if we have entirely one class or other (f = 0 or f = 1). Furthermore
the variance is maximized when f = λ/(1 + λ).

The runout length of the gravity current, S
2/5
m , is given by the solution to γ(Sm) = 0.

Hence from (2.21) we obtain

Sm =
1

2

∫ 1

0

(
faV1 + (1− f)aV2

)1/2
a−1 da. (2.35)

This integral may be re-written as

Sm =
f + (1− f)λ

λ
2F1

(
− 1

2
, 1; 1 +

λ

2(1− λ) ; f

)
, (2.36)

where 2F1 denotes a hypergeometric function (Abramowitz & Stegun 1964).
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Figure 1. The dimensionless, rescaled length l/[5FrA(g′0A)1/2/β̄]2/5 of a particle-driven gravity
current containing a bidisperse distribution of particles with a 7 : 1 ratio of settling velocities as
a function of the proportion of coarse particles (f). The thick line shows the final runout length
attained by the current. The thin lines show the length at dimensionless times t = 0.5, 1, 2, 3, 4, 6, 8, 10.
Note that if plotted in terms of dimensional variables then the maximal length of the current would
decrease monotonically with increasing initial coarse fraction.

We illustrate these results by considering a bidisperse suspension in which the
settling velocities have a 7 : 1 ratio. We plot in figure 1 the runout length lm ≡ [Sm]2/5

as a function of the proportion of coarse particles. It is important to recall that this
runout length has been non-dimensionalized with respect to that which is predicted
using the average settling velocity. Hence when there is solely coarse, or fine, particles
(f = 0, or f = 1), we find that lm = 1. Whenever there is a mixture of particles lm > 1.
This reflects our earlier conclusion that any degree of polydispersion increases the
runout of the gravity currents.

Figure 1 also shows how these currents evolve towards the final runout distance
as we plot the length at a few given times as a function of the proportion of coarse
particles. Note that at early times there is no difference in the distance propagated by
the bidisperse gravity currents with any proportion of coarse particles. This reflects
the observation that the early behaviour of the current is well-represented by a
monodisperse current with the average settling velocity. However as time progresses
we begin to notice differences. For this case (λ = 1/7), the greatest propagation occurs
when f = 0.65

In figure 2 we plot the length of the current as a function of time for a few chosen
values of the proportion of coarse particles. Once again we observe how the early
time behaviour is independent of the precise proportion of fine particles, but as time
progresses the curves begin diverge. We also plot the approximate solution (2.30) for
the evolution of the current length and note that the approximate solution works
reasonably well.

For bidisperse gravity currents the dimensionless distribution (2.32) of the deposit
is given by

Υ (X) =

∫ Sm

S∗

[
V1fa

V1 + V2(1− f)aV2
]

S2/5 [ faV1 + (1− f)aV2 ]1/2
dS, (2.37)
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Figure 2. The non-dimensional length of particle-driven gravity current (l) containing a bidisperse
distribution of particles with a 7 : 1 ratio of settling velocities as a function of dimensionless time
t. Curves are shown for a range of initial proportions of coarse particles. Also plotted are the
approximate solutions derived from (2.30) for the length as a function of time l̃(t) ( ).

where a(S) satisfies (2.21). We integrate this expression for λ ≡ V2/V1 = 1/7 and a
range of values of f and present the results in figure 3. In these plots we show the
contributions to the depth of deposit from both the fine and coarse particles. Note
that both contributions thin with distance from the point of release, with the deposit
near the source being relatively rich in the coarse particles compared to that in the
distal regions. It is noteworthy, though, that the spatial scale is different for each
of these flows because distances are scaled by β̄−2/5. To enable comparison between
the cases we scale the dimensionless distance l with respect to (5Fr/β1)

2/5, rather
than (5Fr/β̄)2/5. With this scaling the spatial scale remains invariant for each of the
calculations of the depth of the deposit (figure 4). Thus we note that increasing the
proportion of fine particles leads to the coarse particles being deposited over a greater
downstream distance.

Finally we calculate the proportion of coarse sediment within the deposit. This
provides an indication of the lateral segregation of different sediment types within
the deposit from an initially well-mixed suspension. The dimensionless flux of coarse
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Figure 3. The distribution of the deposit arising from sedimentation from a bidisperse particle-driven
gravity current. The total depth of the deposit is plotted ( ), which comprises contributions
from both the fine ( ) and coarse fractions ( ) of particles. The deposit is shown for
initial coarse fractions of (a) 90%, (b) 50%, (c) 10%.

sediment to the underlying deposit is given by V1ψ1 and hence the proportion of
coarse sediment is given by

P(t) =
V1ψ1

V1ψ1 + V2ψ2

. (2.38)

Thus P is a decreasing function of time, with initial value

P(0) =
f

f + (1− f)λ
. (2.39)
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Figure 4. The distribution of the deposit arising from sedimentation from a bidisperse particle-driven
gravity current. The figures show (a) total depth of the deposit; (b) the depth of fine particles; and
(c) the depth of coarse particles. The dimensionless distance has been rescaled so that it is identical
for each of the initial proportions of coarse particles.
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Figure 5. The distribution of the deposit and the proportions of coarse and fine particles within
it arising from sedimentation from a bidisperse particle-driven gravity current. In this calculation,
V2/V1 = 1/7 and the suspension initially contains equal proportions of fine and coarse particles
(f = 0.5). The contours are shown for 80%, 60%, 40%, 20%, 10% and 5% of coarse particles
within the deposited material. Also shown is the total depth of the deposit, Υ (X), as a function of
downstream distance ( ).

We may also formulate an expression for the way in which the deposit grows in time.
Denoting the dimensionless depth of deposit at a downstream distance X and at time
t, by D(X, t), we find that

D(X, t) =

∫ S(t)

S∗

[
V1fa

V1 + V2(1− f)aV2
]

S2/5 [ faV1 + (1− f)aV2 ]1/2
dS for S(t) > S∗, (2.40)

where S∗ = X5/2. Since we now have the depth of the deposit as a function of
time and the proportion of coarse particles in the depositing flux of sediment, we
may track how the proportion of coarse particles evolves with time and distance
within the flow. In figure 5 we illustrate the results for a current with equal initial
fractions of coarse and fine particles (f = 0.5), but with λ = 1/7. We note how the
coarse particles preferentially settle out close to the start of the current, whereas the
fine particles are advected further downstream. The nature of the deposit therefore
changes in both the streamwise direction and in the vertical. The coarse particles tend
to settle out first and so are overlain by a deposit which becomes progressively finer.
However the deposit also fines downstream since the coarse particles predominantly
sediment within a region close to the source. We may calculate the composition of the
deposit as a function of the relative depth within the deposit at locations downstream
of the source. For example, we plot the composition at four downstream distances
(X = 0.1, 0.4, 0.7 and 1.0) in figure 6 and note how the profiles evolve from a banded
deposit with a layer of predominantly coarse particles overlain by a layer of fine
particles close to the source (X = 0.1), to a deposit which is almost entirely composed
of fine particles at large distances from the source (X = 1.0). We note that at present
profiles such as these are not measured in laboratory experiments, though this would
be an interesting investigation.
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Figure 6. The composition of the deposit as a function of relative depth within the deposit at
X = 0.1, 0.4, 0.7 and 1.0.

