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The intrusion of a polydisperse suspension of particles over a horizontal, rigid
boundary is investigated theoretically using both an integral (‘box’) model and the
shallow-water equations. The flow is driven by the horizontal pressure gradient
associated with the density difference between the intrusion and the surrounding
fluid, which is progressively diminished as suspended particles sediment from the flow
to the underlying boundary. Each class of particles in a polydisperse suspension has a
different settling velocity. The effects of both a discrete and continuous distribution of
settling velocities on the propagation of the current are analysed and the results are
compared in detail with results obtained by treating the suspension as monodisperse
with an average settling velocity. For both models we demonstrate that in many
regimes it is insufficient to deduce the behaviour of the suspension from this average,
but rather one can characterize the flow using the variance of the settling velocity
distribution as well. The shallow-water equations are studied analytically using a
novel asymptotic technique, which obviates the need for numerical integration of
the governing equations. For a bidisperse suspension we explicitly calculate the flow
speed, runout length and the distribution of the deposit, to reveal how the flow
naturally leads to a vertical and streamwise segregation of particles even from an
initially well-mixed suspension. The asymptotic results are confirmed by comparison
with numerical integration of the shallow-water equations and the predictions of this
study are discussed in the light of recent experimental results and field observations.

1. Introduction

Particle-driven gravity currents occur when a suspension of particles intrudes into a
less dense ambient fluid. In this study we consider the propagation of a relatively dense
intrusion along a horizontal, rigid boundary underlying the ambient fluid. The motion
is predominantly driven by the pressure gradient associated with the density difference
between the suspension and the ambient, which, provided the effects of viscosity are
negligible, is balanced by the inertia of the intruding fluid. Particle-driven gravity
currents have received considerable attention during recent years (see the review of
Huppert 1998). Studies have adopted both experimental and theoretical approaches
to elucidate the physical processes which control these flows (e.g. Bonnecaze, Huppert
& Lister 1993; Hallworth, Hogg & Huppert 1998). There are many examples of
particle-driven flows in natural and industrial settings. These include volcanic ash
flows (Sparks et al. 1997), turbidity currents in the ocean (Simpson 1997) and the
particle-laden plumes arising from water-injection dredging (Hallworth et al. 1998).
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Particle-driven gravity currents are dissimilar from those driven by compositional
difference in fluids because the suspended particles, which contribute to the excess
density, sediment to the underlying boundary as the flow evolves. Thus the density
difference is progressively reduced and the flow eventually ceases, leaving a deposit
of particles on the boundary. In almost all of the analytical work to date it has been
assumed that the suspension of particles possess a single settling velocity. However in
many situations this is a considerable simplification and in virtually all real situations
there is a range of particle sizes, and hence settling velocities. For example, it has been
noted that the presence of a small fraction of fine particles has a marked effect on
the propagation of the particle-driven current at late stages (Harris, Hogg & Huppert
2001). Also, in many geological situations, there will be a large range of different
classes of particles. For instance pyroclastic flows involve particle size ranges from
tens of centimetres to microns. Similarly, turbidities comprise significant fractions of
sand, silt and clay particles, the settling velocity of which differs by many orders
of magnitude. Observations of long-runout turbidite deposits have indicated that a
single event may lead to a segregation of grain sizes, as discussed recently by Wynn
et al. (2002). The proximal regions comprise coarse grains in a wedge-shaped deposit
which are overlain by a layer of finer particles. Conversely the distal deposits are
primarily composed of the finer grained sediment.

A preliminary study of a bidisperse suspension (Dade & Huppert 1995) revealed
that the effect of the smaller particles is to extend and hence thin the current more
rapidly than a monodisperse suspension with the same average settling velocity. This
model is only rigorously applicable, though, when the sizes of the two particle types are
fairly similar. A more complete analysis, which employs the shallow-water equations,
has been used to predict the deposit produced by polydisperse currents (Bonnecaze,
Huppert & Lister 1996). In addition to some numerical solutions they derive a semi-
analytical representation of the distribution of the deposit. This representation arises
from treating the particle-laden current as monodisperse with particles of the average
settling velocity. Such monodisperse flows are well-studied and Bonnecaze et al. (1996)
fit an empirical expression for the shape of the deposit as a function of downstream
distance. Since each type of particle sediments with its own settling velocity, Bonnecaze
et al. (1996) sum appropriately weighed combinations of the distribution of the deposit
to obtain an approximate expression for the overall deposit. What this theory omits
is the possibility that different sedimentation rates may affect the dynamics of the
current. Nevertheless comparison with numerically integrated solutions to the shallow-
water equations for a range of polydisperse currents indicates that this approximation
works fairly well. Part of the aim of this study is to reveal the theoretical basis for
this approach and the range of its validity.

A recent set of laboratory experiments in which dilute suspensions made of two
particle sizes were released into relatively shallow water has been conducted by
Gladstone, Philips & Sparks (1998). They find that the presence of fine particles
significantly extends the flow. Gladstone & Woods (2000) propose that a simple ‘box’
model, which incorporates a modified Froude number condition at the nose, provides
a good model for the propagation over several multiples of the initial length of the
current.

