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The heating from above of an initially homogeneous layer of solid crystals, saturated
liquid and glass ballotini (an inert matrix filler) is considered both experimentally
and theoretically. The heat flux causes crystals at the top of the layer to dissolve,
forming liquid which, being more concentrated and dense than the interstitial liquid
below, drives convection in the lower layer. Mixing of this high-concentration liquid
into the lower layer leads to precipitation, thereby releasing latent heat which raises
the temperature of the lower layer. Dissolution of solid crystals from the top leaves
behind a closely packed layer of glass ballotini overlain by a layer of clear liquid, both
of which deepen with time. The initially homogeneous porous medium thus develops
into a three-layer stratified system of (from the top): clear liquid; clear liquid with
close-packed ballotini; and the evolved initial assemblage of solid crystals, ballotini
and saturated liquid. Data from laboratory experiments compare well with analytical
and numerical results from a one-dimensional theoretical model. The model is based
on the concept that the heat supplied from above is used entirely for the dissolution of
solid crystals at the upper boundary of the lower layer. The resulting compositional
convection redistributes the dissolved salt uniformly throughout the lower layer,
where it partly recrystallizes to restore chemical equilibrium. The crystallization and
associated release of latent heat leads to a gradual and uniform increase of both the
solid fraction and temperature of the lower layer. Some geological consequences of
the model are presented in the concluding section.

1. Introduction
Fluid dynamical processes in porous media play an important role in a wide range

of industrial and natural situations. These include the recovery of oil, the percolation
of water through soils, the geological formation of mineral deposits and the cryst-
allization of molten rocks. A description of some of the fundamental processes is
given in Bear (1979) and Phillips (1991). Some of these processes involve reactions
which cause precipitation, dissolution or melting of various phases within the medium,
subjects reviewed by Huppert (1990), Phillips (1991) and Worster (2000). An important
consequence of such phase changes is that the volume fraction of the solid matrix
changes with time. In this paper we commence a series of experimental and related
theoretical investigations of how a porous medium comprising both individual crystals
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and saturated liquid reacts to an imposed temperature field. The evolution of the
porosity and the transfer of heat and mass is followed in detail.

One of the motivations for this work is its application to the geological fluid
mechanics of evolving magma chambers, which are reservoirs of molten or partially
molten rock (magma) within the Earth’s crust. The rocks which solidify from large
intrusions of basaltic magma frequently exhibit textures which suggest they formed
as an accumulation of dense crystals settling on the chamber floor (Wager, Brown &
Wadsworth 1960). These so-called cumulates invariably display horizontal layering,
as defined by vertical changes in the modal proportions of their constituent minerals
(Wager & Brown 1968; Irvine 1982). In general, accumulations of settled crystals
initially incorporate a comparable volume of liquid occupying the interstices between
grains. This liquid must eventually solidify, but it may not do so in situ, since both
compaction and convective processes will cause liquid to move relative to the solid
framework. Post-cumulus melt migration is now recognized as a fundamental process
in the compositional modification of cumulates as they evolve from porous media to
their final solid state (Irvine 1987; Sparks et al. 1985; Hallworth 1998).

Previous research aimed at investigating the fluid dynamics of migrating interstitial
melt has concentrated on convective motion arising through the cooling and
crystallization of interstitial liquid (Kerr & Tait 1986). Our interest in this paper
focuses on the consequences of introducing new interstitial liquid which is not in
equilibrium with the surrounding solid matrix, and is capable of melting or dissolving
some or all of its components. Two situations could be considered. The first is
the straightforward heating of a porous medium caused by contact against a hot,
intrusive body. The second is more complicated, and involves the displacement of
original equilibrium melt by the input of new, higher temperature melt of more
primitive chemical composition (Jupp & Woods 2003). In either case, the original
solid matrix becomes immersed in a liquid into which it may partially dissolve. This
scenario is particularly relevant to open system magma chambers, that is those which
are periodically replenished by new magma from deeper source regions.

