
J. Fluid Mech. (1974), vol. 62, part 3, pp.  417-436 

Printed in Great Britain 
417 

The effect of side walls on homogeneous rotating flow 
over two-dimensional obstacles 

By HERBERT E. HUPPERT 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

AND MELVIN E. STERN 
Graduate School of Oceanogmphy,University of Rhode Island, Kingston, Rhode 

(Received 25 May 1973) 

nd02881 

We consider the flow of a slightly viscous homogeneous fluid over a small 
two-dimensional obstacle perpendicular to the vertical side walls in a channel 
rotating about a vertical axis. The flow in the channel is obtained from the solu- 
tion of the quasi-geostrophic potential vorticity equation in the limit E = D/L -+ 0, 
where D is the obstacle width and L the channel width. The lowest order, interior 
flow is shown to be a combination of three effects: a rotational flow caused by 
vortex stretching and Ekman boundary-layer pumping; a significant irrotational 
flow induced by the magnitude of the former flow a t  the vertical boundaries; 
and the interior Ekman drift due to the basic current. The maximum streamline 
displacement is calculated and compares very well with recent experiments in the 
identical parameter range by Boyer (1971a, b) .  This theory explains how the 
side walls are responsible for the dependence of the maximum streamline dis- 
placement on Rossby number. 

1. Introduction 
One of the major motivations behind the fluid dynamiscist’s interest in rota- 

ting flows is due to the important role of rotation and the accompanying Coriolis 
force in determining many of the fluid motions in the atmosphere and the ocean. 
Theoretical considerations, laboratory experiments and large scale, geophysical 
measurements have all contributed to our present understanding of rotating 
fluids, although the developments in these somewhat separate areas have not 
always been co-ordinated. Recently, Boyer (1971 a, b )  presented the results of two 
different experiments involving the flow of a homogeneous fluid over a variable 
bottom, which were designed specifically to confirm the applicability of his 
accompanying analysis. Investigations such as those of Boyer are interesting 
and may be useful in modelling many geophysically significant situations. Boyer 
& Guala (1972) have extended Boyer’s original study to consider the Antarctic 
Circumpolar Current near the Macquarie ridge, and in many other areas of the 
ocean, investigations of the interactions between currents and bottom topo- 
graphy are needed. We are primarily concerned here, however, with Boyer’s 
original experiments. 
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A viscous homogeneous fluid flows over an obstacle of constant cross-section 
whose breadth, say D,  is very much less than its length, say L. The system rotates 
a t  a constant angular velocity, say Q, about a vertical axis such that the Ekman 
number is 

E = ~/(2!2D2) < I, (1 .1  a, b )  
the Rossby number is 

R = U/(2!2D) N E* (1.2a, b )  

and the maximum height of the obstacle is 

h, N DEt, (1.3) 

where U is the magnitude of the current far upstream in the interior of 
the flow, outside any boundary layers. Figure I is a sketch of the system. 
Boyer’s experiments and resulting theory were actually undertaken for the 
flow between two obstacles, attached symmetrically to two infinite, horizontal 
planes separated by a distance 2H,  very much greater than 2h,. This con- 
figuration makes the centre-plane enjoy a convenient symmetry, which is 
exploited in the analysis and removes the influence of the Ekman layers on 
the horizontal rigid lid that might have been used instead. Alternatively, the 
system can be viewed as the free-surface (stress-free) flow of fluid of depth H over 
one obstacle. In  the following i t  is only this lower portion of the total flow which 
is investigated, the flow in the upper portion being obtainable by reflexion. 
Boyer’s original analysis (1971 a)  is directed towards considering obstacles with 
continuous cross-sectional profiles, triangles for example, while his later work 
(197 I b) is undertaken to describe the flow over a rectangle. In  both cases the 
analysis allows for the interior flow far upstream to be a t  an angle, say a, to the 
obstacle, although quantitative experimental results are presented only for 
a = 0. Therefore we consider only this case, for which figure 1 indicates the co- 
ordinate system to be used. 

FIGURE 1. An elevation of the channel which has vertical walls at y = If: +L. 

Under conditions (1.1)-( 1.3) the flow is quasi-geostrophic and is determined 
by a balance between the nonlinear inertial effects, Ekman boundary-layer 
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pumping and topographic stretching of vertical columns [see equation (2. l)]. 
As the fluid flows over the obstacle, the interior relative vorticity, i.e. the interior 
vorticity relative to co-ordinates fixed in the rotating frame, is altered by the 
change in length of vortex filaments as they go over the obstacle, while the magni- 
tude of the vorticity is decreased by Ekman-layer pumping. If the flow is two- 
dimensional, inviscid and h, - R, the streamlinesin the interior of the flow, which 
are independent of height, are straight until they are over the obstacle. They 
then turn in a readily calculable manner t o  leave the region over the obstacle in a 
straight line making an angle 

tan-1 (2&4,/HU) 

to the right? with the original direction, where A,  is the cross-sectional area of the 
obstacle. The addition of viscosity will clearly alter this result. In  what manner? 
It is to this question that Boyer addresses himself. In  particular, he seeks to 
determine the orientation between the same streamline far upstream and far 
downstream. 