The aim of this paper is to investigate the similarities and differences that are
produced when a gravity current is driven by such a polydisperse distribution of
particles, rather than particles of a single size. We analyse mathematical models of
the flow, using the expansion techniques developed for monodisperse flows (Harris
et al. 2001). From the analysis, we discover that the approach of Bonnecaze et al.
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(1996) is equivalent to the inclusion of only two terms in an appropriate Taylor
series expansion. However, we also find that other statistics of the particle distri-
bution may play an important role in characterizing the runout of some suspensions.
In this paper we first present a ‘box’ model analysis of polydisperse gravity cur-
rents (§2). This extends the studies of Dade & Huppert (1995) and Gladstone &
Woods (2000) and reveals when it is appropriate to model a polydisperse suspen-
sion by a monodipserse suspension with an average settling velocity. In §3, we
consider the shallow-water model of gravity current motion. This permits the res-
olution of the internal characteristics of the flow. By recasting the equations in
terms of new independent variables and by forming Taylor series expansions for
the dependent variables, we are able: to deduce how to characterize the behaviour
of the current as a function of the particle distribution; to derive approximate
expressions for the velocity and height profiles, which obviate the need for numeri-
cal integration of the governing equations; and to elucidate why ‘box’ models work
so well. We confirm the asymptotic analysis by comparison with results from the
numerical integration of the shallow-water equations. We find that the asymptotic
results accurately reproduce the evolution of the flow until only a relatively small
proportion of the initial suspended particles remains in the flow. Finally in §4,
we discuss the new results in the light of the experiments by Gladstone et al.
(1998) and some recent field observations of Wynn et al. (2002). We also include an
Appendix in which we develop the analysis for a continuous distribution of particle
sizes.

2. Polydisperse box model

We study the gravity current formed by the intrusion of a suspension of polydisperse
particles over a horizontal boundary. We assume that the suspension is sufficiently
dilute for the effects of particle—particle interactions to be insignificant. A concentrated
flow may behave differently. For example, Hallworth & Huppert (1998) found that
particle-laden flows with initial volumetric concentrations of particles in excess of
0.15 exhibit significant differences in their dynamical behaviour from dilute flows. We
assume that the particle Reynolds numbers of the suspended particles are much less
than unity and hence neglect the effects of the inertia of the particles. The timescale
of the response of the particle velocity to changes in the interstitial velocity field is
then much shorter than the timescale on which the velocity field itself changes. We
also assume that each particle is advected horizontally by the buoyancy-driven flow
and sediments vertically with a constant settling velocity.

We consider a polydisperse suspension in which there are n different classes of
particles. (We obtain specific results for the somewhat simpler case of a bidisperse
suspension in § 2.1 and for a continuous distribution of particle sizes in Appendix A.)
We denote the volume fraction and density of the ith class of particles by ¢; and p,;,
respectively. The reduced gravity of the suspension is therefore given by

g =g wd (2.1)
i=1

where o; = (ppi — pa)/pa 1s the density of the ith class of particles relative to the
density of the ambient fluid. In this section in order to develop ideas and obtain
simple, but powerful, analytical relationships, we adopt a ‘box’ model approach for
modelling gravity current motion and hence propose evolution equations for integral,
or horizontally averaged, properties of the current. (A shallow-water model, which
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resolves the internal structure of the dynamics, is presented in §3.) We thus consider
the evolution of the length, I(¢), and height, h(t), of the intrusion as well as the volume
fraction of each class of suspended particles, ¢;(¢). The equations which govern the
motion are analogous to those for a monodisperse current (see Harris et al. 2001). On
the assumption that there is no entrainment of ambient fluid into the gravity current,
we may write

hl = A, (2.2)

where A4 is the volume of the current per unit width. The speed of the front of
the current is given by the Froude number condition (Benjamin 1968). In this study
we assume that the dense, particle-laden fluid is intruding through a much deeper
ambient fluid. Thus we may neglect the motion of the overlying ambient and the
Froude number takes a constant value. Huppert & Simpson (1980) suggest that the
Froude number is equal to 1.2, although the structure of the analysis which follows
does not depend crucially upon this value. Hence we write

di _ 11.\1/2
i Fr(g'h)"-, (2.3)
where Fr denotes the Froude number. Finally we specify evolution equations for
the volume fractions of each class of particles. Following studies of sedimentation
from turbulent suspensions (Martin & Nokes 1998) and the models of monodisperse
particle-driven currents (Bonnecaze et al. 1993), we assume that the particles remain
well-mixed throughout the depth of the current and that they settle to the underlying
boundary at a known settling velocity, vy, for each particulate class. In this model
we neglect the re-entrainment of deposited particles into the current. (Erosive flows
have been recently studied by Eames et al. 2001.) Hence the evolution of each volume
fraction is given by

de; Usihi

et (2.4)

To this system of equations we add the initial conditions that the current starts with

vanishing initial length, and a specified volume fraction for each class of particles.
Thus

I=0 and ¢ =¢i(0) at ¢=0. (2.5)

Note that these initial conditions, together with (2.2), causes the initial height to
become infinite. However, it has been shown in previous studies (e.g. Hogg, Ungarish
& Huppert 2000) that provided the final runout of these currents far exceeds the
initial length, then it is an acceptable approximation to enforce | = 0 as an initial
condition. (It is also possible to employ a non-zero initial condition for the current
but the clarity of the analysis which follows is significantly reduced.)