We are concerned with the fluid dynamical effects of matrix dissolution and, in
particular, how density changes to the evolving liquid modify the transfer of mass
and heat. We also examine how the matrix structure evolves due to dissolution
or precipitation. To investigate these ideas, we performed a series of laboratory
experiments in which a porous medium, consisting of a mixture of loosely packed solid
crystals bathed in saturated interstitial liquid, was heated from above. The assemblage
was initially in both thermal and chemical equilibrium. Upon heating, the increase in
temperature of the interstitial liquid at the top of the layer caused some fraction of
the enveloped solid matrix to dissolve. In the situation described here, dissolution of
the solid matrix into interstitial liquid leads to an overall increase in the local liquid
density, causing compositionally driven convection. One of the primary aims of the
investigation was to determine how this compositional convection affects the thermal
and chemical evolution of the system.

The chemical system we used in the experiments was the binary KNO3–H2O system.
The relevant portion of the phase diagram for this system is displayed in figure 1,
and shows part of the super-eutectic liquidus curve. The solubility of KNO3 in water
is strongly temperature dependent (the liquidus gradient for KNO3 is much less steep
than for most other common aqueous salt systems), and results in large changes in
the concentration of saturated solutions for relatively small changes in temperature.
This feature amplifies the amount of dissolution or precipitation over the temperature
range that is feasible in the laboratory.
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Figure 1. Part of the phase diagram for KNO3, with the best-fit linear C–T relationship to
the data, symbolized by o, given by (3.1) for the (super-eutectic) liquidus between 20 ◦C and
50 ◦C, including selected density contours in the liquid region (data from Washburn 1962).
The initial temperature and concentration of interstitial fluid in the various experiments are
indicated by crosses.

Our results indicate that heating an initially homogeneous, reactive porous medium
from above causes extensive redistribution of material and can generate horizontal
layers of markedly different composition. The conductive transfer of heat is buffered
at a descending interface, where it supplies the heat necessary for the dissolution
of solid crystals into the interstitial liquid. The resulting increase in the density
of this liquid drives compositional convection, which distributes the dissolved solid
throughout the underlying porous layer. The subsequent recrystallization of dissolved
solid and the associated release of latent heat then cause a uniform increase in both
the solid fraction and temperature of the lower layer.

We describe the details of our experimental setup and the results which we observed
both qualitatively and quantitatively in the next section. A theoretical model is
presented in § 3 and the quantitative predictions compared with the experimental
data. We describe further applications of our new concepts in the final section.

2. Experiments
2.1. Apparatus

The experiments were conducted in a Perspex tank with internal horizontal dimensions
of 2 cm by 30 cm, and a depth of 43 cm, as depicted in figure 2. The narrow ‘cell’ design
was chosen so that backlit illumination would penetrate the porous medium and thus
allow two-dimensional visualization of the fluid dynamics. The tank was constructed
from two vertical parallel plates of 11 mm thick Perspex separated by three 2 cm wide
Perspex spacer blocks forming the remaining two sidewalls and base (figure 2a). These
components were bolted together using external clamp bars to distribute the load,
and were sealed using O-rings inset around the perimeter of the spacer blocks. This
assembly allowed the tank to be dismantled after each experiment for the purpose
of sampling the residual solid matrix. A nozzle was fitted to the base of the tank to
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Figure 2. The experimental apparatus. (a) An exploded view showing the tank construction.
(b) A schematic of the experimental system.

allow filling and drainage of interstitial liquid, and holes spaced every 2 cm between
heights of 2 cm and 38 cm from the base up the centre of one sidewall spacer block
permitted the insertion of an array of thermistor probes at selected positions. Heating
at the top of the porous medium was supplied by a steel tube of external diameter
8mm which passed horizontally through both sidewall spacer blocks, centred at a
height of 39.5 cm from the base. Heated water was pumped through this tube at a
rate of 15 l min−1 in a continuous loop from a temperature-controlled reservoir of 12 l
capacity, which was maintained throughout all the experiments at 50.0 ± 0.1 ◦C. Heat
loss to the laboratory was reduced by insulating the tank on all sides with 5 cm thick
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Solid matrix Interstitial liquid Bulk system