To do this Boyer uses an E* power-series expansion, retains only the first non- 
zero terms and assumes that the flow does not vary in the y direction, His 
calculation shows that the streamlines are straight and parallel far upstream of 
the obstacle and also sufficiently far downstream. In passing over the obstacle 
the columns of fluid are displaced to the right by an amount 

2-9 h, E d  for a triangle, 

2*h, E-4 for a rectangle. 

Boyer notes the rather surprising absence of the Rossby number in these results 
but does not explain its absence other than to say that the streamline displace- 
ment would appear to be independent of the inertial effects. Comparing these 
results with measurements made in the centre of the channel, Boyer finds a fairly 
strong dependence of streamline displacement on Rossby number, even though 
conditions (1.1)-( 1.3) are satisfied. The experimental results indicate that the 
displacement decreases monotonically with increasing Rossby number as 
shown in figures 2-5. Even for the comparatively small Rossby number of 0.1 
the measured displacement is over + less than his two-dimensional theory pre- 
dicts. The purpose of this paper is to explain the observed disagreement. 

Boyer suggests that the discrepancy might be obviated by continuing his 
expansion, thereby including terms of higher order in the Rossby number. It is 
essential to investigate whether this idea is correct; the implication would be 
that calculations for even quite small Rossby numbers would have to be taken 
to second order if reasonable accuracy is required. The suggestion, however, does 
not appear to be correct, since as is proved in 5 3, the effect of the next-order term 
on the far-downstream streamline displacement is zero. Thus, given the assump- 
tions made by Boyer, the results (1.4) and (1.5) have errors a t  most of order R2 
which is far too small to explain the discrepancy. 

t Here, and elsewhere, ‘left’ and ‘right’ are with reference to an observer looking in 
the downstream direction. 
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As we show below, it is possible to obtain in five lines [equations (2.1) and 
(2.20)-(2.23)] the general result 

8, = 2*A, E-410, (1.6) 

of which (1.4) and (1.5) are particular cases. The situation can be made to 
appear even more problematic by continuing the analysis further, (2.24)-(2.31), 
from which i t  appears that a full, three-dimensional calculation, incorporating 
the two vertical walls that are present at  the ends of the obstacle, leads to 

s, = 0 (1-7) 

no matter how far apart the walls are. 
Part of the explanation of the discrepancy between Boyer’s experiment and 

theory can be obtained by a careful interpretation of (1.7). We show in $ 2  that 
the solution of the zeroth-order vorticity equation which takes into account the 
existence of the two end walls predicts that an interior streamline gently drifts 
to the left upstream of the obstacle. It then veers sharply to the right above, and 
for some distance downstream of, the obstacle, coming to a position of maximum 
displacement with respect to its position a t  the upstream edge of the obstacle. 
There is then a gentle drift to the left again, the final downstream position being 
in line with the upstream one, in accordance with (1.7). Asserting that i t  is the 
maximum displacement which Boyer measured,? we calculate a streamline dis- 
placement which does vary with Rossby number in the same manner as is ex- 
perimentally observed and presented in figures 2-5. 

Although qualitatively correct - the predicted streamline displacement de- 
creases with increasing Rossby number - the agreement between the theory of 
$ 2 and Boyer’s experimental results is quantitatively only fair. The reason for 
this is shown in $ 3 to be because the theory of $ 2 tacitly assumes that 

E = D / L  Ei .  (1.8) 

In  Boyer’s experiment e N E* and it is shown in $ 3  how to calculate the maxi- 
mum streamline displacement taking this into account. The additional feature 
thereby incorporated which affects the results is the O(E4) Ekman drift in the 
interior of the channel. The maximum streamline displacement so calculated, 
and presented in figures 2-5, now agrees well with the experimental measure- 
ments. 

2. The simplest theory incorporating end walls 
The lowest order vorticity equation relevant to the system described in $1 and 

sketched in figure 1 with the obstacle represented by h(x) is (Ingersoll 1969, § 2) 

where q is the interior, depth-independent, horizontal velocity vector, 

q = (u.,v) (2.2) 
-f Boyer (private communication) agrees with this. 
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and cis  the vertical component of relative vorticity given by 

g = v, - uy. (2.3) 

The vertical velocity w is absent from the q . V  operator in (2.1) because w is 
O(E*), in contrast to u and v, which are O( l), and hence does not appear in the 
lowest order equation. The first term in (2.1) represents the rate of change of 
relative vorticity following the motion. This change is caused by topographic 
stretching, represented by the second term, and Ekman-layer pumping, repre- 
sented by the third term. The coefficient ( Q v ) ~  H-1 of the third term is the inverse 
of the spin-up time (Greenspan 1968; Greenspan & Howard 1963). 