In order to highlight the essential aspects of the analysis, we render (2.2)—(2.4)
dimensionless by scaling lengths with respect to A'/? and times with respect to
(A'2/g)V?, where g{ is the initial volume fraction. Furthermore we introduce a
scaled volume fraction given by

= 6)
> 2j$,(0)

Jj=1

Eliminating h(t) from (2.2)—(2.4) and assuming /(t) now denotes the dimensionless
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length, we find that the governing equations are given by

" 1/2
di
11/2a = Fr (Z w,-) , (2.7)
i=1

duv;
= B, (28)
where the dimensionless settling velocities are given by fB; = vg/[4'?g(]"/?. These
equations contain the most important feature of polydisperse flows: the current is
driven by the sum of the contributions to the buoyancy force from each of the different
particle types (2.7), while the volume fraction of each different particle type decays
according to the individual dimensionless settling speed of that class of particles (2.8).
To analyse this system of equations, we first define an average settling velocity. The
reason for introducing an average settling velocity is to investigate whether the runout
of the polydisperse systems may be approximated by an ‘equivalent’ monodisperse
current. (Such an approach has been employed by Bonnecaze et al. 1996.) We shall
see later that the range of validity of this approximation is governed by the magnitude
of the initial variance of the particle distribution. At onset, the loss of suspended
sediment per unit length dy; in a dimensionless time ot is given by

oy = —Pipi(0)at, (2.9)
and the total loss of sediment per unit length by

> dwi=—5tY Bpi(0). (2.10)
i=1 i=1

This shows that the early behaviour of a polydisperse current will be the same as a
monodisperse current with an average settling velocity f, where f is defined by

B=">Bi0). (2.11)
i=1

Hence in dimensional terms, we define an average settling velocity, T;, which is given
by

Z 0sii(0)
i=1

- .
> api(0)
i=1

Note that this quantity is somewhat different from the average sedimentation speed

of the suspension, although the two are identical if the densities of all the classes of

particulate are identical. It is nevertheless convenient to define § by (2.11) because
the natural timescale for the evolution of the current is based upon the initial reduced
gravity of the suspension.

To proceed, we rescale these polydisperse equations using the box-model scalings
for a monodisperse current presented by Harris et al. (2001) with B in place of
the single dimensionless settling velocity in the monodisperse study. These scalings
render the runout length of the monodisperse current to be unity. In this way we are
able to investigate whether polydisperse currents may be accurately represented by
monodisperse currents with an appropriate average settling velocity. We re-scale the

Us

(2.12)
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dimensionless length and times in the evolution equations (2.7) and (2.8) by

5Fr\*? 2 (5Fr\ "
l~/<_’> and z~/_<_r> . (2.13)
B B\ B
Writing S(t) = [I(t)]?/?, we obtain the evolution equation for the length of the current,
ds
— =S5(S 2.14
i )(S), (2.14)

where

n 1/2
7(S) = (Z wi(S)> : (2.15)
i=1

In this expression we have treated the volume fractions as functions of S(¢). Each of
the individual volume fractions is given from (2.8) by the solution of

dy;
o = —20Vi/n(S), (2.16)

where V; = Bi/p.

To obtain a first insight into how a polydisperse suspension affects the length of
the current it is instructive to determine the form of y(S) for small values of S. We
expand both y(S) and y;(S) as Taylor series in S, noting that for a monodisperse
current we obtain the exact results y = (1 — S)?> and y(S) = 1 — S. For polydisperse
currents, we obtain

7(S)=1—S+0’S* +0(S?), (2.17)

where ¢? is the initial variance of the distribution of settling velocities relative to the
square of the mean settling velocity,

7= 3 V= 1Pp(0) (2.18)
i=1

The maximum length attained by the current, termed the runout length, is determined
by the solution to y(S) = 0 and below we demonstrate how this may be calculated
as a function of statistics of the initial distribution of particles. From (2.17), we also
note that for sufficiently small values of S, y(S) = 1 — S + O(S?) and so the current
behaves like a monodisperse current with an effective settling velocity . Thus, during
the early phases of the flow it is adequate to approximate the polydisperse current by
a monodisperse current with the average settling velocity of the particles. However as
the length of the current increases, this approximation becomes invalid. The effects
of a distribution of particle sizes will be first observed when ¢2S? = O(1). Since we
have rescaled the length of the current so that runout is such that S = O(1), we may
conclude that a polydisperse current behaves like a monodisperse current of average
settling velocity when

o’ < 1. (2.19)

This is an important result for discriminating between different flows. Currents created
in the laboratory will always contain particles of different settling velocities due to
slight differences in shape and size. By calculating the variance of the distribution
of settling velocities we can check whether the current may be effectively modelled
as monodisperse. For polydisperse suspensions with a much larger variance, we are
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interested in what effects are produced by other statistics of the particle distribution
as explained below.

To commence, we note that the unknown function y(S) may be eliminated from
(2.16) by dividing the equation for one volume fraction by another. Thus each of
the individual volume fractions may be expressed in terms of just one new unknown
function. The result, which can be verified by direct substitution, is

pi(S) = pi(0)a(S)", (2.20)

where the unknown function a(S) satisfies the same equation as derived for the

monodisperse box model,
da
qs = —2a(8)/7(S), (2.21)

with

; 1/2
7(S) = (Z w(0>a(S>Vf> : (222)
i=1
Thus for a bidisperse suspension, if the ratio of the settling velocities is R, then the
volume fraction of the heavier particles decays R times faster than that of the lighter
particles. This result was noted by Dade & Huppert (1995), although their subsequent
analysis is somewhat different. In §3, we shall see that a similar and more powerful
result also holds true for the shallow-water equations.