3. Polydisperse shallow-water model
While box models provide the evolution of bulk characteristics of gravity current

motion, they do not resolve the internal structure of the flows. To do this we
employ a system of shallow-water equations in which the dependent variables, the
horizontal velocity, height of the current and volume fraction of particles, are functions
of the horizontal spatial coordinate and time. This model does not resolve the
vertical distribution of the velocity field and volume fraction of particles, but for
monodisperse currents such a class of models has been used to accurately model
the evolution of the flow. We demonstrate that many of the simple results obtained
for this more complete model are similar to those obtained for the box model. The
formulation of the shallow-water model is the same as that employed by, for example,
Bonnecaze et al. (1993) and Harris et al. (2001). The length of the flow is assumed
to be much greater than the depth so that vertical accelerations are negligible and
the pressure adopts a hydrostatic distribution in the vertical. Then depth-averaged
equations are formulated for the horizontal velocity field and the height of the
current. In addition, the volume fraction of each class of particles is modelled on
the assumptions that within the current it is vertically uniform, that the particles
settle to the underlying horizontal boundary with a constant settling velocity, which
is different for each particulate class and that no particles are re-entrained having
been deposited on the underlying boundary. Thus the turbulence within the flow
is sufficient to mix the relatively heavy particles vertically, but insufficient to erode
those already deposited. This regime may be specified as follows for particles with
settling velocity vs and diameter d, moving through fluid of kinematic viscosity ν in
which the magnitude of the turbulent velocities is u∗. For the particles to be vertically
well-mixed, vs/u∗ � 1 and for there to be no re-entrainment of deposited particles,
vs/u∗ > (u∗d/ν)2. The latter condition arises from formulating the critical Shields
parameter for the threshold of motion (Fredsoe & Deigaard 1992) and by using
the Stokes settling velocity for the particle. In the laboratory experiments described
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below (§ 4), particles of size 10−5 m were suspended in water and their settling velocity
was of order 10−3 m s−1. We estimate the turbulent velocity fluctuations to be of
order 10−2 m s−1 and thus vs/u∗ = 0.1, while (u∗d/ν)2 = 10−2. Hence the regime of
a vertically uniform concentration field, together with no re-entrained particles, is
adequately realized in laboratory experiments.

A thorough discussion of the validity of the assumptions underlying this model is
given by Harris et al. (2001). They identify the timescales over which viscous forces
begin to influence the flow and the timescales over which significant horizontal shear
develops in the velocity field.

As in § 2, we non-dimensionalize lengths with respect to A1/2 and times with
respect to (A1/2/g′0)1/2, where g′0 is the initial reduced gravity of the suspension.
We also scale the volume fractions according to (2.6). We henceforth denote the
dimensionless velocity, height and volume fraction fields by u(x, t), h(x, t) and ψi(x, t),
respectively. Furthermore the dimensionless length of the current is denoted xN(t)
and the dimensionless settling velocities by βi. Thus the equations for conservation of
mass and momentum are

∂h

∂t
+

∂

∂x
(uh) = 0, (3.1)

∂

∂t
(uh) +

∂

∂x
(u2h+ 1

2
Ψh2) = 0, (3.2)

where Ψ (x, t) is defined as the sum of all the separate components of the volume
fraction,

Ψ (x, t) =

n∑
i=1

ψi(x, t). (3.3)

There is a separate equation describing the evolution of each of the ψi(x, t) representing
the conservation of particles of type i. In dimensionless form, these are

∂ψi

∂t
+ u

∂ψi

∂x
= −βiψi

h
. (3.4)

The boundary conditions for this flow are similar to those employed by Bonnecaze et
al. (1996): no velocity at the origin, u(0, t) = 0; and the Froude number condition for
the speed at the nose of the current, which is modified to include the effect of all the
particles,

u(xN, t) = Fr[h(xN, t)Ψ (xN, t)]
1/2. (3.5)

In addition there is an expression for global conservation of volume,∫ xN (t)

0

h dx = 1, (3.6)

and a condition for kinematic consistency at the front of the flow, given by

dxN
dt

= u(xN(t), t). (3.7)

To those equations and boundary conditions, we must add initial conditions for the
profile and velocity of the current, but provided the runout distance of the flow far
exceeds its initial length, these do not significantly influence the following results after
an initial (short) adjustment time (see Hogg et al. 2000).

To analyse this system of equations and boundary conditions, we first rescale
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length- and timescales by

l ∼
(

5Fr

β̄

)2/5
1

b1/5
and t ∼ 2

β̄

(
5Fr

β̄

)−2/5

b1/5, (3.8)

where β̄ is the average settling velocity given by (2.11) and b = 1− Fr2/6. Note that
except for the factor b, these scalings are identical to those of the box model (2.13).
We now introduce different independent variables, to replace x and t. These are given
by

ξ = x/xN(t) and s = [xN(t)]5/2. (3.9)

The dependent variables are now treated as functions of ξ and s and written as

h(x, t) = H(ξ, s)/xN(t), u(x, t) =
dxN(t)

dt
U(ξ, s) and ψi(x, t) = ϕi(ξ, s). (3.10)

The resulting equations and boundary conditions are then rewritten in terms of these
new variables. Importantly we obtain the following evolution equation for s(t):

ds

dt
= s2/5F(s), (3.11)

where the new function F(s) is defined by the boundary condition applied at ξ = 1,

F(s) = [bH(1, s)Ψ (1, s)]1/2 . (3.12)

Note that F(0) is non-vanishing and it may be expanded as a Taylor series (see
§ 3.1). One of our aims is to investigate how F(s) differs from that derived for a
monodisperse suspension Harris et al. (2001). We observe that the function F(s)
within the shallow-water framework is analogous to the function γ(S) within the
box-model analysis. Comparison between these functions will permit an evaluation
of the differences between the two models. Also, on the basis of what we have found
using the box model, we expect the dynamics of polydisperse currents to be similar
at first to those of a particle-laden current with the average settling velocity, β̄, but
at later times we must account for higher moments in the distribution of the settling
velocities. Indeed it was found that the variance of the distribution came into γ(S) at
O(S2).

In terms of the new variables, the governing equations for conservation of mass
and momentum are given by

2
∂

∂ξ
[(U − ξ)H] + 5s

∂H

∂s
= 0, (3.13)

F2

[
2(U − ξ)

∂U

∂ξ
+ 5s

∂U

∂s

]
−
(
F2 − 5s

dF

ds

)
U +

a

H

∂

∂ξ

(
ΨH2

)
= 0, (3.14)

where a = b/Fr2. Particle conservation is now expressed by

2(U − ξ)
∂ϕi

∂ξ
+ 5s

∂ϕi

∂s
+

10Vi ϕi s

HF
= 0, (3.15)

where Vi is, as before, the ratio of βi to β̄. On the assumption that each class of particles
has an identical initial distribution, this set of equations again admits solutions for
the volume fractions as powers of a new function Ω(ξ, s). If the suspension is initially
well-mixed, so that it is spatially homogeneous, each of the volume fractions can be
written as

ϕi(ξ, s) = ϕi(0)Ω(ξ, s)Vi , (3.16)
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where ϕi(0) denotes the initial uniform volume fraction of the ith class of particles
and Ω(ξ, s) satisfies

2(U − ξ)
∂Ω

∂ξ
+ 5s

∂Ω

∂s
+

10Ωs

HF
= 0. (3.17)

Note that this evolution equation is identical to the equation for volume fraction
derived for monodisperse currents (Harris et al. 2001).

