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A phase-plane approach is used to determine similarity solutions of the axisymmetric
shallow-water equations which represent inwardly propagating, inviscid gravity
currents. A Froude number condition characterizes the movement of the front.
The unique similarity exponent is found numerically as a function of the frontal
Froude number and the height and velocity profiles are presented for three different
Froude numbers. The fluid speed and height are seen to increase monotonically
towards the front except very close to the front where the height decreases. The
maxima in both height and speed increase as the Froude number increases, reflecting
the change in ambient resistance.

For the Froude number that has been obtained experimentally for lock-exchange
Boussinesq flows (Fr =1.19) for which the similarity exponent is 0.859094, the
similarity solution is compared to the numerical solution of the initial value problem,
obtained recently by Hallworth, Huppert & Ungarish (2003). Our similarity solution
compares reasonably well with their integration of the shallow-water equations in
the neighbourhood of the front and at times close to collapse (when the front
reaches the origin); however, near this point their numerics begin to fail. The solution
at collapse and the similarity solution after collapse are also found for Fr = 1.19.
This similarity solution describes the formation of a shock, as well as its initial
propagation.

1. Introduction
There are many examples of gravity currents in nature, such as fog banks, river

water discharging into the sea and pyroclastic flows. They occur whenever fluid of
one density flows, predominantly horizontally, into fluid of a different density. The
density contrasts that drive the current may be due to differences in temperature
or composition. An overall view of many of the phenomena associated with gravity
currents is presented by Simpson (1997).

The situation which we consider here is that of a converging, axisymmetric gravity
current propagating at high Reynolds number. An example of such a flow in nature
is where turbidity currents are generated at the edge of a lake and propagate inwards
towards the lake’s centre. Another example is tidal flow up a river estuary, although
this is not strictly axisymmetric due to bank friction and an irregular geometry. The
funnelling effect of the estuary greatly enhances tidal variation, and estuaries such as
that of the Severn are great (potential) sources of tidal power.



332 A. C. Slim and H. E. Huppert

h, |u|

Initial
Middle

Final

t

Figure 1. Qualitative structure of the height and velocity of the current front against time.
‘Initial’ refers to the behaviour at early times during which the height of the front reduces
with time. ‘Middle’ refers to intermediate times during which the height of the front is fairly
constant with time. ‘Final’ refers to late times, just before collapse, during which the height of
the front increases once more. Redrawn from Hallworth et al. (2003).

The precise flow which we consider is the axisymmetric gravity current that results
when fluid contained between two concentric circular cylinders is suddenly released
by the removal of the inner cylinder. This problem was considered in an experimental
and numerical framework by Hallworth, Huppert & Ungarish (2003). They found that
the gravity current produced passes through three phases before the front reaches
the origin (the axis of the cylinders), as shown in figure 1. Initially, the inwardly
propagating current develops in a way similar to an outflowing current, with the
height and the velocity of the front decreasing with time (or increasing distance from
the lock). However, the narrowing of the geometry causes fluid to pile up at the front
and eventually this effect becomes comparable to the lowering of the front due to
spreading of the current. Therefore the next stage is typified by fairly constant height
and velocity of the front. In the final stage, when the front is very close to the origin,
its height and velocity increase. We present a similarity solution for this final stage.
In order to do so, we model the current using the shallow-water equations. These are
appropriate equations for shallow inviscid currents and are the same as those used in
Hallworth et al. (2003).

There are several reasons for considering similarity solutions. First, they describe
the intermediate asymptotics of a problem: they hold at times when the precise initial
conditions are no longer important, but before the system has reached its final steady
state. They are also much simpler than the full solutions and so should be easier
to understand and study in different regions of parameter space. A final reason for
studying them is that they are solutions of a system of ordinary differential equations
and hence do not suffer the extra inherent numerical problems of the full partial
differential equations, in this case the hyperbolic shallow-water equations.

In the regime in which we are interested, both the radius of the outer cylinder and
the total volume of fluid are likely to be important at all times (we describe this in
more detail in § 3). This suggests that any similarity solution is not of the standard
form but is of the second kind (Barenblatt 1996). In order to find it, we use the
powerful phase-plane approach in which the system is assumed to be self-similar, but
with an unknown similarity exponent. This reduces the governing partial differential
equations to a set of autonomous ordinary differential equations in two variables and
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the boundary conditions to points in their phase space. The problem then reduces
to finding the similarity exponent for which an integral curve connects the points
representing the boundary conditions. This is also explained in greater detail in § 3.
The approach has been used extensively in gas dynamics to find similarity solutions
(see, for example, Sedov 1959; Barenblatt 1996). In particular, the problem analogous
to ours, that of an imploding axisymmetric shock, has been considered in detail using
this method by many authors, such as Guderley (1942), Brushlinskii & Kazhdan (1963)
and Bilbao & Gratton (1996). It has also been used in many other fields, for example,
Gratton & Minotti (1990) used it to study self-similar viscous gravity currents in-
cluding converging currents, while Aronson & Graveleau (1993) and Diez, Gratton &
Minotti (1992a) applied the method to find inwardly propagating solutions of more
general diffusion-type equations. The problem of converging, surfactant-driven flow
was considered by Jensen (1994); Hunter (1960) modelled cavitation and Grigoryan &
Babkin (1998) studied turbulent converging currents. The phase-plane approach has
also been used in the study of the shallow-water equations by Grundy & Rottman
(1986). They discussed similarity solutions to both the planar and axisymmetric
problem of an outflowing current with time-dependent flux at the origin. Their work
was considerably extended by Gratton & Vigo (1994) in the planar case to incorporate
shocks.

The layout of the paper is as follows. In § 2 we set up the shallow-water equations
and boundary conditions for our problem and in § 3 translate them into the phase-
plane formalism. In § 3.7 we find the similarity solution and study how it changes
with changing frontal Froude number. In § 4 we compare our similarity solution to
the behaviour of the initial value problem at times when the front is close to the
origin. We investigate the comparison with the results of numerical integration of
the shallow-water equations, using the numerical code of Hallworth et al. (2003). A
comparison with their experimental results is not possible since too few measurements
exist of the final stages of the flow, just before collapse. In § 5 we briefly consider
the solution when the front reaches the origin and the similarity solution thereafter.
In § 6 we summarize the main features of the similarity solutions we have found and
discuss their accuracy in modelling the physical problem.

2. Formulation of the problem
We consider an axisymmetric gravity current whose front propagates inwards,

towards the origin. Such a current results when fluid contained between two concentric
circular cylinders is suddenly released due to the removal of the inner cylinder. We
are interested in the cases when the current is either more or less dense than the
ambient fluid into which it is intruding. If the current is more dense, then it flows
over a lower boundary. If it is less dense, then it flows under an upper boundary. In
either case the bounding surface is taken to be flat and horizontal.

2.1. Assumptions and governing equations

We assume that the ambient fluid has a depth much greater than the height of the
current and that both the ambient and the current have homogeneous densities. We
ignore any flow in the ambient and also mixing, surface tension and frictional effects
between the current and the ambient, except at the front (see § 2.2).