We note that the maximum extent of the current, S,,2/ 5, is given when a = 0. Hence

n 1/2
. (Zwim)a“)
Sy == / =l da. (2.23)
2 Jo a

By substituting a = exp(—2y), this may be written

1/2

s, | (Zwi(())exp(—zvfy)) dy. (224)
0 i=1

Recall that >, y;(0) = 1 and >, y:(0)V; = 1, so that the integral may be expanded
in terms of moments of the initial distribution of particles. We find that

Sy =1+2M; —4M; + 4(2M; — 3M3) + - -, (2.25)

where M, =Y, wi(0)(V; — 1)".

It is also a straightforward task to integrate (2.21) numerically for any given initial
distribution of particles to determine the function a(S) and thereby all the volume
fractions as functions of the distance propagated. A further numerical integration of
(2.14) can then be performed if the evolution of the current length as a function of
time is required.

Alternatively, we may use an iterative scheme, as described in Harris et al. (2001),
to generate approximations for the length and volume fractions as functions of time.
As we do not have analytic expressions for the volume fractions, for each iterate we
have to solve (2.16) first and then use this approximation in (2.15). The method for
deriving the results is identical to the monodisperse box model (Harris et al. 2001).
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Writing © = (3t/5)*/? and denoting the iterates for S and y; by S, and 1;,, we find

d _
3 (3827) =T3S0 i), (2.26)
d 2/5
— (log i) = =2ViS, 5. (2.27)
dr
Starting from Sy = 0 and yy, = 1, we obtain the first iterates

Si(t) =t and yu(t) = pi(0) exp(=2Vi7). (2.28)

The result for y;; expresses the fact that for small times each different particle type
sediments independently, as if it were from a homogeneous current. This follows
because at early times the decrease in the driving buoyancy force caused by sedimen-
tation has not yet influenced the development of the current. Calculating the second
iterate, we obtain

5/3

3 f 1—2/5 - ’ 2 /
Sut) = | 5 /0 T <le,~(0)exp(—2V,-r)> dr’| . (2.29)

i=1

Since each settling velocity produces a different rate of exponential decay, it is
not possible to represent this approximation in terms of gamma functions, as was
possible for the monodisperse currents (cf. Harris et al. 2001). We may obtain a
good approximation to the third iterate by making a Taylor series expansion of the
decaying exponential term as employed in Harris et al. (2001). This enables us to
write down the following approximation of the current length I(t):

2/3

~ 3 t 1—2/5 . 2 ’ V2 ’
=13 /0 T (th,-(O)(l—FV,-r /4) exp(—2Vit )) dr’| . (2.30)
i=1

This expression is more complicated than the simple expressions derived in terms of
gamma functions for monodisperse currents. However, it can be integrated numerically
for any initial distribution of particles.

The deposit arising from the passage of these particle-driven flows may be simply
calculated as follows. In terms of dimensional variables, the distribution of the mass
per unit area is given

1= [ 3 paradiode 231)
b=t

where t. is defined by I(t.) = x and corresponds to the time at which the current first
reaches a downstream location x. In the expression above, observe that the deposit
depends on the sum of the deposition from each of the classes of particles. On
the assumption that the densities of each class of particles are identical, we render
the deposit, 7, dimensionless with respect to p,4'/? and further re-scale by a factor
(2/B)(5Fr/B)~%> (cf. (2.13)). Next we change the variable of integration to S and
denote the re-scaled dimensionless distance and deposit by X and Y, respectively to
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obtain the distribution of the deposit,

s, Z Viy;
%
§2/5 [Z %1

i=1

where S. = X°/? and S,, corresponds to the runout length of the gravity current, given
by 7(S,,) = 0. Note that the assumption of identical particle densities serves only to
simplify the analysis and need not be invoked.

Y(X) = ds, (2.32)

2.1. Bidisperse currents

So far the analysis has been for a general polydisperse gravity current in which there
are n different class of particles. We now examine the box-model solutions when there
are just two classes of particles with different settling velocities. We have already
noted that the crucial difference between poly- and monodisperse currents is that the
rate of sedimentation is different for each of the classes of particles. The more slowly
sedimenting particles mean that the excess density of the current is maintained over a
longer distance and hence the current propagates further than predicted if it had been
treated as monodisperse with the average settling velocity of suspension. We have
also noted that this effect is more pronounced if the variance of the initial distribution
of settling velocities is large compared to the square of the mean settling velocity. For
bidisperse currents it is possible to make further analytical progress, which we pursue
in this section. (We compare some of the deductions from this analysis with some of
the deductions arising from the experimental study of Gladstone et al. 1998 in §4.)
We assume that the re-scaled volume fractions of particles are given by

pi=f and yy,=1—F, (2.33)

where 0 < f < 1. Furthermore the ratio of the dimensionless settling velocities is
given by f,/f1 = 4, and 4 < 1 on the assumption that the first class of particles
has a greater settling velocity than the second. (Assuming the particles are of the
same density, we shall refer to the first class as the coarse particles and the second as
the fine particles.) The variance of the settling velocities in the suspension is initially
given by
o _f1=p =
[f+41—11
We note that the variance vanishes, as it must, if the particles have identical settling
velocities 4 = 1, of if we have entirely one class or other (f = 0 or f = 1). Furthermore
the variance is maximized when f = 1/(1 + A).