Expt mg ms ml Co ρl Glass KNO3 Liquid Solid To C0 Ms

no. (g) (g) (g) (g cm−3) φg φs φl φo (◦C) (g)

100% ballotini matrix
1 3517 – 989 0.00 0.9982 0.582 – 0.418 0.582 19.3 0.00 –

100% KNO3 matrix
2a – 2152 1630 0.245 1.1661 – 0.437 0.563 0.437 22.6 0.675 2551
2b – 2187 1659 0.262 1.1791 – 0.441 0.559 0.441 22.8 0.682 2622

50% ballotini/50% KNO3 matrix
3a 1875 1338 1216 0.257 1.1750 0.306 0.264 0.430 0.570 22.2 0.646 1650
3b 1886 1398 1247 0.256 1.1738 0.300 0.269 0.431 0.569 22.8 0.649 1717
3c 1753 1362 1276 0.246 1.1669 0.293 0.275 0.432 0.568 21.9 0.635 1676

75% ballotini/25% KNO3 matrix
4 2694 735 1224 0.239 1.1615 0.450 0.148 0.401 0.599 20.2 0.528 1034

Table 1. Initial conditions of the various porous media heated from above. The column
headings are defined in the text with the exception of Co, the bulk concentration of KNO3,
and Ms , its total mass, both of which remain constant throughout the experiment.

expanded polystyrene and lagging the pipework connecting the heating tube to the
reservoir.

2.2. Procedure

The experimental procedure began by preparing the porous medium, which was
composed of a matrix-supported mixture of solid crystals of KNO3 and varying
proportions of 3 mm diameter glass ballotini, bathed in an interstitial liquid of
aqueous KNO3 solution saturated at room temperature. The solid KNO3 crystals
were specially grown from supersaturated solutions of the commercially available
powder in large crystallization tanks, before being dried and seived to yield a harvest
of well-formed, tabular to bladed crystals varying in size from 2 to 10 mm. For
experiments in which the solid matrix was composed entirely of KNO3, the tank was
filled with a measured mass ms of dry crystals up to the base of the heating tube
at a height H of 39.1 cm. In other experiments, solid KNO3 crystals were uniformly
mixed with a mass mg of glass ballotini. The glass in these cases simply acted as
an inert matrix filler, and allowed us to vary the total mass of KNO3 available for
dissolution while still maintaining a self-supporting matrix up to the required height.
To ensure a homogeneous initial distribution of the two solid phases, the tank was
filled in mm-scale height steps by successive additions of small (≈ 10 cm3) volumes of
the correctly proportioned mixture. Once the solid matrix was in situ and the heating
tube had been positioned to just touch its upper surface, the porous pile was then
immersed in a mass ml of a saturated solution of KNO3 of initial concentration Co at
(room) temperature To. The liquid was fed slowly into the tank at its base to eliminate
any trapped pockets of air, and was filled beyond the top of the solid matrix to a
height of 40.3 cm so that it completely submerged the heating tube, thus ensuring
good thermal contact. The initial conditions of all solid and liquid components of the
porous medium are presented in table 1. Values of the initial volume fraction φ of
solid KNO3, glass and interstitial liquid (denoted by subscripts s, g and l respectively),
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Water 25wt.% KNO3 Glass Solid
@ 32 ◦C soln.@ 32 ◦C ballotini KNO3 Perspex

ρ (g cm−3) 0.9950 1.1636 2.55 2.109 1.20
cp (cal g−1 ◦C−1) 0.9980 0.9940 0.27 0.22 0.36
κ (cm2 s−1) 1.4 × 10−3 1.1 × 10−3 2.9 × 10−3 – 0.9 × 10−3

L (cal g−1) – – – 84 –

Table 2. Values of physical properties and thermochemical data of the various solid and
liquid phases. (Data from Washburn 1962; Weast 1971).

were calculated using

φs =
ms

ρsAH
, φg =

mg

ρgAH
, φl = 1 − (φs + φg), (1.1a, b, c)

where ρs and ρg are the densities of solid KNO3 and glass respectively (as given in
table 2), and A = 60 cm2 is the horizontal cross-sectional area of the tank. The initial
total solid volume fraction φo is simply the sum of φs and φg . We draw attention to the
fact that the value of φo ≈ 0.44 for the pure KNO3 cases is substantially lower than
that for KNO3/glass mixtures (φo ≈ 0.59), and reflects the more efficient packing
ability of spheres over randomly orientated, bladed crystals.