We consider the regime in which inertia and buoyancy balance and viscosity and
turbulence are negligible. At sufficiently long times after release, the current’s length
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may be taken to be much greater than its thickness and the flow in the current may be
taken to be predominantly horizontal. Hence pressure may be assumed hydrostatic.

Under these assumptions, the appropriate governing equations for the gravity
current are the axisymmetric shallow-water equations

∂h

∂t
+

1

r

∂

∂r
(ruh) = 0, (2.1a)

∂u

∂t
+ u

∂u

∂r
+ g′ ∂h

∂r
= 0, (2.1b)

which can be obtained from the depth-integrated mass and momentum equations
(see, for example, Penney & Thornhill 1952; Whitham 1974). In these equations, u is
the radial velocity, h height, t time and r the radial coordinate. The parameter g′ is
the reduced gravity, given by g′ = (ρ − ρa)g/ρ, where ρa is the density of the ambient
and ρ that of the current. It should be noted that we are not taking the Boussinesq
approximation here because we are interested in all possible ratios of densities between
the current and the ambient, although taking the Boussinesq approximation would
not change the form of the equations.

2.2. Boundary conditions

During the motion, the outer cylinder at r = Ro remains in place and the velocity
there is zero. Hence one boundary condition for (2.1) is

u(Ro, t) = 0. (2.2)

The boundary condition at the front must describe the influence of the ambient
fluid on the gravity current. This has been neglected so far in our formalism, other
than replacing g with g′ in the shallow-water equations (2.1). Most work on finding
such a front condition has been done for the planar lock-exchange problem and
to motivate our choice we give a brief description of the relevant results for that
situation.

At the front, there is a quasi-steady balance between the current’s buoyancy, driving
it inwards, and the acceleration of the ambient as it is forced to rise over the current
if it is less dense or to sink under the current if it is more dense. There is then a
relation between the velocity and height of the front given by

u(rf , t)√
g′h(rf , t)

= Fr, (2.3a)

where Fr is the frontal Froude number and rf is the position of the front and satisfies

drf

dt
= u(rf , t). (2.3b)

Such a relation was first derived by von Kármán (1940) and Benjamin (1968) and has
been used extensively in subsequent work on inviscid gravity currents (see Huppert
2000). It should be noted that the height and velocity here are not those at the point
where the height of the current is zero, but the constant values just behind the head
of the current.

The value of the frontal Froude number in (2.3) depends on the density contrast
between the current and the ambient. Benjamin (1968) used conservation of mass and
momentum to obtain the Froude number for a current of zero density propagating
into an ambient of non-zero density with energy loss. His result was extended by
Gröbelbauer, Fanneløp & Britter (1993) to currents of non-zero density and they
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derived

Fr =
√

2ρ/ρa, (2.4)

for an infinite ambient. However, they modified this relation so that in the limit
ρ/ρa → ∞, Fr → 2

√
2 based on the finite rate of exchange of energy in the current from

potential to kinetic. They also conducted a numerical and experimental investigation,
with the results agreeing reasonably well with (2.4).

More recently, Shin, Dalziel & Linden (2004) have argued that energy is conserved
in a planar lock-exchange system, although it is transported between the heavy and
light fluid fronts. Using conservation of mass, momentum and energy, as well as the
unsteady Bernoulli equation, they obtain

Fr = 1, (2.5)

for an infinite ambient and for Boussinesq fluids. For this case, Huppert & Simpson
(1980) experimentally obtained the relation

Fr = 1.19, (2.6)

for the heavy fluid front.
While these results are not rigorously applicable, particularly since the flow in our

current is not steady as assumed in the theoretical derivations given above, we use
them as a guide. Hence we take our frontal condition to be identical to (2.3), although
in view of the fact that u < 0 we write

u(rf , t)√
g′h(rf , t)

= −Fr, (2.7a)

drf

dt
= u(rf , t). (2.7b)

From (2.4), we take the Froude number to be a constant in the range 0 to infinity,
with large (small) values corresponding to large (small) current densities compared
to the ambient. We ignore the fact that (2.3) does not hold precisely at the front, but
just behind the head.

2.3. Jump conditions

Internal jumps may occur at the interface between the current and the ambient fluid
and we should consider this possibility in our similarity solution. They turn out to
be of interest in finding a similarity solution before collapse and are essential to our
analysis of behaviour after collapse (see § 5) and so we give a brief description of them
here. Because the depth of the ambient has been taken to be infinite, the conditions
governing any internal jumps are identical to those for a single-layer fluid (see Yih &
Guha 1955) and may be obtained from conservation of mass and momentum across
the shock. If us is the velocity of the shock and rs its radial position, then

drs

dt
= us, (2.8a)

u′ − us = 2(u − us)/φ(Fr s), (2.8b)

h′ = 1
2
hφ(Fr s), (2.8c)

where φ(Fr s) = (1 + 8Fr2
s )

1/2 − 1 and Fr s = (u − us)/
√

g′h. Here unprimed variables
refer to values behind the shock and primed variables to values ahead of the shock
(see Yih & Guha 1955; Gratton 1991).
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Using a Kármán–Pohlhausen technique, it may also be possible to derive an
alternative set of governing equations which include shocks automatically (see
Watanabe, Putkaradze & Bohr 2003). We have not considered that approach, although
it may be interesting to do so.

3. Self-similarity
In this section we consider the problem of finding a similarity solution of the

shallow-water equations (2.1) subject to the boundary conditions of § 2.2. As an
introduction and indication of the notation, we summarize the theory behind self-
similarity, with our formal analysis beginning in § 3.1.

First we non-dimensionalize the problem. The shallow-water equations can be
reduced to a pair of equations with no dependence on constant parameters if, instead
of considering the variable h, we consider the variable h = g′h. Then the variables
and parameters for our problem, with their dimensions, are

u h r t g′V Ro Fr a1 a2 . . .

LT −1 L2T −2 L T L4T −2 L 1 1 1 . . .

where V is the volume of the current, Ro is the radius of the outer cylinder and a1,
a2, . . . are dimensionless parameters which characterize the precise initial conditions.
It should be noted that all the parameters are kinematic and hence only two may
have independent dimensions.

The dimensionless variables are then

u

r/t

h
r2/t2

r

(g′V )1/4|t |1/2︸ ︷︷ ︸
r

Ro︸︷︷︸ Fr a1 a2 . . .

ξ1 ξ2

and so the dependent variables u/(r/t) and h/(r2/t2) must satisfy
u

r/t
= F1(ξ1, ξ2, Fr, a1, a2, . . . ), (3.1a)

h
r2/t2

= F2(ξ1, ξ2, Fr, a1, a2, . . . ). (3.1b)

The definition of self-similarity, given by Barenblatt (1996), is that ‘a phenomenon is
called self-similar if the spatial distribution of its properties at various moments of
time can be obtained from one another by a similarity transformation’. The forms
given in (3.1) are not self-similar because Barenblatt’s definition requires that both r

and t are tied together in a single dimensionless variable.
Shortly after the flow is initiated, we expect that a similarity solution will not hold,

because both the volume of the current (multiplied by g′) and the radius of the outer
cylinder, in addition to the precise form of the initial conditions, will be important.
For a similarity solution to hold at later times, the system must forget either g′V or
Ro, or a single number representing both must be selected. For it to be useful, the
system should also forget the initial conditions.