The runout length of the gravity current, Sa, s given by the solution to y(S,,) = 0.
Hence from (2.21) we obtain

(2.34)

1!
Su=1 / (fa" + (1 — f)a") " a" da. (2.35)
0
This integral may be re-written as
f+d—1f)i i %
=———"F |- 114+ ——; 2.
Sm 7 2B 513 +2(1—i)’f ) (2.36)

where ,F; denotes a hypergeometric function (Abramowitz & Stegun 1964).
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FIGURE 1. The dimensionless, rescaled length [/[5FrA(gyA)"/?/B]*° of a particle-driven gravity
current containing a bidisperse distribution of particles with a 7:1 ratio of settling velocities as
a function of the proportion of coarse particles (f). The thick line shows the final runout length
attained by the current. The thin lines show the length at dimensionless times t = 0.5, 1,2, 3,4, 6, 8, 10.
Note that if plotted in terms of dimensional variables then the maximal length of the current would
decrease monotonically with increasing initial coarse fraction.

We illustrate these results by considering a bidisperse suspension in which the
settling velocities have a 7 : 1 ratio. We plot in figure 1 the runout length [,, = [S,,]*/*
as a function of the proportion of coarse particles. It is important to recall that this
runout length has been non-dimensionalized with respect to that which is predicted
using the average settling velocity. Hence when there is solely coarse, or fine, particles
(f =0, or f =1), we find that [,, = 1. Whenever there is a mixture of particles [,, > 1.
This reflects our earlier conclusion that any degree of polydispersion increases the
runout of the gravity currents.

Figure 1 also shows how these currents evolve towards the final runout distance
as we plot the length at a few given times as a function of the proportion of coarse
particles. Note that at early times there is no difference in the distance propagated by
the bidisperse gravity currents with any proportion of coarse particles. This reflects
the observation that the early behaviour of the current is well-represented by a
monodisperse current with the average settling velocity. However as time progresses
we begin to notice differences. For this case (1 = 1/7), the greatest propagation occurs
when f = 0.65

In figure 2 we plot the length of the current as a function of time for a few chosen
values of the proportion of coarse particles. Once again we observe how the early
time behaviour is independent of the precise proportion of fine particles, but as time
progresses the curves begin diverge. We also plot the approximate solution (2.30) for
the evolution of the current length and note that the approximate solution works
reasonably well.

For bidisperse gravity currents the dimensionless distribution (2.32) of the deposit
is given by

Y(X

5 [Vifad + V(1 — f)a”]
)—/S (2.37)

S5 [fa" + (1= fa)
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FIGURE 2. The non-dimensional length of particle-driven gravity current (/) containing a bidisperse
distribution of particles with a 7 :1 ratio of settling velocities as a function of dimensionless time
t. Curves are shown for a range of initial proportions of coarse particles. Also plotted are the
approximate solutions derived from (2.30) for the length as a function of time I(t) (- - - -).

where a(S) satisfies (2.21). We integrate this expression for A = V,/V; = 1/7 and a
range of values of f and present the results in figure 3. In these plots we show the
contributions to the depth of deposit from both the fine and coarse particles. Note
that both contributions thin with distance from the point of release, with the deposit
near the source being relatively rich in the coarse particles compared to that in the
distal regions. It is noteworthy, though, that the spatial scale is different for each
of these flows because distances are scaled by f~2/°. To enable comparison between
the cases we scale the dimensionless distance [ with respect to (5Fr/f;)*°, rather
than (5Fr/f)*°. With this scaling the spatial scale remains invariant for each of the
calculations of the depth of the deposit (figure 4). Thus we note that increasing the
proportion of fine particles leads to the coarse particles being deposited over a greater
downstream distance.

Finally we calculate the proportion of coarse sediment within the deposit. This
provides an indication of the lateral segregation of different sediment types within
the deposit from an initially well-mixed suspension. The dimensionless flux of coarse
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25¢

(a)

FIGURE 3. The distribution of the deposit arising from sedimentation from a bidisperse particle-driven
gravity current. The total depth of the deposit is plotted ( ), which comprises contributions
from both the fine (— - — -) and coarse fractions (- - - -) of particles. The deposit is shown for
initial coarse fractions of (a) 90%, (b) 50%, (c) 10%.

sediment to the underlying deposit is given by Viy; and hence the proportion of
coarse sediment is given by

Viyy
M) = ——. 2.38
®) Viyr + Voo (2.38)

Thus £ is a decreasing function of time, with initial value

20— &
2(0) = eI (2.39)
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FIGURE 4. The distribution of the deposit arising from sedimentation from a bidisperse particle-driven
gravity current. The figures show (a) total depth of the deposit; (b) the depth of fine particles; and
(c) the depth of coarse particles. The dimensionless distance has been rescaled so that it is identical
for each of the initial proportions of coarse particles.
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FIGURE 5. The distribution of the deposit and the proportions of coarse and fine particles within
it arising from sedimentation from a bidisperse particle-driven gravity current. In this calculation,
V,/Vy = 1/7 and the suspension initially contains equal proportions of fine and coarse particles
(f = 0.5). The contours are shown for 80%, 60%, 40%, 20%, 10% and 5% of coarse particles
within the deposited material. Also shown is the total depth of the deposit, Y'(X), as a function of
downstream distance ( ).