The experiments were started by circulating water at a temperature of 50 ◦C through
the heating tube. As the heating progressed, dissolution of the solid matrix occurred,
and was monitored by recording the heights of the top of the matrix and any internal
interfaces as a function of time to within 1 mm. This was done by tracing their profiles
on to translucent, gridded paper fixed to the front plate. The thermal evolution of the
system, with an accuracy of 0.1 ◦C was continually monitored by digital acquisition
of data from an array of 8 thermistors positioned at various fixed heights down one
sidewall of the tank. The thermistor beads themselves only extended ≈ 2mm into
the porous medium, since further horizontal penetration of the probes might have
hindered any downward compaction of the matrix as a result of solid dissolution. A
check on how representative these sidewall temperature measurements are is discussed
in the next section.

A total of seven experiments was performed, as indicated in table 1. The experiments
were generally left to run for 24 hours, but heat loss to the laboratory became a
significant factor after roughly 10 hours. This was unfortunate, because the system
had not reached thermal equilibrium, as seen clearly in the experimental results.
Moreover, the theoretical model presented in § 3 indicates that equilibration takes
a time of order tens of days, well beyond the time we could adequately insulate
the system in our laboratory. At the end of each run, the concentration of the
interstitial liquid at various heights was determined by measuring the refractive index
of withdrawn samples using a hand-held refractometer. Sample withdrawal was not
performed during the course of any run since the significant loss of fluid volume
from the system would have displaced the thermal profile as well as causing loss of
contact of fluid with the heating tube. Once drained of interstitial fluid, the tank was
laid horizontally and the front panel removed to gain access to the residual solid
matrix, which was then sectioned into 2 cm wide sample strips across the width of
the tank. Each sample was dissolved in a known mass of water and its refractive
index measured to determine the amount of KNO3. If glass ballotini were present,
their mass was recovered by drying and weighing. In this manner, the proportions
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Figure 3. Schematic representations of the three experimental variations, including the
temperature profile developed in each case. (a) Ballotini in water, (b) KNO3 in solution,
(c) KNO3 + ballotini in solution.

and amounts of residual solid matrix per unit volume as a function of height were
determined.

2.3. Results

2.3.1. Ballotini in water

In order to test the thermal behaviour of the experimental tank and heating system,
a preliminary experiment (1) was conducted using a porous bed composed entirely
of 3 mm glass ballotini immersed in pure water (figure 3a). In this situation, the solid
matrix and interstitial fluid are completely unreactive, and there is no possibility of
solutal convection. Heating from above should thus result in the development of a
stable thermal gradient which evolves in response to conductive heat transfer through
the composite porous medium.

The temperature measurements from an array of eight thermistors fixed at 4 cm
intervals between heights of 8 cm and 36 cm from the base are presented as functions
of height h at selected times t in figure 4a. The data show typical conductive
profiles, which may be compared to the standard similarity solution for a conductive
temperature profile in a semi-infinite medium (Carlsaw & Jaeger 1959), expressed for
the present situation as

T = TB + (TW − TB)erfc(η) (2.1)

with

η =
a

2
√

κt
, (2.2)

where T is the temperature at a distance a (= H − h) from the heating tube at
time t, TW and TB are the temperatures of the heating tube and base of the tank
respectively, and κ̄ is the effective thermal diffusivity of the system. Since the thickness
of the Perspex walls of the container d = 1.1 cm is comparable to the half-width of
the tank w =1.0 cm, heat conduction down the walls must be accounted for, and the
appropriate value of κ̄ is the correctly weighted sum of the values for glass, water
and Perspex (given in table 2), as expressed by