Since the flow is geostrophic to leading order 

u = - (2Q)-1Py, 2, = (2Q)-1Px, (2.4), (2 .5 )  

where P is the dynamic pressure (total pressure minus the hydrostatic pressure 
due to gravitational and centrifugal accelerations) divided by the (constant) 
density p .  From (2.4) and (2.5) we see that P is proportional to the stream func- 
tion for the (horizontal) motion and is related to the vorticity by 

5 = (2Q)-1V2P. (2.6) 

We now find i t  convenient to introduce the function S(x,  y)  that represents the 
displacement in the cross-channel direction of the streamline which originated 
a t  ( - a, y). It follows from this definition that Xis related t o  the velocity compon- 
ents by 

Comparing (2.7) and (2 .5 ) ,  we determine that 

v = us,. (2.7) 

P = 2 0 1 ,  uS,dx- 2QUy 
--a, 

and hence that 

(2.9) 

where we have used the fact that P-t -2QUy as x +-a in deriving (2.8). 
Substituting (2.9) into (2.1), we obtain 

q . V [ v 2 s x  H (2.10) 
--m 

Since both the velocity components and S are unknown and to be determined, 
(2.10) is quite strongly nonlinear. The simplest, linearized version of (2. lo), 
obtained by setting u = U and q .  V = US,, is 

(2.11) 

I n  the remainder of this section, we determine the appropriate solution of (2.1 1) 
and present in the appendix an a posteriori consistency calculation to indicate 
that (2.11) is a valid approximation of (2.10) with anerror that is uniformly O(s). 
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Rather than deal with (2.11) directly, we introduce non-dimensional co- 
ordinates f l  and 7 and the non-dimensional functions H(fl) and v(fl,r) defined by 

The obstacle is now represented by M(fl), a function of maximum value I with 
support on [ = [- 1, I]. Substituting (2.12)-(2.15) into (2.11), we obtain 

where 
(2.16) 

(2.17) 

is, by hypothesis, of order 1 with respect to E. To (2.16) must be added the 
boundary conditions that a streamline originating on a wall remains on that 
wall, that is 

(2.18a,b) 

and that, from the definition of X(x, y), 

4 5 ,  -t 1) = 0, 

4 < , 7 ) + 0  ([+ -00). (2.19) 

In  writing down (2.18) we have neglected the effects of vertical boundary layers 
of thickness E* on the end walls, which is justified for this lowest order analysis. 

The solution of (2.16) is most conveniently obtained by expressing v ( 5 , ~ )  as 

4 5 ,  7) = vo(8 - Vl(f l ,  r ) ,  

(Na, + I )  a;, vo = ”(5). 

(2 .20 )  

where go([ )  is the two-dimensional solution for an infinitely long obstacle and 
satisfies 

(2.21) 

Equation (2.21) can be deduced directly from (2.1) or (2.10) without making the 
linearization (2.11). 

Integrating (2.21) twice using (2.19) leads to 

(Na,  + 1) a 5 ~ 0  = J f ( f l ) ,  (2.22) 

5 
(Nag+ I )  Go = 1 M ( t )  dt, 

-m 

from which we see that 
W 

ao(co) = [ M(t)cit = A ,  say, 

(2.23) 

(2.24a, b )  
J -a 

which is the non-dimensional version of (1.6) and is independent of N ,  or the 
Rossby number. 

This two-dimensional solution represents a flow which is constant in both 
magnitude and direction upstream of the obstacle, arriving a t  the upstream 
edge a t  right angles to it, with speed U and zero relative vorticity. As the flow 
mounts the obstacle (assuming h(x)  to be non-negative), the vortex filaments are 
compressed, inducing negative vorticity which is decreased by Ekman-layer 
pumping, and the flow turns to the right. When the flow has passed the crest of 
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the obstacle, positive vorticity is induced by topographic stretching of the vortex 
filaments and negative vorticity is induced by Ekman-layer pumping. Because of 
viscous effects, the flow arrives a t  the downstream edge of the obstacle with nega- 
tive vorticity, which for the remainder of the downstream flow is brought to 
zero solely by Ekman-layer pumping. In  this region of the flow the rate of change 
of vorticity is proportional to the vorticity itself and therefore the rate of change 
of the cross-stream velocity is proportional to the cross-stream velocity itself. 
Thus, the only possible final state is one of zero cross-stream velocity, that is, 
with the streamlines parallel to their original direction. This final state must be 
independent of U ,  which enters only in determining how rapidly the flow passes 
the obstacle and not in the essentials of the dynamics. Therefore, the net stream- 
line displacement must be independent of Rossby number, the only external 
quantity containing U .  

If the flow is effectively inviscid, Ekman-layer pumping is absent and since 
equal amounts of vortex compression and stretching occur as the fluid flows 
over the obstacle, it  arrives at the downstream edge with zero relative vorticity 
and continues downstream in this state. However, as the fluid flows over the 
obstacle, the change in vorticity means that there is a continual increase in 
negative y-velocity. The value a t  the downstream edge of this velocity is hence 
also retained and the flow continues at  the angle 

tan+ (2QA +/H U )  

to the right from its original direction. 
Turning now to the evaluation of cl (g,?), we substitute (2.20) into (2.16)) 

(2.18) and (2.19) and use the definition (2.21) for no to find that a1 ( 5 , ~ )  satisfies 

(2.25) 

(2.26 a, b) 

G l ( L ? )  --f 0 ( 5 - t - a ) .  (2.27) 

Thus, the decomposition (2.20) states that the total flow can be considered as 
the sum of a two-dimensional rotational flow induced by the presence of the ob- 
stacle and Ekman-layer pumping plus a three-dimensional rotational flow in- 
duced entirely by the value of the previous part at the boundary. sufficiently 
far downstream (2.25) and (2.26) become 

e=a,,g, = 0, (2.28) 

( 2 . 2 9 ~ )  b)  a&-,  rf: 1) = a o ( a )  = A 

Equations (2.28) and (2.29) have the solution 

(5+ a). 

and hence 
(2.30) 

(2.31) 