We may also formulate an expression for the way in which the deposit grows in time.
Denoting the dimensionless depth of deposit at a downstream distance X and at time
t, by D(X,t), we find that

- SO [Vifa" + Va(1 — f)a"]
D(X,t)—/ S2/5 [faVI +(1—f)aVz]1/2

where S. = X%2. Since we now have the depth of the deposit as a function of
time and the proportion of coarse particles in the depositing flux of sediment, we
may track how the proportion of coarse particles evolves with time and distance
within the flow. In figure 5 we illustrate the results for a current with equal initial
fractions of coarse and fine particles (f = 0.5), but with A = 1/7. We note how the
coarse particles preferentially settle out close to the start of the current, whereas the
fine particles are advected further downstream. The nature of the deposit therefore
changes in both the streamwise direction and in the vertical. The coarse particles tend
to settle out first and so are overlain by a deposit which becomes progressively finer.
However the deposit also fines downstream since the coarse particles predominantly
sediment within a region close to the source. We may calculate the composition of the
deposit as a function of the relative depth within the deposit at locations downstream
of the source. For example, we plot the composition at four downstream distances
(X =0.1,0.4,0.7 and 1.0) in figure 6 and note how the profiles evolve from a banded
deposit with a layer of predominantly coarse particles overlain by a layer of fine
particles close to the source (X = 0.1), to a deposit which is almost entirely composed
of fine particles at large distances from the source (X = 1.0). We note that at present
profiles such as these are not measured in laboratory experiments, though this would
be an interesting investigation.

ds for S(t)=S., (2.40)
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FIGURE 6. The composition of the deposit as a function of relative depth within the deposit at
X =0.1,04,0.7 and 1.0.

3. Polydisperse shallow-water model

While box models provide the evolution of bulk characteristics of gravity current
motion, they do not resolve the internal structure of the flows. To do this we
employ a system of shallow-water equations in which the dependent variables, the
horizontal velocity, height of the current and volume fraction of particles, are functions
of the horizontal spatial coordinate and time. This model does not resolve the
vertical distribution of the velocity field and volume fraction of particles, but for
monodisperse currents such a class of models has been used to accurately model
the evolution of the flow. We demonstrate that many of the simple results obtained
for this more complete model are similar to those obtained for the box model. The
formulation of the shallow-water model is the same as that employed by, for example,
Bonnecaze et al. (1993) and Harris et al. (2001). The length of the flow is assumed
to be much greater than the depth so that vertical accelerations are negligible and
the pressure adopts a hydrostatic distribution in the vertical. Then depth-averaged
equations are formulated for the horizontal velocity field and the height of the
current. In addition, the volume fraction of each class of particles is modelled on
the assumptions that within the current it is vertically uniform, that the particles
settle to the underlying horizontal boundary with a constant settling velocity, which
is different for each particulate class and that no particles are re-entrained having
been deposited on the underlying boundary. Thus the turbulence within the flow
is sufficient to mix the relatively heavy particles vertically, but insufficient to erode
those already deposited. This regime may be specified as follows for particles with
settling velocity vy and diameter d, moving through fluid of kinematic viscosity v in
which the magnitude of the turbulent velocities is u.. For the particles to be vertically
well-mixed, v;/u. < 1 and for there to be no re-entrainment of deposited particles,
vs/u. > (u.d/v)>. The latter condition arises from formulating the critical Shields
parameter for the threshold of motion (Fredsoe & Deigaard 1992) and by using
the Stokes settling velocity for the particle. In the laboratory experiments described
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below (§4), particles of size 107> m were suspended in water and their settling velocity
was of order 103 ms~!. We estimate the turbulent velocity fluctuations to be of
order 102 ms~! and thus v,/u. = 0.1, while (u.d/v)> = 1072, Hence the regime of
a vertically uniform concentration field, together with no re-entrained particles, is
adequately realized in laboratory experiments.

A thorough discussion of the validity of the assumptions underlying this model is
given by Harris et al. (2001). They identify the timescales over which viscous forces
begin to influence the flow and the timescales over which significant horizontal shear
develops in the velocity field.

As in §2, we non-dimensionalize lengths with respect to A2 and times with
respect to (4'2/gy)"/?, where gj is the initial reduced gravity of the suspension.
We also scale the volume fractions according to (2.6). We henceforth denote the
dimensionless velocity, height and volume fraction fields by u(x,t), h(x, t) and y;(x,t),
respectively. Furthermore the dimensionless length of the current is denoted xy(t)
and the dimensionless settling velocities by ;. Thus the equations for conservation of
mass and momentum are

oh 0
7t + g(uh) =0, (3.1)
0
0x
where W (x,t) is defined as the sum of all the separate components of the volume
fraction,

0
a(uh) + —Wh+1¥h) =0, (3.2)

Y0 = pilx.0). (33)
i=1

There is a separate equation describing the evolution of each of the y;(x, t) representing
the conservation of particles of type i. In dimensionless form, these are
op; op; Biwi

=— . 4
ot Y ox h (34)
The boundary conditions for this flow are similar to those employed by Bonnecaze et
al. (1996): no velocity at the origin, u(0,t) = 0; and the Froude number condition for
the speed at the nose of the current, which is modified to include the effect of all the
particles,

u(xn, 1) = Frlh(xy, ¥ (xy, 1)]2. (3.5)
In addition there is an expression for global conservation of volume,
xn(t)
/ hdx =1, (3.6)
0
and a condition for kinematic consistency at the front of the flow, given by
dx
o = ue(e. o) (3.7)

To those equations and boundary conditions, we must add initial conditions for the
profile and velocity of the current, but provided the runout distance of the flow far
exceeds its initial length, these do not significantly influence the following results after
an initial (short) adjustment time (see Hogg et al. 2000).