κ̄ =
w[φoκg + (1 − φo)κw] + dκp

w + d
, (2.3)
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Figure 4. (a) Temperature measurements as a function of height at selected times in Expt 1,
showing the typical conductive profile developed when a porous bed of glass ballotini immersed
in water is heated from above. (b) Temperature as a function of η for the scaled data compared
with the theoretical curve given by (2.1).

where φo is the solid volume fraction of ballotini, with a measured value of 0.58.
figure 4(b) plots T as a function of η for the scaled data compared to the theoretical
curve given by (2.1). The data (incorporating a small correction to eliminate heat
input from the laboratory) show a good collapse and close agreement with the
theoretical curve. The result indicates that the thermal behaviour of the experimental
tank responds in a predictable manner to the heating system, and lends a degree
of confidence to subsequently described experiments. (We mention here that several
earlier attempts at this experiment failed to yield good results due to a design flaw
in the tank. The external clamp bars were originally made from metal, and caused
anomalously high temperatures of fluid in the lower region of the tank as a result of
heat conduction down their length. The problem was rectified by replacing the metal
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bars with Perspex equivalents, but this emphasizes the care necessary in designing
experimental equipment and justifies the effort expended in test experiments.)

2.3.2. Solid KNO3 in saturated KNO3 solution

Two (repeat) experiments (2a and 2b) were performed using a matrix-supported
layer of loosely packed KNO3 crystals, with φo ≈ 0.44, immersed in saturated KNO3

solution, initially in compositional and thermal equilibrium at room temperature
(table 1 and figure 3b). Upon heating, the interstitial liquid at the top of the
layer immediately began to dissolve the enveloped solid crystals, increasing both
its composition and density and becoming gravitationally unstable. This initiated the
onset of compositional convection in the form of descending plumes of relatively
warm, dense liquid with an equivalent upflow of cooler, saturated interstitial liquid
replenishing the interfacial region. The convective plumes were visualized by dye
streaks from small potassium permanganate crystals dropped on to the interface,
and were observed to percolate through the entire porous medium, establishing a
general convective circulation. As the KNO3 crystals dissolved, a descending interface
formed, defined by a plane separating the uppermost limit of a layer of solid crystals
and an overlying layer of clear liquid. The dissolution of KNO3 crystals appeared to
occur primarily in a 1 to 2 mm thick zone directly beneath the descending interface.
No discernible decrease in crystal grain size or evidence of compaction was observed
below this thin zone of dissolution, which suggested that the decrease in height of
the crystal matrix layer with time was due to corrosion at its top, rather than due
to compaction in response to solid volume loss throughout its depth. However, the
interface between the two layers was typically undulating, with localized regions of
more intense dissolution forming transient interfacial depressions above the major
sources of descending plumes, and correspondingly less dissolution and interface
‘highs’ in regions of interstitial liquid upwelling. Over time, however, the general
convective circulation pattern would change and switch the regions of contrasting
dissolution rate. This is illustrated in figure 5, which plots the interface height as a
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function of width across the tank at selected times for Expt 2a. The mean height of
the interface, measured in terms of distance a from the heating tube, is plotted as a
function of time on logarithmic axes in figure 6.