That is, the net displacement is zero, in sharp contrast to the two-dimensional 
solution. The two-dimensional solution is hence not a good approximation, a t  
least sufficiently far downstream of the obstacle. 
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We now proceed t o  determine the finite value of cr(6,q). For the reasons pre- 
viously mentioned, we calculate the maximum value of a(6,q) as a function of N ,  
concentrating on the limit 

€ <  1, (2.32) 

since in Eoyer's experiments, E was 0.0725. 

that is 
Let $(k )  denote the Fourier transform with respect to ( of any function $(6) ,  

(2.33) 

where we extend the definition of the Fourier transform to include generalized 
transforms of the class described, for example, by Lighthill (1958). Fourier 
transforming (2.25) and (2.26), we obtain 

(a;, - K2)  8, = 0, 

8 , (k ,  & 1) = e0 = i&(k) / [k(  1 - ikN)]-', 

(2.34) 

(2.35a'b) 

where (2.358) is obtained by taking the Fourier transform of (2.21) and 

K = k / e .  (2.36) 

Equations (2.34) and (2.35) have solution 

i&(lc) c o s h q  
') = k( I - i k N )  cosh K 

(2.37) 

(2.38) 

(2.39) 

where (2.39) follows from (2.38) on using the convolution theorem for Fourier 
transforms and the Fourier transform of cosh (q)/cosh K given in Erdklyi et al. 
[1954, $1.9 (la)].  

In  principle we now have the complete solution, since (2.23) can be integrated 
to  determine go([) and the result substituted into the right-hand side of (2.39). 
In  practice, however, the solution cr(6,q) cannot be representedin terms of simple, 
well-known functions. We thus concentrate on calculating a value for cr that can 
be compared with Boyer's experiment and describe the flow in broad terms rather 
than with intricate formulae. 

Considering that the net streamline displacement is zero, wc feel that, the 
maximum deviation of a streamline in the central part of the channel is a reason- 
able figure to compare with Boyer's experiments. The arguments behind such a 
statement are strengthened by the fact that  Boyer's experimental results 
were less than his theoretical ones and he is hence likely to have carefully guarded 
against underestimating the measured displacement. We thus wish to evaluate 
the difference between cr a t  twopoints, saycA(q) and &(q), a t  which a,cr([, q) = 0. 
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Therefore, we first seek the values of 5 such that 

4 5 )  = apl (5 , r ) .  (2.40) 

We determine the left-hand side of (2.40) by first integrating (2.22) to obtain 

J --m J --co 

This expression can be simplified for I f ; \  1 in that 

where 

(2.420,) 

(2.423) 

(2.43) 

Anticipating that one of the 5, say tB, exceeds I ,  we write the left-hand side of 

(B/N) e-5lN. (2.44) 
(2.40) as 

We determine the right-hand side of (2.40) by differentiating (2.38) to obtain 

dK [I + o(E2, S2C2)] 
coshq  

2n - m  coshK 

(2.45) 

(2.46 a)  

= QEA secQny [I + O(s2, e2t31, (2.46b) 

where the fact that &(O) = A has been used in deriving ( 2 . 4 6 ~ )  and the error 
termsin (2.46) are obtained assuming that H(E), and hence &(k), is an even 
function. Equating (2.44) and (2.46b), we see that, for small 8,  EBBS given by 

l&(r) = -N[loge+log(NA secgny/2B) [I + O ( ~ ~ l o g ~ s ) ] ,  (2.47) 

and for the central part of the channel 

&(O) = -“logs+log(NA/2B)] [l +O(E21og2€)]. (2.48) 

Substituting (2.48) into (2.42b), we obtain 

a,[f;B(O)] = A ( l  -+EN) [I +O(E2log2€)]. (2.49) 

We determine the value of a&B(O)] by setting 7 = 0 in (2.39) and introducing 
a change of variables in the integration to obtain 

al(& 0) = SE co(t) sech [Qsn(c- t)] dt 
!:I 

= i s  a,(t) dt + 4.4 ly sech [Qm(t - t)] dt S’t 
(2.50) 

- QcBJ e-t’Nsech [$n-([- t ) ]  dt + O(s3, ~ 3 5 3 ) ,  (2.51) 
1 
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where (2.42) has been used in deriving (2.51) from (2.50). The second term in 
(2.51) equals 

and the third term equals 

&A + $ ~ A ( c -  1) + o ( E 3 , € 3 5 3 )  

- &eBN+ 0(e3 ,e3 t3 ) .  

Thus al(t,O) = & A + - ~ E  1 ) - B N +  a,(t)dt  +O(e3 ,e3 t2 )  (2.52) 
1'1 1 

and 

CTl[tB(0), 01 = QA - &ANeloge 

A + BN + ANlog (NAI2B) - 

(2.53) 

(2.54), (2.55) 

In  a similar fashion we determine that 

tA(0 )  = - 1 + O (  €41, a,[<A0)1 = O ( 4  

and al[[A(0), 01 = 4.4 - (2.56) 

where the error terms in (2.54)-(2.56) have been obtained by assuming that 

M ( t )  M (  - 1) + (<+ 1) "( - 1) ( t 4  - 11, (2.57) 

with a t  least one of M (  - 1) and nil'( - 1) non-zero. Defining 

A d o )  = flltB(O), 01 - v[ta(O), 01, 

we use (2.25), (2.49), (2.53), (2.55) and (2.56) to obtain 

(2.58) 