3.1. Power series analysis

Following the approach of Harris et al. (2001), we investigate this new system of
governing equations by expanding all of the variables as power series in s. Note that
the structure of the governing equations (3.13), (3.14) and (3.17) is such that these
power series may only proceed in integer powers of s. Thus we write

H(ξ, s) = H0(ξ) + sH1(ξ) + s2H2(ξ) + · · · , (3.18)

U(ξ, s) = U0(ξ) + sU1(ξ) + s2U2(ξ) + · · · , (3.19)

Ω(ξ, s) = 1 + sΩ1(ξ) + s2Ω2(ξ) + · · · , (3.20)

F(s) = F0 + sF1 + s2F2 + · · · . (3.21)

The series expansions are then substituted into the governing equations and terms are
equated in orders of s (Harris et al. 2001).

At O(1), we recover the similarity solutions for a current of constant density
propagating through a less dense ambient (see Hoult 1972; Bonnecaze et al. 1993;
Hogg et al. 2000). At this order we neglect particle sedimentation (Ω0 = 1) and the
velocity and height fields are given by

U0(ξ) = ξ, (3.22)

H0(ξ) = (ξ2 − 1)/4a+ 1/b, (3.23)

while from the series expansion of the evolution equation (3.12), we deduce F0 = 1.
At O(s), we begin to observe the effects of sedimentation in the solutions for the

volume fraction, velocity and height of the current. First we find that

Ω1 = −2/H0. (3.24)

Hence from (3.16), by forming an expansion for ϕi, we find that

ϕi1 = −2Viϕi0(0)/H0. (3.25)

Thus the volume fraction of each class of particles is reduced by an amount pro-
portional to the settling velocity, relative to the average settling velocity, and to its
initial value, and inversely proportional to the leading-order height of the current.
This implies that the first-order correction to the total volume fraction is given by

Ψ1 =

n∑
i=1

ϕi1 = −2/H0. (3.26)

This result means that the first-order corrections to the height and velocity fields have
exactly the same form as for a monodisperse current (Harris et al. 2001). Truncating
the series at this order has reproduced mathematically the semi-analytical model
of Bonnecaze et al. (1996). The evolution of the current is exactly the same as a
monodisperse current with an appropriate average settling velocity, β̄, whilst the
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individual components of the volume fraction decay with their own settling velocities.
The first-order velocity field satisfies

(4aH0U1)
′′ − 30U1 = 15F1ξ − 10aH ′0

H0

, (3.27)

subject to U1(0) = U1(1) = 0, where a prime denotes differentiation with respect to ξ.
Thus the solution is given by

U1(ξ) = a2iQ
′
5(ζ) +

aH ′0
3H0

− 5
8
F1ξ, (3.28)

where ζ = iξ(4a−1/3)−1/2, Q5 is the fifth-order Legendre function of the second kind,
and a2 and F1 are constants which are determined by the boundary conditions and
depend upon the magnitude of the Froude number, Fr. (For Fr = 1.19, a2 = −0.011
and F1 = −0.578.) The first-order height field is related to this velocity field by

H1 = −2 (U1H0)
′/5. (3.29)

These functions are plotted in figure 7 along with the O(1) similarity solutions.
Harris et al. (2001) find that truncating at first order only produces good results

for relatively small values of s. Fortunately we are in a position to calculate the
O(s2) terms to improve upon this and to identify the effects of polydispersion. The
second-order correction to the volume fraction is given by

Ω2 = (10 + 5F1H0 + 5H1 − 2U1H
′
0)/5H

2
0 . (3.30)

As observed above, the evolution equation for Ω is identical to that for the volume
fraction in a monodisperse gravity current. Hence this second-order correction is also
identical to that for a monodisperse current (see Harris et al. 2001). Substitution of
(3.30) into (3.16) yields

ϕi2 = Viϕi(0)(10Vi + 5F1H0 + 5H1 − 2U1H
′
0)/5H

2
0 . (3.31)

The only changes in this expression from (3.30) are the pre-multiplicative factor and
the inclusion of an extra factor Vi inside the brackets. This means that the volume
fractions of particles with a settling velocity less than the average will decay more
quickly than before, whilst the converse is true for particles with settling speeds
greater than the average. The second-order correction to the total volume fraction
now depends upon the variance of the particle distribution,

Ψ2 =

n∑
i=1

ϕi2 = (10 + 10σ2 + 5f1H0 + 5H1 − 2U1H
′
0)/5H

2
0 . (3.32)

(We note that σ2 = 0 recovers the monodisperse result.) This extra term is always
positive and hence the rate at which the total volume fraction of suspended particles
declines is reduced. Hence the current always propagates further, independent of the
precise details of the particle distribution. This result is entirely analogous to that
obtained from the box model.

Since the modification to Ψ2 due to polydispersion is proportional to σ2, we deduce
that the modifications to all the other second-order quantities due to polydispersion
can be written as multiples of σ2. Hence we may partition the second-order functions
into parts associated with an equivalent monodisperse current (σ2 = 0) and parts
which arise when the variance is non-zero (σ2 > 0). The monodisperse functions,
denoted by H2|σ=0 and U2|σ=0, were calculated by Harris et al. (2001) and are plotted
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Figure 7. The similarity solutions H0(ξ), U0(ξ) and Ω0, together with the first-order perturbation
functions, H1(ξ), U1(ξ) and Ω1(ξ). Also plotted is the second-order function Ω2(ξ).

in figure 8. Furthermore F2|σ=0 = 0.114 for Fr = 1.19. In order to analyse the
contributions associated solely with polydispersivity parts, we define the parameter

F = (F2 − F2|σ=0)/σ
2, (3.33)

and the functions

U = (U2|σ 6=0 −U2|σ=0)/σ
2, (3.34)

H = (H2|σ 6=0 −H2|σ=0)/σ
2. (3.35)

On substitution of these functions into the governing equations, we obtain the fol-
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Figure 8. The second-order perturbation functions, H2(ξ) and U2(ξ), decomposed into
contributions H2(ξ)|σ=0 ( ) and H(ξ) ( ), and U2(ξ)|σ=0 ( ) and U(ξ) ( ).

lowing differential equations for U and H:

(UH0)
′ + 5H = 0, (3.36)

11U+ 8Fξ + 2aH′ = 0. (3.37)

Hence these may be combined to yield a single, second-order differential equation for
U, given by

(4aH0U)′′ − 110U = 80Fξ. (3.38)

The boundary conditions on U are no flow at the origin, the global conservation of
fluid volume, and the evolution condition at the front of the current. These may be
expressed, respectively, as

U(0) = U(1) = 0 and U′(1) = −10F+ 5b2. (3.39)

The solution may be written in terms of Legendre functions as

U(ξ) =AP ′10(ζ) +BQ′10(ζ)− 10Fξ/13, (3.40)

where A and B are constants and P10 and Q10 are Legendre function of order 10
of the first and second kind, respectively. The boundary conditions are sufficient to
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determine A, B and F. For Fr = 1.19 we have

A = −1.09× 10−4, B = 0 and F = 0.214. (3.41)

The profiles forH(ξ) and U(ξ) are shown in figure 8. The surprising fact is that they
are very similar in shape to the functions H2(ξ)|σ=0 and U2(ξ)|σ=0 but with the opposite
sign. At first sight this may appear counterintuitive since the current propagation is
more rapid (F > 0) for the polydisperse current than the monodisperse current, and
yet the above corrections to the height reduce its value at the nose and reduce the
velocity along the length of the current U < 0. To explain the results and unravel this
apparent contradiction we observe that the leading-order solutions are the similarity
solutions for the intrusion of a gravity current with a constant density and that for
these solutions there is an exact balance between the hydrostatic pressure gradient and
the inertia of the fluid. Once sedimentation is accounted for this balance is destroyed.
Sedimentation occurs most rapidly within the tail of the current where the height is
least. Thus the pressure is reduced and the fluid is driven from the tail towards the
front of the current. Hence we observe that close to the tail H1 < 0 but close to the
nose H1 > 0. The velocity field, U1 monotonically increases close to the tail, before
returning to zero at the front.