If we set the moment of collapse to be t =0, then we seek the similarity solution
valid in the limit as t → 0−. In this limit, there are three possibilities for the behaviour
of (3.1). These are:

(a) self-similarity of the first kind, where

Fi(ξ1, ξ2, Fr, a1, a2, . . . ) → F̃ i(ξ1, Fr, a1, a2, . . .) or F̃ i(ξ2, Fr, a1, a2, . . .)

for i = 1, 2;
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(b) self-similarity of the second kind, where

Fi(ξ1, ξ2, Fr, a1, a2, . . . ) → F̃ i

(
ξ1/ξ

α
2 , Fr, a1, a2, . . .

)
for i = 1, 2 and for specific α; and

(c) no limit for F1,2 exists of the above forms. Self-similarity may then not exist.
Further details of this argument are given by Barenblatt (1996).

Hence for similarity solutions of both the first and second kind, the form of the
solutions for the dependent variables can be written as

u

r/t
= F̃ 1(η),

h
r2/t2

= F̃ 2(η), (3.2)

where η = r/b|t |δ and is dimensionless. For similarity solutions of the first kind, only
a single boundary condition is still important in the regime of interest and hence b

and δ are fixed by it. For similarity solutions of the second kind, this is no longer the
case and b and δ are not fixed by a single boundary condition. This is expected to
be the case for our problem, since a major factor affecting our similarity solution will
be the volume of fluid concentrated in the head of the current, because this controls
the height and hence dynamics of the front. This is clearly related to the total
volume of fluid (multiplied by g′); however, it is also related to the radius of the outer
cylinder since the current will wet the entire area from the outer cylinder to the
front at all times. For such similarity solutions, δ is found by solving an eigenvalue
problem: for general δ no solution exists and only for a specific value of δ is a solution
possible. The value of δ also sets the dimensions of b. However, the numerical value
of b can only be found by following an initial value problem, either numerically or
experimentally, until it reaches the self-similar regime (see Barenblatt 1996).

It turns out to be convenient to scale F̃ 1 and F̃ 2 with δ and δ2 respectively (in the
analysis later, this keeps important features in the phase plane fixed with changing
δ). Then the final forms that we assume for η and for the dependent variables u and
h are

u = δ
r

t
v(η), h = δ2 r2

t2
z(η), η =

r

b|t |δ , (3.3)

where v and z are dimensionless functions of η. It should be noted that before collapse
t < 0 and for an inwardly propagating current u < 0, and therefore v > 0. The position
of the front, rf , is given by rf = b|t |δ .

3.1. Phase-plane governing equations

Substituting (3.3) into the shallow-water equations (2.1), we obtain, after considerable
algebra,

dv

d log η
=

v(1 − v)(1 − δv) + 2z(1 − δ − δv)

δ[z − (v − 1)2]
, (3.4a)

dz

d log η
=

z(3δv2 − 4δv − v + 2 − 2δz)

δ[z − (v − 1)2]
. (3.4b)

These equations should be compared to those derived when studying self-similarity
in gas dynamics, since much work has been done in that field. The axisymmetric
governing equations for an ideal, inviscid, polytropic gas neglecting heat conduction



338 A. C. Slim and H. E. Huppert

and body forces (Whitham 1974) are

∂ug

∂t
+ ug

∂ug

∂r
+

1

ρg

∂pg

∂r
= 0, (3.5a)

∂ρg

∂t
+

1

r

∂

∂r
(rρgug) = 0, (3.5b)

D

Dt

(
pgρ

−γ
g

)
= 0, (3.5c)

where ug is the velocity, ρg the density, pg the pressure of the gas and γ the adiabatic
exponent. Note that these equations can be made identical to the shallow-water
equations in the case γ = 2 on introducing the transformations pg = ρg′h2/2, ρg = ρh

and ug = u.
Then substituting

ug = δ
r

t
v(η), ρg = AωG(η)r−ω, γ

pg

ρg

= δ2 r2

t2
z(η), (3.6)

where η = r/b|t |δ , into (3.5), we obtain identical equations to (3.4) for v and z if and
only if γ = 2 and ω = 2(1 − δ)/δ (see Gratton 1991). The problem in gas dynamics
analogous to that with which we are dealing is an imploding cylindrical shock.
This problem has been studied in some detail for ω =0 (an initially uniform density
distribution) and ω a constant (Ferro Fontan, Gratton & Gratton 1977). However, to
our knowledge, it has not been studied for ω a function of δ, in particular not for the
special case ω =2(1 − δ)/δ. The combination of different ω and different boundary
and jump conditions in our problem results in different phase-plane and solution
structures from those of gas dynamics.

3.2. Phase-plane boundary conditions

In the similarity variable η, the outer cylinder at r =Ro has coordinate ηo = Ro/b|t |δ .
Because we seek a similarity solution in the limit as t → 0−, the boundary condition
of zero velocity at the outer cylinder (2.2) becomes

u → 0




as η → ∞: δ > 0

as η → f : δ = 0

as η → 0: δ < 0,

(3.7)

where f has some finite, non-zero value.
To obtain the frontal boundary condition in (v, z) coordinates, we substitute (3.3)

into (2.7) to yield

vf = 1, zf =
1

Fr2
, (3.8)

and without loss of generality we can set ηf = 1.

3.3. Phase-plane jump conditions

In (v, z) coordinates, the jump conditions (2.8) become

v′ − 1 =
2

φ(Fr s)
(v − 1), z′ = 1

2
zφ(Fr s), (3.9)

where Fr s = (v − 1)/z1/2.
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3.4. Discussion of the phase plane

The governing equations and boundary conditions have now been translated into
similarity form and to find our solution we could obtain dv/dz from (3.4) and
integrate to give v(z). Next, from dz/d log η we could integrate to obtain z(η) and
hence v(η), subject to the boundary conditions (3.7) and (3.8). However, we do not
proceed in this way for two reasons. First, we do not yet know which point in
(v, z)-space corresponds to (3.7). Secondly, because we are dealing with a similarity
solution of the second kind, δ is unknown in advance. Hence we need to study how
the behaviour of solutions changes with changing δ.

Instead, we consider the (v, z) phase plane. Reparameterizing in terms of a variable
λ, where

d log η

dλ
= δ[z − (v − 1)2], (3.10)

we see that equations (3.4) become

dv

dλ
= v(1 − v)(1 − δv) + 2z(1 − δ − δv), (3.11a)

dz

dλ
= z(3δv2 − 4δv − v + 2 − 2δz), (3.11b)

a simpler system of two autonomous ordinary differential equations, without the
singularities of (3.4).

An example of the (v, z) phase plane is given in figure 2 where the bold arrows
indicate increasing λ. Any orbit, including any fixed point, or part of any orbit
represents a similarity solution for some boundary conditions. In fact, a solution can
consist of bits of multiple orbits provided that they match, via the jump conditions
(3.9), at ends which are not fixed by boundary conditions. Any conceivable similarity
solution of the shallow-water equations (2.1) of the form of (3.3) can be obtained
from the phase plane.