AcT(O) = A(l  + $Nsloge- $ [N + 1 -Nlog (NAIZB)] E} + O ( d ) .  (2.59) 

This expression for Ac(0)  is plotted against the Rossby number in figures 2-5 

M ( t )  = (1-tsgnt)H(1-l<l) ,  (2.60) 

for different values of the Ekman number for the triangle 

for which A = 1 and B = 4N2sinh (*N-l), and for the step 

M(f) = B(1- l<l)> (2.61) 

for which A = 2 and B = 2Nsinh (N- l ) .  Also plotted on these figures are 
Boyer's experimental results. Those presented in figures 4 and 5, for the step 
(2.61), were obtained by Boyer to accompany the analysis (Boyer 1971b) which 
incorporates the E* inertial layers above the discontinuity at f = & 1. While these 
layers are necessary for a thoroughly detailed investigation of the flow, they can 
do no more than smooth the transition above the edges of the step to yield the 
flow field we have calculated; indeed the purpose of the inertial layers is to pro- 
vide just such a smooth transition. 

While the theory presented here results in a decrease of the streamline displace- 
ment with Rossby number as indicated by Boyer's experiments, the quantitative 
agreement with his results can only be described as fair. This is because using 
(2 .  i), which has error O(E:), to describe a flow in the limit e -+ 0 can only be valid 

E & < e <  1. (2.62 a,b) 
if 
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R 

FIGTJRE 2. The normalized maximum streamline displacement in the central part of the 
channel as a function of Rossby number for flow over a triangular obstacle ( A  = 1) with 
E z 9.0 x e = 0.0725, ho/D = 0.063 and HID = 0.75. x , Boyer's experimental 
values; - - - , solution (2.59); - , solution (3.9). Multiplication of the ordinate by 
Y = 3-78 yields the streamline displacement in Boyer's experiment in em. 

I I I I I I I 1 
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

R 

FIGURE 3. The streamline displacement as in figure 2, except that 
E = 1 3 . 3 ~  lo4 and Y = 3.10. 

In  the experiments, E = 0-0725 while EB was 0.030, 0.036 and 0.042. Thus 
(2 .62a)  was not well satisfied. In  the next section we obtain a theory valid for 

E * N E < ~  (2.63 a, b )  

and show that this gives improved agreement between theory and experiment. 
The simple theory presented in this section describes the major physical 

effect of the end walls. If  the obstacle is very long compared with its breadth 
the flow in the centre of the channel is almost two-dimensional with a negative 
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o’2 t 
I I I I I I I I 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

R 

FIGURE 4. The streamline displacement as in figure 2, except that the flow is over a 
rectangular obstacle ( A  = 2) with E = 13.3 x 10-4, ho/D = 0.33 and Y = 1.64. 

o’2 t 
I I I I I I I I 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

R 

FIGURE 5. The streamline displacement over a rectangular obstacle as in figure 4, 
except that E = 17.9 x and Y = 1.40. 

cross-channel velocity above and for some distance downstream of the obstacle; 
see (2.41) and (2.42). This velocity, however, cannot be continued up to the end 
walls, a t  which the velocity must be zero. This is accomplished by an irrotational, 
three-dimensional flow which has a small, but significant effect in the centre of 
the channel, both up- and downstream of the obstacle. A central streamline drifts 
slowly to the left owing to the irrotational part of the flow upstream of the ob- 
stacle, arriving a t  the upstream edge having been displaced to the left by half 
the amount that the two-dimensional flow by itself would be displaced to the 
right in its motion from far upstream to far downstream [a( - 1 , O )  N - + A ] .  
The length scale relevant to this upstream part of the flow is L. The streamline 
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then turns sharply to the right on a length scale D, under the influence primarily 
of the rotational part of the solution. With passage downstream, the rotational 
flow decreases, to be overcome by the irrotational flow, which gradually takes 
the streamline back in line with its original position. 

3. The solution for Et  N E < 1 

An outline of the calculation and the results 
Solving the lowest order vorticity equation (2.11) in the limit E + 0 yields the 
simplest description incorporating the effects of the end walls that can be com- 
pared with the results of Boyer’s experiments. Such a procedure, however, 
assumes that E* < E ,  and it is the inaccuracy of this statement which is the major 
cause of the quantitative disagreement between the results of the previous section 
and Boyer’s experiment. We remedy this by obtaining the lowest order solution 
in the limit 

E B - E <  1. 

The concepts behind the calculation are as follows. An ordered expansion in 
terms of Et  of the full Navier-Stokes equation can be written as 

a(6, 7) = aIp)(<) + E b p ( g )  + . . . - fqg, 7) - E+ +(E, 7) + . . . 
+E*a&(g)+..., (3.1) 

where each function r~ is O( 1) with respect to E4, but not necessarily E .  Further, 
abo)and (i.io)are the a. and a1 of the previous section and @(<) represents the drift, 
to the right across the channel, which exists to balance the transport to the left 
in the Ekman layers on the horizontal bounding surface and is given byt  

(3.2a, b)  

Following the procedure of the previous section, we determine tB( 0 )  by differen- 
tiating (3.1) with respect to E and equating the result to zero, to obtain 

aho)’($) + E4ab1)’(6) + . . . - aEaio)([, 0)  - E* a,ail)(<, 0 )  + . . . 
+Eta$)‘($)+... = 0 [ E =  E B ( O ) ] .  (3.3) 