The second-order functions for a monodisperse current may be explained as follows.
The volume fraction is positive along the entire length of the current, because the
first-order correction has over compensated for the effects of sedimentation. Although
the first- and second-order functions have a similar profile, they are rather different in
magnitude. They have an essentially similar profile because they reflect the pattern of
non-uniform sedimentation along the length of the current. (In terms of the variables
presented in this study it is the balance between 5s∂Ω/∂s and 10Ωs/HF .)

For polydisperse currents, we have found that when the flows reach a given length,
a smaller proportion of particles will have settled out relative to a monodisperse
current with the average settling velocity. This is because the reduced sedimentation
velocity of the finest fraction of particles implies that the buoyancy difference between
the current and ambient is maintained for longer and hence the currents flows more
rapidly. In mathematical terms, we observe that the contribution to Ψ2 which is
proportional to σ2 is positive. Hence at a given s, the overall volume fraction is
higher. We also observe that the speed of the front is greater for a polydisperse
current (F > 0). Thus the currents flow faster and further than their monodisperse
counterparts. The internal structure of the height and velocity fields associated with
a polydisperse current is also somewhat different. Since the sedimentation along the
current is reduced, so is the reduction in the hydrostatic pressure gradients. Thus fluid
is not accelerated as rapidly from the tail of the current towards the head and fluid
does not accumulate at the head to the same extent as the equivalent monodisperse
currents. Hence we expect and observe that U < 0 along the entire current and that
H < 0 near the front and H > 0 in the tail.

The equation for the propagation of the current correct to O(s3) can now be written
as

ṡ = s2/5
[
1− 0.578s+ 0.114s2 + 0.214σ2s2 + O(s3)

]
for Fr = 1.19. (3.42)

This is the shallow-water equivalent of (2.14) and (2.17). As noted above, we conclude
that all polydisperse currents travel further than monodisperse currents with the
average settling velocity. The effect will be more pronounced in currents driven
by suspensions with greater variance in the initial distribution of particle settling
velocities, but will be unobserved until σ2s2 ∼ 1. In its present form, the numerical
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integration of (3.42) diverges for values of s that exceed one, essentially because the
Taylor series is a poor representation of the function F(s) when s becomes of order
unity. We could attempt to produce convergent integral approximations, guided by
the approximations for the box model (§ 2), but in this section such an approach will
not be pursued.

A better approach is provided by rewriting the equation governing the evolution
of the volume fraction (3.17) as

2(U − ξ)
∂

∂ξ
(logΩ) + 5s

∂

∂s
(logΩ) +

10 s

HF
= 0. (3.43)

We then form a power series for logΩ rather than Ω. This is advantageous because
the exponential decay of the volume fraction is automatically captured. We find that

logΩ =
−2

H0

s+
5H1 + 5F1H0 − 2U1H

′
0

5H2
0

s2 + s3Ω3(ξ) + O(s4). (3.44)

The third-order term in this expansion, Ω3, is determined entirely in terms of the
second-order height and velocity fields. Since these are known, it is conceptually
simple, though algebraically intensive, to calculate Ω3. We find that

Ω3 = − 2(−2U1H0U
′
1H
′
0 − 2H0U

2
1H
′′
0 + 5U1H0H

′
1 − 5U1H0F1H

′
0 + 4U2

1H
′
0

2)

75H3
0

− 2(−2U1H
′
0H1 + 2U2H0H

′
0 − 5H2H0 + 5F2

1H
2
0 + 5H2

1 − 5F2H
2
0 + 5F1H0H1)

15H3
0

.

(3.45)

and henceforth we denote the truncated series for Ω up to and including Ω3 by Ω̃.
It is straight-forward to calculate the proportion of particles which have settled out

of the flow. Denoting this proportion by p, we find that

p = 1−
∫ 1

0

H(ξ, s)Ψ (ξ, s) dξ. (3.46)

To complete our analysis of the shallow-water model of polydisperse gravity
currents, we calculate the deposit which arises from their flow. We measure the
deposit as the mass per unit area which arises from sedimentation of each class
of particles. On the assumption that the density of each class is identical, we non-
dimensionalize the deposit with respect to ρpA

1/2(β̄/5Fr)2/5b1/5
∑n

i=1 φi(0). (Note that
if the particle densities are different then it is still possible to perform this analysis,
although the expressions are more complex.) Hence the dimensionless deposit at a
downstream location x and a time T is given by

η(x, T ) =

∫ T

t∗
2

n∑
i=1

Viϕi(x, t) dt for t∗ > T , (3.47)

where xN(t∗) = x. We recast this in terms of the new independent variables, ξ and s,
to find

η =

∫ s2

s1

2

n∑
i=1

Viϕi(s1/s, s)

ṡ
ds, s > s1, (3.48)

where s1 = [xN(t∗)]5/2 and s2 = s(T ). The vertical profile of the deposit is also of
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interest. We may simply evaluate the proportion of the settling flux associated with
each class of particles. Denoting the proportion of the ith class by χi, we find,

χi(x, T ) =
Viϕi(x, T )
n∑
j=1

Vjϕj(x, T )

. (3.49)

Thus both χi(x, T ) and η(x, T ) are known in terms of the expansions developed
above and so we may examine the implicit relationship between them to reveal the
composition of the deposit at a fixed downstream location x.

3.2. Comparison with numerical results

To validate the asymptotic analysis presented above and to determine the regime
within which the asymptotic results accurately represent the motion, we numerically
integrate the governing equations (3.1)–(3.4), subject to the boundary conditions (3.5)–
(3.7). Although our numerical technique could be applied to any number of discrete
classes of particles, here we present only the results for bidisperse currents with settling
velocities in the ratio 1 : 7. As before we refer to the particulate class with the greater
settling velocity as coarse particles and the class with the smaller settling velocity as
fine particles. Rather than numerically integrate evolution equations for both classes
of particles, it is efficient to note that the volume fraction of the coarse particles,
φ1(x, t), is known in terms of the volume fraction of the fine particles, φ2(x, t), and is
given by

φ1(x, t) = φ1(0)

(
φ2(x, t)

φ2(0)

)β1/β2

. (3.50)

The numerical method employed is similar to that developed by Bonnecaze et al.
(1993) and Hallworth et al. (1998). The governing equations were first transformed to
employ independent variables (ξ, t). They were then discretized and integrated using a
two-step Lax–Wendroff scheme. Some artificial viscosity was added to the momentum
equation to preserve the stability of the scheme (see Bonnecaze et al. 1993), but this
was minimized through extensive testing. The prescribed boundary conditions (3.5)–
(3.7) were supplemented by writing the system of equations in characteristic form
and determining the characteristics that point out of the computational domain.
At each time step the dependent variables were integrated forward in time along
the characteristics to provide the additional boundary conditions required for the
numerical solution. For the calculations shown here we employed 200 grid points, a
timestep 10−3 and a dimensionless settling velocity, β2 = 10−3. The initial conditions
were the similarity solution for the height and velocity fields, given by (3.22) and
(3.23) at t = 0.2, while the volume fraction was initially set constant throughout the
domain. Integration was continued until either t = 300 or over 99.9% of the particles
had settled out of the suspension.