3.5. Investigation of the fixed points

We first consider the problem of finding which point in the phase plane corresponds
to (3.7). For δ = 0 we need to look at points at which u → 0 as η → f , some finite,
non-zero value. We deal with this special case in a separate section (§ 3.8). For δ �= 0,
we need to consider points at which u → 0 as log η → ± ∞. A necessary (but not
sufficient) condition for log η = ±∞ is that λ= ±∞. This can be seen from (3.10)
unless v or z become infinite for finite λ, in which case a similar analysis with 1/v or
1/z holds.

From standard theory on ordinary differential equations (see, for example,
Glendinning 1994), any orbit can only start or end, and hence have λ= ±∞, at
a fixed point, a periodic orbit or a heteroclinic cycle. However, for (3.11) it can be
shown using Dulac’s criterion and the position of the nullclines that no periodic orbit
or heteroclinic cycle can lie entirely within the z � 0 half-plane. Then, as z =0 is an
orbit and hence no other orbits can cross it, we have the result that orbits can only
start and end at fixed points in the z � 0 half-plane. Since physically g′h must be
non-negative, only the half-plane z � 0 is relevant.

From this analysis we see that log η can only be infinite at the fixed points. We
must now analyse all the fixed points to find which (if any) correspond to (3.7).

The leading-order asymptotic behaviour of v(η) and z(η) at each fixed point in the
finite plane can be found by expanding dv/dz and dz/d log η about the fixed point
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Figure 2. The (v, z) phase plane for δ = 0.859094 (the similarity exponent for Fr = 1.19). Bold
arrows indicate the direction of increasing λ and plain arrows indicate increasing η. The bold
curve is the critical parabola z = (v −1)2. Note that only A, C1 and C2 lie on this curve; D does
not. (a) A global view of the phase plane and (b) a more detailed plot of the region around
the fixed points C1 and C2. The curve P3 is the minor-axis solution for the fixed point C2 and
the curves P1 and P2 show the abrupt change in direction of the integral curves close to C2.

and integrating. Using the relations

u = δb|t |δt−1ηv(η), (3.12a)

h = δ2b2|t |2(δ−1)η2z(η), (3.12b)

we can then obtain the values of u and h . In addition, there are fixed points at which
either or both of v and z are infinite. To consider the behaviour about these points
we need to consider the equations involving the relevant reciprocals: either 1/v or
1/z.

The leading-order behaviour and the limiting values of η, v, z, u, h and the flux
2πruh are given in tables 1 and 2 for δ �= 0, 1 and in table 3 for δ = 1. From these
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Fixed Type of fixed point
point v z in variable λ v(η) z(η)

O 0 0 UN Kη−1/δ 0
2(1 − δ)Kη−2/δ Kη−2/δ

Kη−1/δ K ′η−2/δ

A 1 0 S 1 ±
[
2
δ − 1

δ
(1 + Kη)

] 1
2

0


1 +
2δ − 1

δ
(1 + Kη) δ �= 1

2

1 δ =
1

2

δ − 1

δ
(1 + Kη)

1
2
(1+ Kη−2)




B 1/δ 0 SN for δ �∈ (0, 1)
1

δ
+ Kη1/(δ−1) 0

UN for δ ∈ (0, 1)
1

δ
+

2δ2

δ − 1
Kη2/(δ−1) Kη2/(δ−1)

1

δ
+ Kη1/(δ−1) K ′η2/(δ−1)

C1 v1 z1 UF for δ �∈ (δ∗
−, δ∗

+) v1 z1

UN for δ ∈ (δ∗
−, 0) v1 z1

SN for δ ∈ (0, δ−)
SN for δ ∈ (δ+, 1)
UN for δ ∈ (1, δ∗

+)

C2 v2 z2 SF for δ �∈ (δ∗
−, δ∗

+) v2 z2

SN for δ ∈ (δ∗
−, δ−) v2 z2

SN for δ ∈ (δ+, δ∗
+)

D
1

2δ

1

8δ2
S for δ �∈ (δ−, δ+)

1

2δ
+

1 −
√

64δ2 − 64δ + 17

2(2δ − 1)
δKηα−

1

8δ2
+ Kηα−

SN for δ ∈ (δ−, δ+)
1

2δ
+

1 +
√

64δ2 − 64δ + 17

2(2δ − 1)
δKηα+

1

8δ2
+ Kηα+

E
1 − δ

δ
∞ S

1 − δ

δ
+ Kη−2 ∞

1 − δ

δ
− (1 − 2δ)(1 − δ)

4δ2
Kη2 1

K
η−2

F ∞ 0 S ∞ Kη−3

Kη−1 0

G ∞ ∞ S–N ∞ Kη−3

1 − δ

δ
+ Kη−2 ∞

Kη−4/3 − 1
2
K2η−8/3

Table 1. Fixed points for δ �= 0, 1: position and properties of the fixed points of the
autonomous system (3.11) for δ �= 0, 1. UF denotes an unstable focus, SF a stable focus,
UN an unstable node, SN a stable node, S a saddle and S–N a saddle–node. The entries
for v(η) and z(η) are the asymptotic expansions about the fixed point, where K and
K ′ are constants of integration. The first two lines for each fixed point are relevant to
the eigenvector curves. If a third line is given, it corresponds to generic curves. Entries
in bold are exact analytic values. From these expansions, those for u, h and 2πruh can

be obtained via (3.12). The values of the constants in the table are δ± = (2 ±
√

2)/4,

δ∗
± = (7±

√
7)/14, α± = (3±

√
64δ2 − 64δ + 17)/(8δ2 −8δ+1) and v1 = (1+

√
8δ2 − 8δ + 1)/2δ,

v2 = (1 −
√

8δ2 − 8δ + 1)/2δ with z1,2 = [(1 − 2δ)v1,2 + 3δ − 2]/δ.
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Fixed
point δ η u h 2πruh

O (−∞, 0) 0 0 0 0
(0, 1) ∞ 0 0 0
(1, ∞) ∞ ∞ 0 0

(−∞, 0) 0 0 0 0
(0, 1) ∞ 0 0 0
(1, 2) ∞ 0 ∞ ∞
(2, ∞) ∞ ∞ ∞ ∞
(−∞, 0) 0 0 0 0
(0, 3