In  the previous section, only the zeroth-order terms were considered, so that 
(3.3) was written as 

and both terms in (3.4) were O(s) .  Thus, we anticipate the terms in (3.3) to be of 
order 

E ,  E ~ E ,  ..., E ,  E t s ,  ..., Et, ... . 

gh0”(E) - aplo’ (E,  0)  [6 = EB(0)I (3.4) 

7 The form of this Ekman drift means that the definition of S(x,  y), or a([, r ) ,  as the 
cross-channel streamline displacement from its original upstream position will have to be 
discarded. Since, however, it is really only differences in S or u that concern us here, we 
neglect any constant that  might be added to  the right-hand side of (3.2). 
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Hence, to lowest order with Et - E ,  tB (0 )  is determined from 
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at)’([) - a,ci0)([, 0) + E*@j)‘([) = 0 [[ = [ B ( O ) ] .  13.5) 

Similarly we calculate t A ( 0 ) ,  which to lowest order will be given by 

t A ( O )  = - 1. 

These two values of 6 are then substituted into (3.1), and the results subtracted 
to determine Aa(O), defined by (2.58). Writing Aa(0) in the format of (3 .1) ,  the 
order of the terms will be 

1, E*, ..., e, eE3, ..., EB, ... 
Heiice 

Aa(0) II ~ & ” [ t B ( 0 ) ]  + E*ak1’[[B(O)] - a:O’[[B(O), 01 +a:’’( - 1,O) 

+E~a’j)[~,(O)]-E~a:)(-  l ) ,  (3.6) 
where we have used the fact that 

a&@( - 1) = a(l)( 0 - 1) = 0. 

Given tB (0 ) ,  equation (2.423) can be used to determine V ~ ~ ) [ [ ~ ( O ) ] ,  equation (2.52) 
can be used to determine both gi0) [cB(0), 01 and ail)( - 1) and balancing the trans- 
port in the Ekman layer with that in the channel interior determines cr$)([). It 
remains only to determine a;l)[[B(0)], which equals crbl)(w) to the order considered 
in (3.6). Thus we require the first-order final downstream displacement of the 
two-dimensional part of the solution. 

The essential results of this calculation, which is presented below, are that 

[,(O) II - Nlog [N(&A - aEt) /B],  (3-7) 

a(l)(w) = 0 (3.8) 

Ac(0)  E A(l - (~€--aEt /A)[N+t , (O)+ 11). (3.9) 
and 

It is clear from (3.7) that these results can only be correct if 

eE-: > 24A. (3.10) 

If (3.10) is not satisfied, the Ekman drift is sufficiently strong to cause the interior 
flow always to have a velocity component to the right, and hence there will be 
no point of maximum displacement. The result (3.8) reflects the fact that the 
first-order two-dimensional streamline displacement is zero and does not make a 
contribution to the maximum streamline displacement (3.9).  

The evaluation of (3.8) with (3.7) using constants appropriate to Boyer’s 
experiment leads to the curves plotted in figures 2-5. We see that there is agree- 
ment with Boyer’s experimental results to within 10 %. 

The streamline pattern is rather more complicated than that described 
in 5 2. A consequence of the Ekman drift is that all interior streamlines emerge 
from the left-hand side-wall boundary layer and proceed across the channel to 
enter the right-hand side-wall boundary layer. The streamlines then return to 
the left-hand boundary layer via the Ekman layers on the horizontal surfaces. 
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Far upstream of the obstacle only the Ekman drift is significant and the stream- 
lines move uniformly to the right. As the flow approaches the obstacle, the zeroth- 
order irrotational flow (2.39) increases in magnitude and there is a slow drift to 
the left given by 

CT = (aE4 - &A) [. (3.11) 

Over the obstacle the flow is dominated by the zeroth-order rotational flow, 
described in $ 2 ,  which causes it to move to the right. Further downstream, there 
is still the gentle drift to the right described in 3 2, though the magnitude is now 
slightly increased by the Ekman drift. For some distance downstream of the 
maximum point &, the streamlines verge to the left since the zeroth-order 
irrotational component exceeds the Ekman-drift component. The former, how- 
ever, decreases with downstream distance and eventually the Ekman drift 
causes the flow to veer once more to the right. 

The Jirst-order two-dimensional solution 

The two-dimensional Navier-Stokes equations are 

2 R( U U ~  + WW,) - w = - @g + 4E( U“ + u,,), 

2R(uug + WV,) + u = - e@,, + 4E( vgt + vBB), 

2R(uwg + WW,) = - @, + 4E(w55 + w,,), 

(3.12 a)  

(3.12b) 

(3.12 c) 

uc+w, = 0, 

where the velocities have been non-dimensionalized with respect to U ,  z is a 
vertical co-ordinate non-dimensionalized with respect to &D, and the non-dimen- 
sionalized pressure @ = P/(QZUD). To (3.12) must be added the boundary con- 
ditions 

(3.13a,b,c) 

u, = v, = w = 0 ( 3 . 1 4 ~ ~ )  b, c) 

u - 1)  2) N 0 (<+ -00). (3.15 a, b) 

We determine the solution of (3.12)-(3.15) in the limit R N E* + 0 by matching 
the expansion of the interior solution to the expansion of the boundary-layer 
solution. The lowest order matching yields the lowest order vorticity equation 
[the two-dimensional version of (2.1)] and the next-order matching yields the 
next-order vorticity equation, from which C T ~ ~ )  can be calculated. 