The scheme was tested in a number of ways. First it was ensured that if both
β1 and β2 vanished then the numerically calculated solution should reproduce the
analytical similarity solution given by (3.22) and (3.23). When β2 > 0, the height and
velocity fields no longer maintain their similarity form. However for monodisperse
flows we have accurate analytical representations of the flow (Harris et al. 2001).
Thus by setting β2 = β1, it was possible to test the accuracy of the numerical scheme.
For truly polydisperse flows there are no existing models against which to validate
the numerical calculations. However as part of our computations we evaluated the
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Figure 9. The rescaled length (xN) and proportion of particles in suspension (p) of a particle-driven
gravity current containing a bidisperse distribution of particles with a 7 : 1 ratio of settling velocities
as a function of time. The different curves correspond to different initial volume fractions of coarse
particles: f = 0 ( ), f = 0.2 ( ), f = 0.4 ( ), f = 0.6 ( ), f = 0.8 ( ),
f = 1 ( ). (Note that the curves for f = 0 and f = 1 are indistinguishable.)

volume of fluid moving in the current and found that it was conserved to high
accuracy (0.01%). In the results that follow we numerically integrated the governing
equations with β1 = 0.007 and β2 = 0.001 for various initial proportions of coarse
and fine particles. As in §2, we denote the proportion of coarse particles by f. We
plot the rescaled front position, xN(t), and the proportion of particles in suspension,
p(t), as functions of rescaled time for f = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 (figure 9). We note
that the curves for f = 0 and f = 1 are identical as these correspond to monodisperse
currents of purely fine and purely coarse particles, respectively. The rescaling (3.8)
ensures that these two curves are identical. For 0 6 f 6 1 we observe that the position
of the front, xN(t) increases faster than for the monodisperse currents and the rate
of decrease of the proportion of particle remaining in suspension, p(t) is slower. This
indicates that polydisperse currents flow more rapidly than monodisperse currents
with the same average settling velocity. This results from the smaller settling velocity
of the fine particles in the polydisperse currents which maintain the density difference
between the current and the ambient and extend the flow.

We now consider the interior dynamics of the current before returning below to
compare our asymptotic formulae with the numerically calculated bulk properties of
the flow. We consider the asymptotic form of the velocity and height fields, truncated
at O(s2) and given by

H̃ = H0 + sH1 + s2H2, (3.51)

Ũ = U0 + sU1 + s2U2, (3.52)

and compare these with the numerically calculated height and velocity fields (fig-
ure 10). To illustrate the effects of polydispersion we plot the fields for two flows with
initial proportions of coarse particles of 20% and 80%, yielding σ2 = 1.19 and 0.17,
respectively. The agreement between the asymptotic expressions and the numerical
results is reasonable up to s ≈ 1. It is noteworthy that the polydisperse currents with
low and high values of σ2 adopt rather different profiles as time evolves. For low
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Figure 10. The height (H) and velocity (U) fields as functions of ξ within a bidisperse gravity
current for different initial proportions of coarse and fine particles: (a) f = 0.8; (b) f = 0.2. Results
from numerical integration ( ) and second-order asymptotic functions ( ).

values of σ2 the current becomes much deeper towards the front than in the rear of
flow, as fluid appears to accumulate near the front of the flow. This phenomenon oc-
curs because the settling velocities of the particles have little variation from the mean
and so the tail of the current becomes depleted in particles over a short period, thus
leading to particle-free fluid accelerating towards the front of the flow. Conversely
for flows with a wider range of settling velocities and so a larger σ2, the particle
content in the tail is reduced over an extended period and so the accumulation of
particle-depleted fluid at the front is postponed.

Next we consider the volume fraction, using the series expansion for logΩ, truncated
at O(s3). In figure 11, we plot ΩV2 for two polydisperse flows with f = 0.2 and 0.8.
We find that the asymptotic theory accurately reproduces the numerical calculations
up to times when only relatively small proportions of the initial particles remain in
suspension.

In figure 12, we plot the proportion of particles remaining in the current as
a function of s. Here the asymptotic expression is calculated from (3.46), using
the truncated series representations for H and logΩ. We plot the curves for a
monodisperse current (σ2 = 0), a bidisperse current with initially 80% coarse particles
(σ2 = 0.17) and a bidisperse current with initially 20% coarse particles (σ2 = 1.19).
We observe that in each case the asymptotic expression yields an accurate estimate of
the proportion of particles in suspension up to times when over 95% of them have
settled out. This implies that the majority of the motion of the current is accurately
modelled by these expansions.
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Figure 11. The volume fraction (ΩV2 ) as a function of ξ within a bidisperse gravity current for
different initial proportions of coarse and fine particles: (a) f = 0.8; (b) f = 0.2. Results from
numerical integration ( ) and second-order asymptotic functions ( ).
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Figure 12. The proportion of particles settled from the current (p) as a function of s, for a
monodisperse current (σ2 = 0), a bidisperse current with f = 0.8 (σ2 = 0.17) and a bidisperse
current with f = 0.8 (σ2 = 1.19). Results from numerical integration ( ) and second-order
asymptotic functions ( ).

Next we study the length of the current, xN(t). A stringent test of the accuracy of
the asymptotic expressions is to consider s−2/5 ds/dt ≡ F(s) (see (3.11)). We plot in
figure 13 the numerically evaluated s−2/5 ds/dt along with the series expansion of F(s)
and the improved approximation given by

F̃(s) =

(
bH̃

n∑
i=1

ψi(0)Ω̃Vi

)1/2

. (3.53)

We observe that when s� 1, the power series expansion of F(s) accurately reproduces
the numerical calculation, thus validating the series expansion. However the series
expansion loses accuracy as s increases. For monodisperse currents the divergence
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Figure 14. The depth of deposit (η) as a function of downstream distance at various times during
the evolution of a bidisperse current with f = 0.5.

between the two is negligible up to s ≈ 2.5. However when σ2 > 0, the series expansion
begins to lose accuracy when σ2s2 ≈ 0.5. This reflects the need to find further terms
in the series expansion, which are related to higher-order moments of the initial
distribution of particles. However we also note that the approximation F̃(s) accurately
models the evolution of s−2/5ds/dt for s up to 2.5, by which time over 95% of the
suspended particles have been deposited from the flow. Consequently the errors in
calculating s(t) when F̃(s) is employed are small (see figure 16).
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Initial proportion of Shallow-water length Box-model length Rescaled box-model
coarse particles at 99.5% sedimentation at 99.5% sedimentation length

f xr Lr 1.46b1/5Lr

0 1.35 0.97 1.35
0.2 1.78 1.27 1.77
0.4 2.03 1.43 1.99
0.6 2.21 1.56 2.17
0.8 2.35 1.53 2.12
1 1.35 0.97 1.35

Table 1. Comparison between the length of the current when 99.5% of the particles have settled
out of the flow using the shallow-water equations and the box model.