4
) ∞ 0 0 0

( 3
4
, 1) ∞ 0 0 ∞

(1, ∞) ∞ ∞ ∞ ∞

A (−∞, ∞) f f 0 0

B (−∞, 1) ∞ ∞ 0 0
(1, ∞) 0 0 0 0

(−∞, 0) ∞ ∞ ∞ ∞
(0, 1

2
) ∞ ∞ 0 ∞

( 1
2
, 1) ∞ ∞ 0 0

(1, ∞) 0 0 0 0

C1 (−∞, δ−), (δ+, ∞) f f f f

C2 (−∞, δ−), (δ+, ∞) f f f f

D (−∞, ∞) ∞ ∞ ∞ ∞
(−∞, δ−) 0 0 0 0
(δ−, δ+) ∞ ∞ ∞ ∞
(δ+, ∞) 0 0 0 0

E (−∞, ∞) ∞ ∞ ∞ ∞
(−∞, ∞) 0 0 f 0

F (−∞, ∞) ∞ ∞ 0 ∞
(−∞, ∞) 0 f 0 0

G (−∞, ∞) 0 ∞ ∞ ∞
(−∞, ∞) 0 ∞ ∞ ∞
(−∞, ∞) 0 ∞ ∞ f

Table 2. Fixed points for δ �= 0, 1: values of η, u, h , and 2πruh at the fixed points of the auto-
nomous system (3.11) for δ �= 0, 1. For each fixed point, each subsection of the table relates
to the corresponding line in table 1. Where there is only a single subsection, the solutions in
all the lines of table 1 have the same value at the fixed point. Here f corresponds to a finite,
non-zero value and δ± = (2 ±

√
2)/4.

tables it can be seen that there is a single fixed point which corresponds to (3.7), and
it is the origin O when 0 <δ � 1.

3.6. The critical parabola

Before investigating how solutions change with changing δ, we discuss how to ensure
that a solution given by an integral curve in the phase plane is physically meaningful.
For this, we must consider the curve Pc,

z = (v − 1)2, (3.13)

referred to as the critical parabola (see Gratton & Vigo 1994). This curve is important
because the change of variables from η to λ removes the singularities which exist
for η on Pc, or alternatively, η changes direction with respect to λ when (and only
when) an integral curve crosses Pc. Because λ is monotonic on any integral curve,
this implies that v and z, and hence u and h , become multivalued functions of η. This
is clearly not a stable physical state and therefore we do not consider integral curves
which cross the critical parabola.

It is still possible for points on either side of the critical parabola to be connected
in a physically meaningful way. For this, η must be monotonic and thus λ cannot
be monotonic: the solution must approach Pc with λ monotonically increasing (or
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Fixed point v z Type in λ v(η) z(η) η u h 2πruh

O 0 0 UN 0 Kη−2 ∞ 0 f 0
Kη−1 0 ∞ f 0 0
Kη−1 K ′η−2 ∞ f f ∞

A 1 0 D 1 + 2
3
(1 + Kη) 1

9
(1 + Kη)2 f f 0 0

Kη−1 0 f f 0 0

C 0 1 SN 0 Kη−2 f 0 f 0
1
3
(Kη − 1) 1 − 5

3
(Kη − 1) f 0 f 0

D 1
2

1
8

S 1
2

+ Kη3−
√

17 1
8

− 1+
√

17
8

Kη3−
√

17 ∞ ∞ ∞ ∞
1
2

+ Kη3+
√

17 1
8

− 1−
√

17
8

Kη3+
√

17 0 0 0 0

E 0 ∞ S 0 Kη−2 0 0 f 0
Kη−2 ∞ ∞ 0 ∞ ∞

F ∞ 0 S ∞ Kη−3 ∞ ∞ 0 ∞
Kη−1 0 0 f 0 0

G ∞ ∞ S–N ∞ Kη−3 0 ∞ ∞ ∞
Kη−2 ∞ 0 ∞ ∞ ∞
Kη− 4

3 − 1
2
K2η− 8

3 0 ∞ ∞ f

Table 3. Fixed points for δ = 1: position and properties of the fixed points of the autonomous
system (3.11) for δ = 1. UN denotes an unstable node, SN a stable node, S a saddle, S–N a
saddle–node and D some other degenerate fixed point. The entries for v(η) and z(η) are the
asymptotic expansions about the fixed point, where K and K ′ are constants of integration.
The first two lines for each fixed point are relevant to the eigenvector curves. If a third line is
given, it corresponds to generic curves. Entries in bold are exact analytic values. From these
expansions, those for u, h and 2πruh can be obtained via (3.12) and the entries for these
variables are their values at the fixed point, where f has a finite, non-zero value.

decreasing) and leave with λ monotonically decreasing (or increasing). This can occur
at a fixed point of (3.11) such as point C1 or C2 of figure 2 (b).

Another way to overcome the restriction on crossing the critical parabola is to allow
jumps, because these connect integral curves on either side of the critical parabola.
Consider Fr ′2

s = (v′ − 1)2/z′ and Fr2
s = (v − 1)2/z, then from (3.9) we see that

Fr ′2
s =

8

φ3
Fr2

s =
φ + 2

φ2
, (3.14)

where φ = φ(Fr s). If the point (v′, z′) ahead of the shock lies above the parabola,
then Fr ′2

s < 1 and from (3.9) and (3.14) we see that Fr2
s > 1. Similarly, it can be shown

that Fr ′2
s > 1 implies Fr2

s < 1. Hence the jump condition connects points which are
supercritical (have Fr s > 1 and lie below Pc) with points which are subcritical (have
Fr s < 1 and lie above Pc) and vice versa. Points on Pc are mapped into themselves.

3.7. Phase-plane solution

In § 3.5, we determined the points in the (v, z) phase plane which correspond to the
boundary conditions (2.2) and (2.7). These are the origin O and (1, 1/Fr2) respectively.
We now need to find the value of δ ∈ (0, 1] for which an integral curve, or appropriate
set of integral curves, connects these points.



344 A. C. Slim and H. E. Huppert

The fixed point (1, 1/Fr2) and O lie on either side of the critical parabola.
Therefore, as discussed in the last subsection, we have the problem of how to connect
them.

In analogous problems in gas dynamics and cavitation, it has been assumed that u

and h must be regular everywhere (see Hunter 1960, 1963). The argument is that any
discontinuities must be created in the system very precisely for them to propagate
in a self-similar way; and this is regarded as unrealistic. In order to confirm this we
studied the results of a numerical scheme for the initial value problem (which we
describe in § 4). For all the initial height profiles which we tried, the profiles of u and h
appear smooth close to collapse; any shocks which were present propagated through
the profile and were no longer important. This does not rule out the possibility of
creating similarity solutions with discontinuities, and Gratton (1991) has suggested
pursuing such solutions. However, it does suggest that the most relevant similarity
solutions are those that are smooth and we restrict ourselves to these. This restriction
disallows the possibility of connecting the integral curves through (1, 1/Fr2) and O

with jumps according to (3.9).
This leaves us with having to connect (1, 1/Fr2) and O via a fixed point on the

critical parabola. From tables 1 and 3 we see that C1 and C2 are the two possible
fixed points, both of which are nodes for δ ∈ (0, 1], if they exist. We need to ensure
that the curve we choose through C1 or C2 has u and h regular, which is easily seen
to be true when dv/dz is regular.