To analyse this system of equations and boundary conditions, we first rescale
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length- and timescales by

F 2/5 1 D) F -2/5

where f is the average settling velocity given by (2.11) and b = 1 — Fr?/6. Note that
except for the factor b, these scalings are identical to those of the box model (2.13).
We now introduce different independent variables, to replace x and t. These are given
by

E=x/xy(t) and s=[xn()]% (3.9)
The dependent variables are now treated as functions of & and s and written as

o) = HE 9/ a0, o0 = 2005 and plon=n(&s). (10

The resulting equations and boundary conditions are then rewritten in terms of these
new variables. Importantly we obtain the following evolution equation for s(t):

d
d;: — &*5F(s), (3.11)
where the new function F(s) is defined by the boundary condition applied at ¢ = 1,
F(s) = [bH(1,s) ¥ (1,5)]"/2. (3.12)

Note that F(0) is non-vanishing and it may be expanded as a Taylor series (see
§3.1). One of our aims is to investigate how F(s) differs from that derived for a
monodisperse suspension Harris et al. (2001). We observe that the function F(s)
within the shallow-water framework is analogous to the function y(S) within the
box-model analysis. Comparison between these functions will permit an evaluation
of the differences between the two models. Also, on the basis of what we have found
using the box model, we expect the dynamics of polydisperse currents to be similar
at first to those of a particle-laden current with the average settling velocity, f, but
at later times we must account for higher moments in the distribution of the settling
velocities. Indeed it was found that the variance of the distribution came into y(S) at
0(S?).

In terms of the new variables, the governing equations for conservation of mass
and momentum are given by

0 0H

2%[(U—5)H]—|—SSR =0, (3.13)

ou oU dF a 0
2 2 2
—_ _ _— —_ —_ _ _—— = ‘1

F*|2(U 6)66—1—55 Os} (F Ssds>U+H6£(lPH) 0, (3.14)
where a = b/Fr?. Particle conservation is now expressed by
i ;i 10V; @i s _

2(U—=¢) E + 5s 2 +T_O’ (3.15)

where V; is, as before, the ratio of §; to f. On the assumption that each class of particles
has an identical initial distribution, this set of equations again admits solutions for
the volume fractions as powers of a new function Q(¢, s). If the suspension is initially
well-mixed, so that it is spatially homogeneous, each of the volume fractions can be
written as

Pi(E,5) = pi(0) Q(E,5)", (3.16)
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where ¢;(0) denotes the initial uniform volume fraction of the ith class of particles
and Q(¢,s) satisfies

0Q 10Qs
s T HF
Note that this evolution equation is identical to the equation for volume fraction
derived for monodisperse currents (Harris et al. 2001).

2(U—£)(;? + 55 0. (3.17)

3.1. Power series analysis

Following the approach of Harris et al. (2001), we investigate this new system of
governing equations by expanding all of the variables as power series in s. Note that
the structure of the governing equations (3.13), (3.14) and (3.17) is such that these
power series may only proceed in integer powers of s. Thus we write

H(E,5) = Ho(&) + sHy(&) + s Ha(&) + -+, (3.18)
U(&,5) = Up(&) + sUI(E) + 5 Un(E) + -+, (3.19)
Q(&,5) =1+ 5Q1(8) + 2 2(E) + -+, (3.20)

F(s) = Fo + sF; +s°Fy + -+ -. (3.21)

The series expansions are then substituted into the governing equations and terms are
equated in orders of s (Harris et al. 2001).

At O(1), we recover the similarity solutions for a current of constant density
propagating through a less dense ambient (see Hoult 1972; Bonnecaze et al. 1993;
Hogg et al. 2000). At this order we neglect particle sedimentation (©y = 1) and the
velocity and height fields are given by

Uo(¢) = ¢, (3.22)
Ho(¢) = (62 —1)/4a + 1/b, (3.23)

while from the series expansion of the evolution equation (3.12), we deduce Fy = 1.
At O(s), we begin to observe the effects of sedimentation in the solutions for the
volume fraction, velocity and height of the current. First we find that

Q = —2/H,. (3.24)
Hence from (3.16), by forming an expansion for ¢;, we find that
¢ = —2Vipi(0)/Ho. (3.25)

Thus the volume fraction of each class of particles is reduced by an amount pro-
portional to the settling velocity, relative to the average settling velocity, and to its
initial value, and inversely proportional to the leading-order height of the current.
This implies that the first-order correction to the total volume fraction is given by

Yi=) ¢a=-2/H. (3:26)
i=1

This result means that the first-order corrections to the height and velocity fields have
exactly the same form as for a monodisperse current (Harris et al. 2001). Truncating
the series at this order has reproduced mathematically the semi-analytical model
of Bonnecaze et al. (1996). The evolution of the current is exactly the same as a

monodisperse current with an appropriate average settling velocity, f, whilst the
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individual components of the volume fraction decay with their own settling velocities.
The first-order velocity field satisfies
10aH),

(461HOU1 )N — 30U1 = 15F1é — H , (327)
0

subject to U (0) = Uy(1) = 0, where a prime denotes differentiation with respect to &.
Thus the solution is given by

aH)
3H,
where { = ié(4a—1/3)7"/2, Qs is the fifth-order Legendre function of the second kind,
and a, and F; are constants which are determined by the boundary conditions and

depend upon the magnitude of the Froude number, Fr. (For Fr = 1.19, a, = —0.011
and F; = —0.578.) The first-order height field is related to this velocity field by

H, = —2(UHy)/5. (3.29)

Ui(&) = aiQ5(0) + —3Fi¢, (3.28)

These functions are plotted in figure 7 along with the O(1) similarity solutions.