We now demonstrate how to use the asymptotic expressions to calculate the
deposit which arises from the flow of a polydisperse current. In figure 14 we plot the
profiles of the deposit at various times to illustrate how it grows due to progressive
sedimentation from the overlying current. However the composition of the current is
also evolving in time as the coarse particles settle out first, leaving the fine particles
in suspension. Thus deposited particles become progressively finer throughout the
current motion. This leads to both vertical and streamwise segregation between the
coarse and fine particles within the deposit, even though the flow was generated from
an initially well-mixed suspension. In figure 15 we plot the deposit as a function of the
rescaled, dimensionless downstream distance from the source, for a bidisperse flow in
which there were initially equal proportions of coarse and fine particles (f = 0.5). We
also plot contours of the proportion of coarse and fine particles within the deposited
material, which illustrate how the deposit is segregated both vertically and streamwise.

Finally we compare the numerical calculations for the runout length using the
shallow-water equations with the predictions of the box model (§ 2). To this end we
find the distance propagated by the front of the current when, for example, 99.5%
of the particles which were initially in suspension have sedimented out of the flow.
This length, denoted by xr , is given as a function of the initial proportion of coarse
particles in table 1, where we also present the predictions from the box model,
denoted by Lr . Before these values can be compared we must account for two factors.
First, the two lengths are non-dimensionalized using different scalings (see (2.13) and
(3.8)). Furthermore, studies of the monodisperse flows have found that box models
underpredict the lengthscale by a known factor (see Harris et al. 2001); using the
theoretical framework developed here for a monodisperse flow, we find that, with
the same value as used above, 99.5% of the initially suspended particles have settled
out of the flow when s = 2.03 using the shallow-water equations and S = 0.93 using
the box model. Together these imply that at this stage of the evolution of the flow,
we should multiply the box-model runout length by a factor of 1.46b1/5. In table 1
we see that although this factor was obtained from calculations for monodisperse
flows, it may also be used accurately for the polydisperse flows. Agreement between
the two models is worst for flows which have only a relatively small, but non-zero,
proportion of fine particles. These flows still have a relatively high average settling
velocity and yet the fine particles remain in suspension and accumulate at the front of
the current, thus extending the runout length. Box models do not resolve the height
profiles of these currents and so cannot reproduce the additional runout due to the
accumulation of fine-particle-rich fluid at the front of the flow.
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Proportion (%)
Lengthscale Timescale

Experiment Coarse Fine β̄ (cm) (s)

1 0 100 0.0051 502 42.5
2 20 80 0.0120 357 25.5
3 40 60 0.0189 298 19.4
4 50 50 0.0224 279 17.5
5 60 40 0.0258 263 16.1
6 80 20 0.0327 239 14.0
7 100 0 0.0396 221 12.4

Table 2. The experimental conditions reported by Gladstone et al. (1998). In these experiments,
bidisperse mixtures of silicon carbide particles of density 3.22 g cm−3 were suspended in water and
instantaneously released from behind a lock-gate into a flume of water. The water depth was 40 cm,
the lock was of length 20 cm and the flume was of width 20 cm. In each experiment, the initial
reduced gravity was 7.58 cm s−2. The length- and timescales given in the table are those used to
non-dimensionalize the data.

4. Discussion
4.1. Comparison with experiments

Gladstone et al. (1998) report experiments in which well-mixed bidisperse suspensions
of particles were instantaneously released from behind a lock gate into a horizontal
flume. They measured the length of the current as a function of time for various initial
mixtures of particles (see figure 16 and table 2). The different particles used were
of average diameters 25 µm and 69 µm, producing a 1 : 7.7 ratio of settling velocities
(calculated using Stokes’ settling law). The data have been put in dimensionless
terms using the scalings based on an average settling velocity described in § 3. We
see that for early times (t < 2 and l < 0.6) all currents have approximately the same
behaviour. This confirms the idea that at early times polydisperse currents behave like
monodisperse currents with an average settling velocity. At later times we observe that
the curves on this graph of length against time separate out to form a fan (figure 16),
which is qualitatively similar to that produced by the models developed in this study
(figures 2 and 9). In figure 16 we have also plotted the shallow-water theory for the
position of the front as a function of time and the initial fraction of coarse particles.
The general agreement between theory and experiment is reasonable although the
theory lies ahead of the data for flows with relatively high initial fractions of coarse
particles. We investigate this issue below.

The first surprising point is that the curves for the monodisperse currents, driven by
either all fine particles or all coarse particles, are rather different, although they should
be identical according to the theory (figure 17). There are two possible explanations for
this discrepancy (both of which probably play a role). First, the single-layer shallow-
water theory does not take into account effects produced by the overlying fluid. Some
studies model this effect empirically by including a Froude number condition at the
front of the current which is dependent upon the depth of the current relative to
the depth of the ambient (see Huppert & Simpson 1980). For the coarse particles,
the lengthscale associated with the slumping phase of the current and the lengthscale
based on sedimentation, which we have used to scale the data, are rather similar. This
means that considerable sedimentation takes place during the slumping phase, during
which we need to account for the motion of the overlying ambient fluid. Secondly,
at large times the level of turbulence in the flow will have decreased considerably.
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Figure 15. The distribution of the deposit and the proportions of coarse and fine particles within
it arising from sedimentation from a bidisperse particle-driven gravity current, modelled using the
shallow-water equations when the current has reached a length of s = 3. In this calculation, the
suspension initially contains equal proportions of fine and coarse particles (f = 0.5). The contours
are shown for 80%, 60%, 40%, 20% and 10% of coarse particles within the deposited material.
Also shown is the total depth of the deposit as a function of downstream distance.

The flow may no longer be sufficiently vigorous to maintain the coarse particles in
suspension, with the result that the particles are no longer well-mixed throughout the
current and so the model of the evolution of the volume fraction should be modified.
Thus the current driven by the suspension of coarse particles may propagate less far
downstream and may move with a somewhat reduced velocity as seen in figure 17. We
find that the results for the current driven by entirely finer particles are well-predicted
by the shallow-water model developed in § 3 (see figure 17). We have also integrated
the shallow-water equations for lock-release initial conditions, namely u = 0 and
h = h0 for 0 < x < x0, instead of the idealized similarity solution on which the series
solutions is based. We find that in terms of the rescaled length and time, there is very
little difference between the rates of propagation of these two flows with different
initial conditions.

The general collapse of the bidisperse currents is encouraging. The lock-release
lengthscale is much less than the sedimentation scale when the initial percentage of
fine particles is greater than 20%. For these currents, although the curves of length vs.
time lie rather close to each other, the results still confirm the idea that there will be
increased propagation in bidisperse currents. In addition, it appears that the runout
is greatest for the bidisperse current that contains 60% fine particles, although many
of the flows reached the end of the flume before they had fully settled out.

The initial collapse of the currents plays an even more important role in the final
pattern of the deposited sediment. Gladstone et al. (1998) found that there was a peak
in the sedimentation several lock lengths downstream of the release. Pure depositional,
shallow-water models seem unable to predict this behaviour correctly. A challenge for
the future will be to produce more accurate models of the flow that include sediment
erosion as well as deposition. Recent work, using direct numerical simulation, may



364 T. C. Harris, A. J. Hogg and H. E. Huppert

(a)

(b)

2.5

2.0

1.5

1.0

0.5

0 2 6 8 10 12 144
Time

C
ur

re
nt

 le
ng

th

1.5

1.0

0.5

0

D
im

en
si

on
le

ss
  l

en
gt

h

2.0

20 40 60 80 100

Initial proportion of coarse particles (%)

t = 5.0

3.0

2.0

1.0

0.6

0.2

Exp. Fine Coarse
100

80
60
50
40
20

0

0
20
40
50
60
80

100

Figure 16. Experimental data for the non-dimensional length of bidisperse particle-driven gravity
currents released at one end of a channel containing quiescent ambient fluid. The data points
(· · · © · · ·) are from the experiments of Gladstone et al. (1998) and were performed with the same
initial aspect ratio and total mass of particles. (a) The dimensionless length as a function of the
dimensionless time, (b) the dimensionless length as a function of the initial volume fraction of coarse
particles at t = 0.2, 0.6, 1.0, 2.0, 3.0, 5.0. We also plot the results from the numerical integration of
the shallow-water equations ( ) and asymptotic results ( ) at these times.

help to provide a more complete picture. In addition, it would be beneficial to conduct
more experiments with differently sized particles, selected to minimize the effect of
the lock release process. Effectively this requires that the runout is much greater than
the slumping length. So far, we have been constrained by the size of the largest
experimental tanks available.