We define the major-axis solution to be the eigenvector curve along which generic
curves enter the fixed point tangentially and define the minor-axis solution to be the
other eigenvector curve. Then, following the same analysis as given in Hunter (1960),
we can show for both C1 and C2 that the minor-axis solution is always regular for
δ ∈ (0, 1]. For the major-axis solution, the situation is slightly more complicated.
For most values of δ, the solution is regular but none of the remaining curves
entering C1 and C2 are regular. However, for at most countably many values of δ,
either none of the curves tangent to this eigenvector are regular or all of them are.
We do not consider the case where all are regular because there are then several
conditions on δ and we do not expect it to be possible to satisfy them all. This is
a slightly unsatisfactory reason. However, it turns out to be acceptable in that the
value of δ which we choose from the phase-plane analysis, under this restriction,
matches closely with the value obtained from initial value problems (which we give
in § 4). We therefore choose δ such that the curve connecting O with (1, 1/Fr2) passes
through the relevant fixed point, C1 or C2, along either the minor- or the major-axis
solution.

Unless the curve enters the fixed point along either the minor- or the major-axis
solution, it changes direction very abruptly close to the critical parabola, which is
seen in curves P1 and P2 in figure 2 (b). This behaviour allowed us to use a numerical
shooting technique to find the correct value of δ. We integrated (3.10) and (3.11),
using the fourth-order Runge–Kutta scheme of ODE Architect, from (1, 1/Fr2) to the
appropriate fixed point. We then varied the value of δ until the curve entered the
fixed point along the minor-axis solution. The curves cannot enter the fixed points
along the major-axis solution for Fr ∈ (0, ∞), as indicated in figure 2 (b). They could
enter along the major-axis curve if they originate at A, a situation which we do not
discuss since we are mainly interested in finite Froude numbers, or E, which is not
relevant.

For the experimentally determined frontal Froude number, for the Boussinesq case,
of 1.19, δ = 0.859094 and the velocity and height profiles are as shown in figure 3. At
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Figure 3. (a) Velocity and (b) height profiles for different values of the frontal Froude number.
The value of b used is that found by following the initial value problem (Ro = 10, hi = 1.0, see
§ 4) until it reaches the self-similar regime.

the front, the values of the height, and speed are seen to be significantly higher than
their values at infinity. This may be expected since the narrowing of the geometry
forces fluid to pile up, increasing the height, and the greater head of fluid produces
greater fluid speeds at the front. This behaviour was seen both experimentally and
numerically by Hallworth et al. (2003). What was not described in their paper was
the curling over at the front: very close to the front, the height decreases again. This
feature can also be explained. From the shallow-water equations (2.1) we have that

Du

Dt
= −∂h

∂r
. (3.15)

Hence for the front to accelerate (increased negative velocity) due to the narrowing
of the geometry, we require ∂h/∂r > 0 at the front.

For other Froude numbers, the value of δ is different and figure 4 shows the
behaviour of δ with Froude number. For Fr < Fr c 	 1.75, the appropriate curve from
(1, 1/Fr2) to O passes through C2 whereas for Fr >Fr c, the curve passes through C1.
At Fr = Fr c, C1, C2 and D merge, in a pitchfork bifurcation, at (1/2δc, 1/8δ2

c ) where

δc =(2 +
√

2)/4. For each Fr ∈ (0, ∞), the value of δ, and hence also the solution,
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Figure 4. Similarity exponent, δ, versus frontal Froude number. The critical Froude number
is Fr c 	 1.75. The minor-axis solution passes through C2 for smaller Froude numbers and
through C1 for larger Froude numbers (see figure 2).

is unique. However, for Fr = ∞, for any δ ∈ (0, 1], z =0 is a solution and for Fr = 0
there are no regular solutions.

It is also of interest to determine how the velocity and height profiles change with
Froude number. These changes in behaviour are shown in figure 3. For all Froude
numbers we have

∂h
∂r

∣∣∣∣
r=rf

= δ2b|t |δ−2 d

dη
(η2z)

∣∣∣∣
η=1

(3.16a)

= δ(1 − δ)b|t |δ−2 > 0, (3.16b)

which indicates a curling over of the front. We cannot say how large this gradient
is purely from the similarity analysis because b can only be found from numerical
evaluation or experiment. From initial value investigations, the curling over is seen to
reduce as Fr → 0 and increase as Fr → ∞ for the same initial configuration. This may
be explained from the fact that small Froude numbers correspond to large ambient
resistance to the advance of the gravity current and hence the acceleration of the
front is small. For large Froude numbers the ambient provides little resistance to the
current, because its density is much lower, and hence the acceleration of the front is
greater.

As the Froude number increases, the maximum in both the speed and height profiles
increases. This may also be expected since lower ambient resistance to flow allows
greater velocities and heights to develop.

3.8. Special case of δ =0

We now investigate the phase plane for δ = 0. Solutions for δ = 0 may be called
quasi-steady (Jensen 1994) since t only occurs in the scalings of u and h and not in
η. In this case, the forms for u and h in (3.3) are not appropriate. Instead we set

u =
r

t
V (η), h =

r2

t2
Z(η), (3.17)
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Figure 5. The (V,Z) phase plane for δ = 0. The arrows indicate the direction of increasing η.
The bold curve is the critical parabola Z = V 2.

where η = r/b, and the phase-plane equations become

d log η

dΛ
= Z − V 2, (3.18a)

dV

dΛ
= (1 − V )(2Z − V 2), (3.18b)

dZ

dΛ
= Z(3V 2 − V − 2Z). (3.18c)

The boundary condition at the outer cylinder (3.7) is u → 0, or equivalently V → 0,
as η → f where f has some finite, non-zero value. The boundary condition at the
front (3.8) remains unchanged. Hence we need to find an integral curve that connects
the line V =0 with the line V = 1.

Figure 5 shows a plot of the (V, Z) phase plane. Note that in this case, the critical
parabola becomes Z = V 2 from (3.18a). As can be seen, it is not possible to connect
the lines V = 0 and V = 1 without crossing the critical parabola, unless we connect
O with the fixed point C via the saddle D, or O with A. For the former case, from
table 4 we see that along this curve entering D, η becomes infinite at D whereas at O

and C, η is finite. Therefore on this curve, V (η) and Z(η) are clearly multivalued. For
the latter case, η increases from O to A which is physically unrealistic. Hence it is
not possible to satisfy both boundary conditions for δ = 0 when requiring a physically
realistic solution.