Harris et al. (2001) find that truncating at first order only produces good results
for relatively small values of s. Fortunately we are in a position to calculate the
O(s?) terms to improve upon this and to identify the effects of polydispersion. The
second-order correction to the volume fraction is given by

Q, = (10 + 5F,Hy + 5H, — 2U,H})/5H;. (3.30)

As observed above, the evolution equation for Q is identical to that for the volume
fraction in a monodisperse gravity current. Hence this second-order correction is also
identical to that for a monodisperse current (see Harris et al. 2001). Substitution of
(3.30) into (3.16) yields

@i = Vigi(0)(10V; + 5F,Hy + 5SH, — 2U,H}))/5H;. (3.31)

The only changes in this expression from (3.30) are the pre-multiplicative factor and
the inclusion of an extra factor V; inside the brackets. This means that the volume
fractions of particles with a settling velocity less than the average will decay more
quickly than before, whilst the converse is true for particles with settling speeds
greater than the average. The second-order correction to the total volume fraction
now depends upon the variance of the particle distribution,

¥y =" g = (10 + 106> + 5, Ho + SH, — 2U, Hy) /5H;. (3.32)

i=1

(We note that ¢ = 0 recovers the monodisperse result.) This extra term is always
positive and hence the rate at which the total volume fraction of suspended particles
declines is reduced. Hence the current always propagates further, independent of the
precise details of the particle distribution. This result is entirely analogous to that
obtained from the box model.

Since the modification to ¥, due to polydispersion is proportional to ¢, we deduce
that the modifications to all the other second-order quantities due to polydispersion
can be written as multiples of ¢2. Hence we may partition the second-order functions
into parts associated with an equivalent monodisperse current (6> = 0) and parts
which arise when the variance is non-zero (¢> > 0). The monodisperse functions,
denoted by H;|,—0 and U,|,—¢, were calculated by Harris et al. (2001) and are plotted
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FIGURE 7. The similarity solutions Hy(&), Uy(&) and Qy, together with the first-order perturbation
functions, H,(¢), U;(¢) and Q(&). Also plotted is the second-order function Q,(&).

in figure 8. Furthermore F;|,—9 = 0.114 for Fr = 1.19. In order to analyse the
contributions associated solely with polydispersivity parts, we define the parameter

F = (Fy — Fals=0)/0”, (3.33)

and the functions
U = (Usyzo — Uslymp) /07, (3.34)
H = (Ha|g20 — Halo—0)/0”. (3.35)

On substitution of these functions into the governing equations, we obtain the fol-
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FIGURE 8. The second-order perturbation functions, H,(¢) and U,(¢), decomposed into
contributions Hy(¢)ly—o (——) and #(&) (- - - -), and Us(&)lyo (——) and %(&) (- - - -).

lowing differential equations for # and #:
(#Hy) + 54 =0, (3.36)

11U +8F ¢ +2a#" = 0. (3.37)

Hence these may be combined to yield a single, second-order differential equation for
U, given by

(4aHo%)" — 110% = 80F &. (3.38)

The boundary conditions on % are no flow at the origin, the global conservation of

fluid volume, and the evolution condition at the front of the current. These may be
expressed, respectively, as

A0)=%(1)=0 and % (1)=—10F + 5b°. (3.39)
The solution may be written in terms of Legendre functions as
U(E) = A Ppy(0) + BQ(() — 107¢/13, (3.40)

where ./ and % are constants and P;y and Q¢ are Legendre function of order 10
of the first and second kind, respectively. The boundary conditions are sufficient to
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determine ./, 4 and & . For Fr = 1.19 we have
o =—109%x10"% #=0 and Z =0.214. (3.41)

The profiles for #(¢) and %(&) are shown in figure 8. The surprising fact is that they
are very similar in shape to the functions H,(&)|,—o and U,(&)|,—0 but with the opposite
sign. At first sight this may appear counterintuitive since the current propagation is
more rapid (& > 0) for the polydisperse current than the monodisperse current, and
yet the above corrections to the height reduce its value at the nose and reduce the
velocity along the length of the current < 0. To explain the results and unravel this
apparent contradiction we observe that the leading-order solutions are the similarity
solutions for the intrusion of a gravity current with a constant density and that for
these solutions there is an exact balance between the hydrostatic pressure gradient and
the inertia of the fluid. Once sedimentation is accounted for this balance is destroyed.
Sedimentation occurs most rapidly within the tail of the current where the height is
least. Thus the pressure is reduced and the fluid is driven from the tail towards the
front of the current. Hence we observe that close to the tail H; < 0 but close to the
nose H; > 0. The velocity field, U; monotonically increases close to the tail, before
returning to zero at the front.

The second-order functions for a monodisperse current may be explained as follows.
The volume fraction is positive along the entire length of the current, because the
first-order correction has over compensated for the effects of sedimentation. Although
the first- and second-order functions have a similar profile, they are rather different in
magnitude. They have an essentially similar profile because they reflect the pattern of
non-uniform sedimentation along the length of the current. (In terms of the variables
presented in this study it is the balance between 5s0Q/ds and 10Qs/HF.)

For polydisperse currents, we have found that when the flows reach a given length,
a smaller proportion of particles will have settled out relative to a monodisperse
current with the average settling velocity. This is because the reduced sedimentation
velocity of the finest fraction of particles implies that the buoyancy difference between
the current and ambient is maintained for longer and hence the currents flows more
rapidly. In mathemati