4.2. Comparison with field observations

The Northwestern African continental margin has been the focus of considerable study
of deep-water sedimentary processes during recent years (Weaver et al. 1995; Masson
et al. 1998; Wynn et al. 2002). Within it is located the Moroccan Turbidite System
which comprises three interconnected deep-water basins. Large-volume (>100 km3)
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Figure 17. Dimensionless length of particle-driven currents composed entirely of coarse particles
and entirely of fine particles as a function of time. The experimental data are from Gladstone et al.
(1998). Also plotted is the theoretical curve (see § 3).

turbidites, sourced from the Moroccan shelf and the volcanic Canary Islands, may
travel up to 1500 km before fully depositing their suspended loads. This turbidite
system is not only one of the largest in the world but has been extensively cored,
permitting the identification of the turbidite along its entire length and yielding
significant insight into its depositional structure. In particular, grain size analysis has
permitted the calculation of the relative proportions of sand and mud-sized particles
within the deposit. Weaver et al. (1995) find that the deposit is essentially bidisperse
with major fractions of fine sand (100 µm) and mud (2 µm). The proximal deposits
exhibit a layer of sand, overlain by mud, whilst the distal deposits are composed
entirely of mud. Further analysis of turbidite deposits in this region led Wynn et
al. (2002) to produce maps of the deposit, indicating the variation of its depth
with distance from the source, along with the variation of the composition of the
deposited material. We show two schematic pictures of turbidite deposits, as presented
by Wynn et al. (2002) (figure 18). These lie within the Agadir Basin and arose from
a turbidity current emerging from the Agadir Canyon. The basin has regional slopes
of up to 0.03◦, whilst the canyon is significantly steeper with slopes up to 2◦ (Wynn
et al. 2002). The first sketch corresponds to a relatively small turbidite of volume
15 km3. On entering the deep-water basin it immediately deposits suspended material.
The composition of the deposit systematically changes downstream, reducing from
a mixture with sand and mud in the ratio 35 : 65 to pure mud in the distal regions.
The relatively coarse particles of sand are primarily deposited in a wedge which thins
downstream. They are overlain by mud. This pattern is very similar to that predicted
by the models of polydisperse flows developed in this study. From an initial mixture
of particle sizes, it is possible to form a deposit which is graded in the vertical and in
the streamwise direction. The coarse particles settle out first and are then overlain by
finer particles (figures 5 and 15).

The larger-volume turbidite (125 km3) exhibits some similar features, but also some
differences. The runout of this flow now exceeds the basin and a significant proportion
of the current flows out into the Maderia Abyssal Plain. The deposit thickness does
not systematically decrease in the flow direction. Instead the deposit seems to attain
a maximum thickness at some distance from the canyon which feeds it. Wynn et al.
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Figure 18. Schematic diagram of the depositional architecture of two turbidites in the Agadir
basin, after Wynn et al. (2002). Diagram not to scale.

(2002) associate this with the large volume of the flow and the high velocity with
which it enters the basin. Such high-speed flows may well be erosional and so any
deposited material will be re-entrained and advected downstream. However the grain
size data suggest that the coarse particles of sand are preferentially deposited, being
overlain by a relatively thin layer of mud. As the flow spreads across the relatively
flat basin, it slows and becomes depositional.

The models developed here are one-dimensional and although these turbidites are
channelized, there is some possibility for lateral spreading. Further the models do
not include erosional effects and particles settle out of the flow at a rate which is
independent of the bulk velocity. The flows are thus treated as purely depositional and
the thickness of the deposit can only decrease in the streamwise direction. However
if particle sedimentation is suppressed, or if there is erosion of previously deposited
material, then it will be possible to predict distributions of the deposited material
which are in accord with these observations. Once the flow speed has dropped so
that the flows become purely depositional, the pattern of sedimentation and the
composition of the deposit becomes similar to that predicted in this study (figures 5
and 15).

5. Summary and conclusions
In this study we have developed mathematical models of gravity current flows

driven by polydisperse suspensions of particles. We have presented two classes of
models: ‘box’ models which are averaged both in the vertical and the streamwise
direction and do not resolve the internal structure of the flow, and ‘shallow-water’
models which elucidate the streamwise variation of vertically averaged properties of
the currents. We have demonstrated how flows driven by polydisperse suspensions
differ from those driven by an equivalent monodisperse suspension with an average
settling velocity. Specifically, if the variance of the initial distribution of settling
velocities is much smaller than the square of the mean settling velocity, then it
is adequate to assume that the rate of sedimentation of each class of particles to
the underlying boundary is independent of each of the other classes. Thus there is
no nonlinear interaction between them. This regime leads to the analytical model
presented by Bonnecaze et al. (1996), which is now fully justified by the analysis
developed here.
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We have demonstrated theoretically that any degree of polydispersivity adds to the
runout length of the currents, relative to that of an equivalent monodisperse currents
with an average settling velocity. This occurs because while the coarse particles settle
out, the fine particles remain in suspension and thus maintain the density difference
between the current and ambient so that the runout length is extended. This is borne
out by the experiments of Gladstone et al. (1998). By use of the box model we are able
to formulate analytical predictions for the runout length of bidisperse suspensions,
relative to equivalent monodisperse suspensions with an identical average settling
velocity, which is a function of the initial fraction of coarse particles and the ratio of
the two settling velocities.

Flows of particle-laden fluid give rise to distributions of deposited particles and we
have demonstrated how to calculate the variation of the thickness of the deposit with
streamwise distance. The deposit comprises contributions from each class of particles.
Not only may we predict the total thickness of each class, but also the variation of
the composition of the deposit with depth. Thus we observe how a deposit whose
composition varies in both the vertical and streamwise direction may arise from a
single, initially well-mixed intrusion of a polydisperse suspension. This prediction is
in accord with field observations of turbidite deposits.

Finally we have developed a new analytical scheme for examining the shallow-water
model of the flow. This scheme shows how the behaviour of a polydisperse current
evolves with time. At early times, it is similar to a compositionally driven current
in which the density difference between the current and the ambient fluid remains
constant. At later times, particle sedimentation has begun to significantly reduce the
overall concentration. At these times, the general characteristics of the current are
as if the current were monodisperse, composed of particles with the average settling
velocity. The effects of a distribution of settling velocities is only noted at much later
times and it is the variance of the initial distribution, relative to the square of the
mean settling velocity, which governs its magnitude. The series expansions provide
insight into the internal dynamics of the flows and the ways in which the velocity
and height adjust to particle sedimentation along the length of the current. We have
demonstrated that these series expansions are in good agreement with the results
from numerical integration of the shallow-water equations. Finally we have shown
how these series expansions may be compared to the box models and hence we may
deduce why the seemingly naive box model works well.