4. Comparison with the initial value problem
It is important to ascertain how the intermediate asymptotics given by the similarity

solution of the previous section compare to the solution of an initial value problem.
To investigate this, we used a numerical code which has previously been used by

Hallworth et al. (2003) to study the initial value problem for an inwardly propagating,
inviscid, axisymmetric gravity current. Here we set t = 0 to be the time at which the
flow is initiated, and the shallow-water equations (2.1) are integrated from initial
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Fixed point V Z Type in Λ V (η) Z(η) η u h 2πruh

O 0 0 D 1 + Kη−1 0 f 0 0 0
2
3
(Kη − 1) 1

9
(Kη − 1)2 f 0 0 0

A 1 0 UN 1 + Kη−1 0 ∞ ∞ 0 0
1 Kη−2 ∞ ∞ f ∞
1 + Kη−1 K ′η−2 ∞ ∞ f ∞

C 1 1 SN 1 Kη−2 f f f f

1 + 1
3
(1 + Kη) 1 + 5

3
(1 + Kη) f f f f

D 1
2

1
8

S 1
2

− 1−
√

17
2

Kη3−
√

17 1
8

+ Kη3−
√

17 ∞ ∞ ∞ ∞
1
2

− 1+
√

17
2

Kη3+
√

17 1
8

+ Kη3+
√

17 0 0 0 0

E 1 ∞ S 1 Kη−2 0 0 f 0
1 + Kη−2 ∞ ∞ ∞ ∞ ∞

F ∞ 0 S ∞ Kη−3 ∞ ∞ 0 ∞
1 + Kη−1 0 0 f 0 0

G ∞ ∞ S–N ∞ Kη−3 0 ∞ ∞ ∞
1 + Kη−2 ∞ 0 ∞ ∞ ∞
Kη− 4

3 − 1
2
K2η− 8

3 0 ∞ ∞ f

Table 4. Fixed points for δ = 0: position and properties of the fixed points of the autonomous
system (3.18) for δ = 0. UN denotes an unstable node, SN a stable node, S a saddle, S–N a
saddle–node and D some other degenerate fixed point. The entries for V (η) and Z(η) are the
asymptotic expansions about the fixed point, where K and K ′ are constants of integration.
The first two lines for each fixed point are relevant to the eigenvector curves. If a third line is
given, it corresponds to generic curves. Entries in bold are exact analytic values. From these
expansions, those for u, h and 2πruh can be obtained and the entries for these variables are
their values at the fixed point, where f has a finite, non-zero value.

velocity and height distributions given by

u = 0, 0 � r � Ro, (4.1a)

h =

{
0, 0 � r < Ro − 1

hi(r), Ro − 1 � r � Ro,
(4.1b)

where variables have been non-dimensionalized using typical length- and timescales.
In general the initial height hi =1 but we also chose different height profiles to
investigate how the similarity solution depends on the precise initial conditions. A
boundary condition of zero velocity is applied at r = Ro and a constant Froude
number condition is applied at the front (cf. (2.2) and (2.7)). Details of the numerical
method and non-dimensionalization are given in Hallworth et al. (2003).

To study the transition to self-similarity, we consider the front position against
time. Figure 6 shows a log–log plot of the front position against 1− t/tc for Fr =1.19,
hi = 1 and Ro = 10. Here tc is the time of collapse and is taken as the time at which
the front position first becomes non-positive. For times very close to collapse, the
numerical scheme begins to fail, as can be seen by the increasing spread of results
for different time steps and grid spacings as t → tc. For times close to initiation
(t close to 0) the self-similar regime will not yet have been reached. Hence we take,
somewhat arbitrarily, only front positions which correspond to 1 − t/tc ∈ (0.01, 0.1)
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Figure 6. Front position rf versus 1 − t/tc for the numerical solution of the initial value
problem with initial height profile hi =1, outer cylinder radius Ro = 10 and Fr = 1.19. The
line is the line of best fit, given by (4.2). The five different symbols are solutions for different
accuracies to display the increasing spread as t → tc (see below). For 1 − t/tc > 0.01 only the
most accurate run has been plotted, at selected points, as the solution for different accuracies
overlie one another. As t → 0 it can be seen that the solution diverges from the line of best fit.
×, �t =10−3, �y = 1/200; �, �t = 10−3, �y = 1/400; �, �t = 10−4, �y =1/400; �, �t =10−4,
�y = 1/800; +, �t = 10−5, �y = 1/800;

as representing self-similarity, although the precise choice does not greatly affect
the result. A least-squares fit through these points, for the run of highest accuracy
(�t =10−5, �y = 1/800) then gives

δ = 0.864, (4.2a)

b = rf |
t=0 /tδ

c = 0.898, (4.2b)

where b is non-dimensional, since the equations have been non-dimensionalized, and
rf |

t=0 is the value obtained from the least-squares fit. This value of δ is within 0.5%
of the value calculated theoretically in the previous section. We found a similar degree
of accuracy for other values of the Froude number.

Figures 7(a) and 7(b) show the velocity and height profiles, scaled with rf /(tc − t)
and r2

f /(tc − t)2 respectively, before collapse for Fr = 1.19 compared to the self-similar
regime. The profiles suggest that the initial value problem asymptotically approaches
the similarity solution we have found. However, it should be noted that the approach
is non-uniform, with agreement better close to the front.

Overall, the fit appears to be reasonably good. Certainly the value obtained for δ

is very close to the theoretically obtained value. However, the numerics fail as we get
closer to the instant of collapse so it is not possible to check for a closer fit as t → tc.
At such times it would have been better either to use a higher-order numerical scheme
or one with an adaptive mesh, or to use a renormalization technique such as is given
in Chen & Goldenfeld (1995). The renormalization technique can be much faster and
so allows greater accuracy; however, it does not allow an investigation of the stages
leading to self-similarity as direct numerical integration does. We have not pursued a
more accurate method because the fit we have obtained is sufficiently reasonable.

We have also performed computations with different initial height profiles but the
same cylinder radii and fluid volume. All reach the self-similar form to within the
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Figure 7. Non-dimensional profiles of (a) velocity and (b) height versus η comparing the
numerical results of the initial value problem close to collapse with the similarity solution.
The numerical solution is plotted for t = 10 to t = 11.6 in intervals of 0.2 and collapse occurs
at t = 11.72. The arrow indicates solutions at increasing time. The thicker curve represents the
similarity solution. Note that it is only very close to the time of collapse that the similarity
solution is a good approximation.

accuracy we have just described. This suggests some stability of the self-similar form
to varying initial conditions. The values of b are also identical to within numerical
error and suggest that this is an initial condition which is forgotten by the system
(contrary to what was concluded for viscous currents by Diez, Gratton & Gratton
1992b).

A dependence of the value of b on the volume and radius of the outer cylinder
was suggested in § 3 and is illustrated in table 5. As the radius of the outer cylinder
is increased for a fixed volume, the value of tc increases and hence, from (4.2 b), b

decreases. Similarly, as the volume is increased for a fixed radius, the value of tc
decreases as the greater head of fluid causes greater fluid velocities, and b is increased.

5. Self-similar behaviour at and after collapse
In this section we briefly discuss the behaviour at and after collapse. In contrast

to the similarity solution before collapse, the similarity solution afterwards can only
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Ro hi g′V/2π δ b tc

10 0.5 19/4 0.86349 0.679 16.2
10 1.0 19/2 0.86357 0.898 11.7
10 2.0 19 0.86359 1.15 8.35
8 19/15 19/2 0.86355 1.07 7.59

12 19/23 19/2 0.86354 0.764 17.3
14 19/27 19/2 0.86354 0.710 22.2

Table 5. Values of δ, b and tc for different initial heights and outer cylinder radii. The value
of δ is very consistent for the different runs.

be expected to be valid at times close to its initiation. This is because it is only
possible to create solutions with a shock and, as discussed in § 3.7, these are likely to
be unstable features of the flow.