The interior solution. Expanding all variables in a power series of O(E*), 
equating like powers in E* and using the boundary conditions (3.14) and (3.15), 
we obtain the zeroth-order interior solutions 

u(0) = 1, v(0) = v(0) ( 6 ) )  w(0) = 0 (3.16a, b,c) 

(3.16d) 

u = w = w = 0 [ x  = -2HD-1+2hoD-1M([)], 

( 2  = 0 ) )  

@(O) = -c-l 7 + ?Po) ( 6 ) ;  
the first-order interior solutions 

u(l) = -udo)’(E), v(l) = W)‘([), w(l) = azv(O)”([), ( 3 . 1 7 ~ )  b,c) 

@(I) = @W(<); (3.17 d)  
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and the second-order interior solutions 
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d2) = 4v(O)"(!3 - av$,l)'(f;) + a2[v(0)'([)]2, 
d2) = 8, qS2) (5, z )  - a2v(0)"(5), 

w(2, = - Z{"I"'"([) - a@"([) + 2a2vbo)'(5)v~0)''(5)}, 

( 3 . 1 8 ~ )  

(3.18 b )  

(3.18 c) 

@(2) = - la29v(O)"(5) 2 + $(2)(5), (3 . i8a)  

where a = 2RE-4 (3.19) 

is by hypothesis O( 1). Equations for the unknown functions v(O)([) and v(l)([) are 
determined by appropriately matching (3.16)-(3.18) to the boundary-layer 
solutions. 

The boundary-layer solution. To determine the solution in the boundary layer 
a t  the bottom of the channel, boundary-layer variables 

are introduced into (3.12) and (3.13), where t is an appropriately stretched vari- 
able which takes the value zero a t  the bottom of the channel. Equations (3.12) 
and (3.13) then become, correct to within 1 + O(E), 

2R[iiG,-MA(s)iiiit++E-*~,]-v" = - @,+MA(s) Qt+iitt, ( 3 . 2 1 ~ )  

2R[iiZs - M;(s) iiCt + +E-*GGt] + ii = - c+Dq + &, (3.21b) 

( 3 . 2 1 ~ )  

(3.22a, b, c) 

where a tilde has been used to represent the boundary-layer value of a function, 

MO(Q = E-*(ho/D) J! f ( [ )  (3.23) 

is a normalized representation of the obstacle and is by hypothesis O( 1), and the 
x component of the momentum equations has been omitted since it is not needed. 
Expanding the unknown function as a power series in E* we obtain as the 
lowest order part of (3.21) 

(3.24a, b )  

ii, - M ~ ( s )  ii, + +E-&G, = 0, 
- -  u = v = G = O  ( t = O ) ,  

v"0 = v(O) - c$, C(0) = 1 + fi(0) tt 7 

which with (2.22a, b )  has the well-known solution 

$0) = (1 - e-7 cos T) - d o )  e-7 sin 7, (3.25) 

8 0 )  = e-7 sin 7 + d o )  (1 - ec7 cos 7), (3.26) 

where T = t/2&. (3.27) 

Substituting (3.25) into ( 3 . 1 2 ~ )  and using (3.22c), we obtain 

G(1) = 2M;(5) + 2+v$o)[l- e-T(cos 7 +  sin^)]. 
G(0) = 0 (3.28) 

(3.29) and 

Equating terms O(E*) in (3.21), we obtain 

6%) + v"(1) = 21 (1) + a[$(O).iiiO) - M'(5) 0 $ O ) ~ ~ O )  + +@)40)], 

~ 8 )  - ~ ( 1 )  = - u(1) - avio) + a[ii(O)~~O$o) - M'(c)  0 u -(0)-(0) vt + 2 Ifjj(I)-(O) vt I. 
(3.30) 

(3.31) 
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Substituting (3.25), (3.26) and (3.29) into (3.30) and (3.31), determining the 
solution of the resulting equations plus (3.22a, b) ,  we substitute the result into 
( 3 . 2 1 ~ )  and integrate with respect to 7 between 7 = 0 and 7 = 60 using ( 3 . 2 2 ~ )  to 
obtain 

(3.32) t82) - 2M6([) dl) - 28[Ui1)(7 - $) - *v$” + Ams]  (7 -+ a), 

where a = a( 9 + do’) vF). 
The matching. The matching of the interior vertical velocity given by ( 3 . 1 7 ~ )  
and ( 3 . 1 8 ~ )  to the boundary-layer vertical velocity given by (3.29) and (3.32) 
yields the equations from which the remaining unknown quantities can be deter- 
mined. The lowest order matching of (3.17) and (3.29) leads to 

- 2a(H/D) ~(o)”([) = 2M;([) + 2&4’)’. 

do) = - 2i(ho/DE*) C T ~ ) ’ .  

(NaE+ 1) a&do) = M’([), 

(3.33) 

Combining the two-dimensional versions of (2.7), (2.12) and (2.15), we can relate 
do) to do) by 

Substituting (3.34) into (3.33) and using (3.32), we see that (3.33) is equivalent 
to 

in agreement with (2.20). 