This study also suggest future areas of research into the intrusion of particle-laden
flows. These include developing a new class of models to resolve the vertical profiles
of velocity and particle concentration and the need for further experiments to analyse
the effects of a distribution of particle sizes and the composition of the deposit arising
from an initially well-mixed flow.

The authors thanks Charlotte Gladstone for making her experimental data available
to us and Steve Sparks for useful comments on an earlier draft of this paper. A. J. H.
acknowledges the financial support of grants from the Nuffield Foundation (NUF-
NAL) and the EPSRC.

Appendix. Continuous distribution of particle sizes.
In the main body of this study we pursued ‘box’ and shallow-water models of the

flow of polydisperse gravity currents, driven by a discrete distribution of classes of
particles. It is relatively straightforward to generalize this to a continuous distribution
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of particle sizes and these are presented in this Appendix. It is possible to derive
a shallow-water model for a distribution of particles, but for simplicity we consider
only the box model. As in § 2 we denote the length and height of the current by h
and l and so conservation of fluid mass gives

hl = A, (A1)

where A is the volume of fluid per unit width. The volume fraction of particles
within the current with sizes between r and r + δr is given by φ(r, t)δr, where φ(r, t)
specifies the distribution of particle sizes. The settling velocity of the particles in a
dilute suspension is a function of their size, shape and excess density relative to the
density of the interstitial fluid. For simplicity we assume that the shape and density
of the particles are constant so that the settling velocity is only dependent upon
the size. (Distributions of density and variations in shape could be incorporated,
but the complexity of the analysis would be considerably increased.) Hence we find
that the evolution of the volume fraction distribution is given by

dφ

dt
= −vs(r)φ

h
. (A2)

Finally we have the Froude number condition which expresses the dynamical balance
at the front of the current:

dl

dt
= Fr

√
g′pΦh, (A3)

where Φ(t) =
∫ ∞

0
φ(r, t) dr. As in §2, the initial conditions are

l = 0 and Φ = Φ0 ≡
∫ ∞

0

φ(r, 0) dr at t = 0. (A4)

In terms of the volume fraction distribution function, the average settling velocity is
given by

v̄s =

∫ ∞
0

vs(r)φ(r, 0) dr. (A5)

Henceforth, as in § 2, we non-dimensionalize lengths with respect to l∞ = [5FrA(g′pA)1/2/

v̄s]
2/5, times with respect to 2A/(v̄sl∞) and we scale volume fractions by Φ0. We now

denote the dimensionless time by t and the scaled volume fraction distribution by φ
and introduce S = [l(t)]5/2, where l(t) denotes the dimensionless length, to obtain the
following equations governing the motion:

dS

dt
= S2/5γ(t), (A6)

dφ

dt
= −2vs(r)S

2/5φ

v̄s
, (A7)

where

γ =

[∫ ∞
0

φ(r, t) dr

]1/2

. (A8)

Finally we write

φ(r, t) = φ(r, 0)a(t)vs(r)/v̄s , (A9)

and treat a and γ as function of S , rather than t, to find

da

dS
= −2a

γ
, with a(0) = 1. (A10)
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The formulation of the polydisperse, particle-driven gravity in this way means that it
is easy to relate the results to those derived for a monodisperse current and to those
for a discrete distribution of particle sizes. We recall from § 2 that for a monodisperse
current, γ = 1− S , indicating that the current is arrested when S = 1. Forming a
Taylor series expansion for γ(S) in the regime S � 1, we find that

γ(S) = 1− S + σ2S2 + . . . , (A11)

where σ2 is the variance of the distribution of settling velocities, relative to the square
of the mean settling velocity, given by

σ2 =

∫ ∞
0

φ(r, 0)

(
vs(r)

v̄s
− 1

)2

dr. (A12)

The series expansion result (A11), which is identical to (2.17), indicates that the
current may be adequately represented by a monodisperse flow with an average
settling velocity if σ � 1. Furthermore the early stages of polydisperse flow (when
S � 1) will be similar to an equivalent monodisperse flow with the effects of the
distribution being noticeable only at late stages (when S = O(1)). However the effect
is significant in that any degree of polydispersivity extends the runout of the flow.
This is because the particles with lower settling velocities remain in suspension and
maintain the flow so that those with larger settling velocities are deposited further
from the source.

Finally we note that it is possible to relate the initial distribution of the particle
sizes to the runout length of the current. The current attains its maximal runout when
γ(Sm) = 0. Hence

Sm =
1

2

∫ 1

0

1

a

[∫ ∞
0

φ(r, 0)avs(r)/v̄s dr

]1/2

da. (A13)

This integral may be evaluated for any initial distribution of particle sizes, φ(r, 0). It
is also possible to expand the integral in terms of moments of the initial distribution
of particle settling velocities. We find that

Sm = 1 + 2M2 − 4M3 + 8M4 − 12M2
2 + . . . , (A14)

where

Mn =

∫ ∞
0

φ(r, 0)

(
vs(r)

v̄s
− 1

)n
dr. (A15)

We illustrate the use of (A13) by considering an exponential distribution of particle
sizes, normalized to have unit mean. Thus the initial distribution is given by

φ(r, 0) =
(n+ 1)n+1

Γ(n+ 1)
rn exp (−(n+ 1)r) , (A16)

where n is a positive constant (see figure 19). This distribution has variance 1/(n+ 1).
Thus in the limit n → ∞, the variance vanishes and we recover the result Sm = 1.
This corresponds to the scaled runout length of a monodisperse gravity current. We
integrate (A13) to find the dependence of the runout length on the parameter n
which measures the variance of the distribution. By substituting a = exp(−v) and
by assuming that the settling velocity depends quadratically upon the particle radius
(Stokes’ settling velocity), we find that

Sm =
1

2

∫ ∞
0

[∫ ∞
0

φ(r, 0) exp(−vr2) dr

]1/2

dv. (A17)
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Figure 19. Some exponential probability density functions for the initial distribution of particle
sizes within a polydisperse current, scaled such that they have unit mean and variance 1/(n+ 1).

n = 310

8

6

4

2

0 5 10 15 20
n

Sm = 1

Sm

Figure 20. The scaled runout distance, Sm, as a function of n, the parameter of the initial
exponential distribution of particles sizes.

We note that∫ ∞
0

φ(r, 0) exp(−vr2) dr ∼ (n+ 1)n+1Γ( 1
2
(n+ 1))

2Γ(n+ 1)v(n+1)/2
as v →∞. (A18)

Hence Sm is finite only if (n+ 1)/4 > 1. We have observed before that the presence
of fine particles in the flow significantly extends the runout of the current, relative to
that expected for a monodisperse current with the average settling velocity. These fine
particles sediment more slowly and so remain in suspension longer, thus maintaining
the density difference and extending the flow. In the regime n 6 3, the variance of
the distribution is sufficiently high that there is a significant proportion of very fine
particles, with r � 1, in the initial mixture. Thus the runout is extended to such an
extent that it is no longer finite.

We numerically integrate (A13) for n > 3 (figure 20). As anticipated we note that
as n→∞, Sm → 1 and that as n→ 3+, Sm →∞. The key idea these results indicate is
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that the runout of a polydisperse gravity current, relative to that of a monodisperse
current with the same average settling velocity, is a strong function of the variance of
the distribution. Although we have illustrated this only for an exponential distribution
of particles, it will also be found for any other initial distribution.
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