We return to setting t = 0 to be the time of collapse. At t = 0 the front reaches the
origin and for times shortly afterwards, the information about collapse will not have
reached the far field and hence only the flow at r = 0 should be immediately affected.
This implies that for the solution at t = 0 and for the similarity solution for t > 0 the
exponent δ in the variable η should be the same as before collapse. In addition, u(η)
and h(η) before and after collapse should match in the limit η → ∞.

First we consider the behaviour at the instant of collapse. From (3.3) we can write

u = δb1/δr1−1/δη1/δv(η), h = δ2b2/δr2−2/δη2/δz(η). (5.1)

From table 1, η1/δv(η) → K and η2/δz(η) → K ′ as η → ∞ before collapse. Hence at
collapse

u = δb1/δKr1−1/δ, h = δ2b2/δK ′r2−2/δ. (5.2)

The profiles of u(r) and h(r) at t = 0 for Fr = 1.19 are shown in figures 8(a) and 8(b)
respectively. Note that both the height and the speed tend to infinity as r tends to 0.

We now look for a similarity solution after collapse. We still consider the (v, z)
phase plane for the same value of δ. However, the points between which we wish to
find an integral curve may have changed to reflect the new configuration and hence
new boundary conditions. In fact, the far-field boundary condition (3.7), at η = ∞,
cannot have changed and hence O is still the appropriate fixed point in the phase
plane. However, the boundary condition (3.8) is no longer relevant. Instead we require
that

u → 0, h → f (5.3)

as η → 0, where f has some finite non-zero value. As discussed in § 3.5, η can only tend
to zero at the fixed points of the system (3.11). The fixed point at which (5.3) holds
is E at (1/δ − 1, ∞) (see table 2). Hence we must find an integral curve connecting O

and E for the same value of δ as before collapse.
The additional restriction that u and h remain unchanged in the limit η → 0 gives

the integral curve leaving O . Close to O (the point corresponding to η = ∞) the
integral curves in the phase plane are given by z ∼ (h/u2)v2. Therefore the integral
curve emanating from O after collapse must lie on the same parabola as before
collapse, although for t > 0 and u < 0 we require v < 0 compared to v > 0 for t < 0.
We can obtain an initial condition for the system of differential equations (3.10) and
(3.11) by setting

η = ηi, va(ηi) = −vb(ηi), za(ηi) = zb(ηi), (5.4)



352 A. C. Slim and H. E. Huppert

0.2

–0.2

–0.4

–0.6

–0.8

–1.0
0 2 4 6 8 10

0

u

(a)

1.2

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10

g'h

r

(b)

Figure 8. (a) Velocity and (b) height profiles versus r for Fr = 1.19. The profile before collapse
(the bottom curve in both plots) is given at t = −1 and that after collapse (the top curve in
both plots) at t = 1. The profile at collapse is given by the thicker curve. As r → 0, the velocity
at collapse tends to −∞ and the height to +∞. The value of b used is that found by following
the initial value problem (Ro = 10, hi =1.0, see § 4) until it reaches the self-similar regime.

where ηi is some large value and subscript a denotes the solution after collapse and b

denotes the solution before collapse. A more accurate scheme could be derived using
Taylor series.

This integral curve leaving O does not enter E and hence the only way to connect
the two points is with a jump. However, we do not yet know where the jump should
be. So now we consider the integral curve leaving E. This fixed point is a saddle with
only one eigenvector curve entering the finite plane. Using a five-term Taylor series
expansion about this point, we can start a numerical integration along this integral
curve. As yet, there is not a condition on η; however, the system (3.4) is autonomous
and hence it can be set arbitrarily for the moment. We can then map this curve
onto a curve of the corresponding points after a jump, using (3.9). The position of
the intersection between this mapped curve and the integral curve from O gives us
the (v, z) coordinates of the jump and also the value of η there. From this the full
solution can be obtained.

The profiles of u(r) and h(r) at t = 1 are shown in figures 8(a) and 8(b) respectively.
For large r , both the velocity and height are seen to converge to their profiles before
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(and at) collapse. An appreciable shock has appeared in the solution after collapse
with the height attaining its maximum at the shock.

6. Conclusions
Using the phase-plane method, we have investigated the existence of similarity

solutions with converging fronts of the axisymmetric shallow-water equations,
modelling inviscid, inwardly propagating gravity currents. We imposed the condition
of regularity of height and velocity (consistent with analysis done of imploding shocks
in gas dynamics). Under this restriction:

(a) there is a unique similarity solution for all frontal Froude numbers, Fr ∈ (0, ∞);
(b) there are uncountably many similarity solutions for Fr = ∞; and
(c) there are no solutions for Fr = 0, corresponding to the propagation of a gravity

current of zero density into an ambient fluid of finite density.
For all finite, non-zero values of the frontal Froude number, the speed and height

increase monotonically towards the front, although the height decreases again slightly
just at the front. With increasing Froude number, the maxima in both the speed and
height increase, reflecting the decrease in ambient resistance as the density of the
current increases relative to that of the ambient. The gradient of the height at the
front also increases as the Froude number increases for the same reason, since it is
equal to the acceleration of the front.

We have compared the similarity solution to the numerical solution of the initial
value problem in Hallworth et al. (2003). The fit is reasonably good, with the similarity
exponent found less than 0.5% away from the true value. The height and velocity
profiles appear to converge to the similarity solution at times near collapse, with an
especially close fit in the region of the front. However, the numerical scheme used
begins to fail close to collapse and a different scheme may achieve a closer fit.

We have also considered the solution at collapse, for which the height and speed are
infinite at the origin. After collapse, we have found the relevant similarity solution,
which has an appreciable shock.

We now briefly address the question of the physical relevance of the solutions
we have found. As a first approximation, our similarity solutions do capture the
most significant features. However, the shallow-water equations are likely to become
inaccurate as the front approaches the origin because vertical motion becomes
significant. Also, some aspects of real gravity currents have been neglected in the
simplified model which we have used. The complex three-dimensional structure of
the head, turbulent mixing, entrainment, friction and so on are all present to some
extent. The constancy of the Froude number is essential in the analysis employed to
obtain the similarity solution, but it is not always a good approximation.

As a final remark, the axisymmetric currents may not be stable. In a related
problem, where a vertical jet impinges on a flat surface and a moderate Reynolds
number outflowing current results, an interesting instability has been observed.
An axisymmetric hydraulic jump is created in the flow; however, it may undergo
symmetry breaking and form a stationary polygonal shape (Ellegaard et al. 1999). In
a more closely related problem, imploding axisymmetric shock waves in gas dynamics
have also been shown to be unstable and become polygonal (see Whitham 1956;
Schwendeman & Whitham 1987; Betelú & Aronson 2001) and a similar analysis would
be interesting for the shallow-water equations. Although the governing equations of
gas dynamics for adiabatic exponent 2 and the shallow-water equations are identical,
the jump conditions are different and also the frontal Froude number condition is
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very different from the formulation used in gas dynamics and could be a stabilizing
effect. We have not performed such an analysis but it might be interesting to do so
in the future.
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Worster for stimulating comments on an earlier version of this work. This research
was partially supported by a PhD studentship to A.C. S. from NERC, award number
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