(3.34) 

(3.35) 

The first-order matching, of ( 3 . 1 8 ~ )  and (3.32), leads to 

H 8H H 
D D D 

2a- &)”([) + 2(v(1)‘)4 ( E )  = - v(O)”([) + 4a2- v(o)r(‘$) v(O)”([) 

- 2[Mo([)  u(l)([)Ir + 24~v(~)”([) + 24 .a([). (3.36) 

To evaluate @([), we first combine (2.7), (2.12) and (2.15) to obtain 

(3.37a) 

Thus (3.38) 

The integral of vll) can be determined by integrating (3.36) between - co and [ 
and integrating the result between - 60 and + co to obtain 

[ 2 ~ ~ H D - l ( v ( ~ ) ‘ ) ~  - ~ M , u ( ~ ) ]  d[ ( 3 . 3 9 4  

m 

= 2 a j  v(o)r[aHD-lv(o)r +MO] d[ (3.39 b )  
-m 

= 0, 
28 

3.39a)) 
F L M  62 
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since do) ( 5 00) = 0,  where (3 .17~)  and (3.33) have 
to (3.39d). Using (3.17a), we see also that 

and hence 
J --OO 

.t’(..) = 0. 

Stern 

been used in reducing (3 .39~)  

(3.40) 

(3.41) 

The first-order, net, two-dimensional streamline displacement is thus identically 
zero. 

4. Conclusions 
We conclude that side walls play a most significant role in determining the flow 

over a long obstacle in a rotating system. Eliminating the effect of the interior 
Ekman drift, as can be achieved, for example, by towing the obstacle with speed 
U through an otherwise quiescent fluid, we find that the net lateral displacement 
of a column of fluid after passage over an obstacle of constant cross-section is zero. 
This result is in sharp contrast with that obtained by neglecting the side walls, 
in which case the lateral displacement monotonically increases with downstream 
distance to a final value independent of the Rossby number and given by (1.6). 
As shown in 3 2 ,  the presence of vertical boundaries introduces an irrotational 
flow forced a t  the side walls which is of just the correct magnitude to cancel the 
contribution independent of the side walls far downstream. 

The additional effect of the upstream Ekman drift, as discussed in $3, can be 
isolated by considering the flow in a bounded channel, in the absence of an 
obstacle. The Ekman transport to the left, which exists in the horizontal bound- 
ary layers, is then balanced solely by a continuous slow interior drift of the geo- 
strophic flow to the right. 

These two different effects of the side walls can be seen in figures 2-5, which 
depict the maximum lateral displacement as a function of the Rossby number. 
The broken curves, determined from (2.59), are valid for flow over a fixed obstacle 
with Ef < e < 1, or for the flow induced by a towed obstacle. The displacement 
so obtained decreases more strongly with increasing Rossby number than Boyer’s 
experimental results. The addition of the interior Ekman drift leads to the solid 
lines given by (3.7) and (3.9). Agreement with Boyer’s experimental results is 
now to within 10 %, as good as might be expected considering the difficulty of 
the experiment and the fact that we have determined the displacement to lowest 
order. 
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Appendix 
The aim of this appendix is to prove the validity of the linearization of (2.10) 

toobtain (2.11). Thisisdone by calculating the termsneglectedin (2.10) using the 
solutions of (2.11) and proving that they are appropriately small. While such a 
procedure may not have the elegance of the more usual method of expanding the 
solutions of (2.10) as a power series in some small quantity, say 6, and obtaining 
the solution of (2.1 1) as the first term in such an expansion, it is equally valid and 
in this case more direct. 

To obtain (2.11), we have in essence linearized (2.7) to let 

2, = us,. (A 1) 

u = U(1-S,). (A21 

IS,/ < 1- (A 3) 

From the equation of continuity, therefore, 

Since we have used U in place of u in (2.11), a necessary condition for the con- 
sistency of our approach is that 

Explicitly, now, considering the first term of (2.1 l), we have retained 

U2V2SX 

and neglected 

N -2U2S,V2S,(1-$S,), (AG) 

where we have written u= U+i i  (A 7)  

in (A5) and obtained (AB) by using (A I) and (A2) for u and v and also the fact 
that V2S, = 0 [(2.20) and (2.25)]. A consequence of thelast statement is that the 
va, contribution of the q . V operator in (2.10), that is, the square-bracketed term 
in (A5), is zero. The terms of (A6) will be negligible compared with that of (A4) 
under the condition (A 3). 

In the second term of (2.11)) we have retained 

UhX (A 8) 

and neglected Gh, N - US,h,. (A 9) 

Again this is valid if (A 3) is satisfied. 
In  the third term of (2.11)) we have retained 

uv2s (A10) 

and neglected v2j' iis,ax 21 - USJ~S. 
-m 

Thus, (A3) is a necessary and sufficient condition for the solutions of (2.11) 
to be an appropriate model of those of (2.10). 

28-2 



436 H .  E. Huppert and 41. E. Stern 

In  terms of r([,y), (A3) becomes 

e p p I ( m l  < 1. (A 12) 

We evaluate the left-hand side of (A 12) by differentiating (2.38) to obtain 

sin (&my) sinh (&en<) 
cosh en6 + cosh ny 

= &A 

= O(s). (A 16) 

Thus thesolutions of (2.11) equal thoseof (2.10) to within anerrorfactor that is 
uniformly of order e. 
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