The descent of warm, dense plumes and the general thermal evolution of the system
were monitored by an array of eight thermistors at fixed heights of 8, 20, 28, 30,
32, 34, 36 and 38 cm from the base. Temperature data from this array for Expt 2a
are presented as functions of time and height in figure 7. In figure 7(a), the time
axis is plotted on a logarithmic scale to illustrate the complex thermal structure that
exists in the early phase of development. Temperature traces for roughly the first
50 minutes are characterized by periods of rapid heating events. We interpret these
as corresponding to the passage of descending plumes of warm, high-concentration
interstitial fluid from the interface as they encounter thermistors at different heights.
As the plume locations switch positions, the thermistors revert to recording the mean
temperature of the lower porous layer, which is seen to increase gradually but remain
fairly uniform throughout its depth. At later times, the emergence of individual
thermistors into the upper clear layer at sequential heights, and the thermal gradient
there, is also readily apparent. Similar temperature plots from the other experiments
involving dissolution of solid KNO3 all exhibit essentially the same pattern of early,
periodic overturn events and a gradual increase in the mean temperature of the lower
layer. However, the exact timing of temperature ‘spikes’ differs from run to run, and is
controlled by the somewhat random convective circulation pattern that is established
in relation to the positioning of the thermistors along one sidewall of the tank. In
figure 7(b), temperature measurements from Expt 2a are plotted as a function of
height for selected times. These profiles illustrate the strong thermal gradient that
develops in the upper clear layer, and the gradual increase in temperature of the
lower layer, which remains essentially uniform throughout its depth.
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Figure 7. The temperature data from an array of eight thermistors at different heights in
Expt 2a plotted against (a) time, and (b) height at selected times.

At the end of each experiment, the final assemblage was analysed to determine the
relative volumetric proportions of solid and liquid as a function of height. The results
of this analysis from Expt 2a are presented in figure 8(a). A clear increase in the
solid fraction of KNO3 in the residual solid matrix is observed when compared with
the initial value of φo = 0.44. This additional solid material has evidently crystallized
from liquid that convected downwards from the overlying region of dissolution which
is now devoid of crystals.
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2.3.3. Solid KNO3 and ballotini in saturated KNO3 solution

In four experiments (Expts 3a–c and 4), glass ballotini were introduced as an
inert solid phase in the matrix as depicted in figure 3(c). This caused a reduction of
the volumetric proportion of solid KNO3 crystals, while still maintaining a uniform
initial distribution in a loosely packed granular pile occupying the whole tank. The
experimental observations from these experiments were fundamentally similar to
those already described in the previous section, except that the interface marking the
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complete dissolution of all original solid KNO3 crystals was in these cases separated
from the overlying clear liquid region by a compacted layer of residual ballotini.
Since these experiments involved less solid KNO3 per unit volume in the original
solid matrix, the descent rate of the interface marking its disappearance becomes
notably more rapid, as shown in figure 6. Representative temperature measurements
as functions of time and height for a representative experiment (3c) are presented in
figure 9, and measurements of the final volumetric proportions of individual phases
determined from analysis of the residual matrix are shown in figure 8(b).

3. Theory
We present here a quantitative description of these experimental results with a

view both to test our interpretation of the physical fluid dynamics and phase change
processes, and to apply the relationships derived to larger-scale natural situations.
Owing to the presence of compositional plumes, the experiments evolve in time with
an essentially three-dimensional geometry. To describe this in detail would require a
large, complicated numerical model. This is to be considered in a following paper
(Butler, Huppert & Worster 2005). The approach taken here is to develop a model
which is dependent only on time and the one spatial dimension of height. It thus omits
the details of the plumes, which could be included by incorporating standard plume
theory, as outlined for example by Turner (1979) and Phillips (1991). It does supply,
however, a valuable and predictive one-dimensional spatial model which yields the
governing parameters of the system in addition to horizontal-averaged values of the
flow variables and the interface height. As we see below, in comparing the theoretical
results with experimental data, the model is very effective.

3.1. Solid crystals in saturated solution

We consider a one-dimensional layer, of height H , comprised initially of a homogene-
ous mixture of solid crystals, of volume fraction φ0, and saturated interstitial liquid of
mass concentration C0, all at temperature T0 as exemplified by Expts 2. (The added
influence of non-reactive glass ballotini will be considered in § 3.2.) At time t = 0
the top of the layer is suddenly brought to temperature TW (> T0) and maintained
thereafter at that temperature. We assume that the heat flux, denoted by Q, is used
entirely to dissolve crystals at the top of the layer, which increases the concentration
and density of the saturated interstitial liquid. The compositional Rayleigh number
in the experiments is much larger than critical, and therefore the dense interstitial
liquid drives compositional convection in the porous layer below and, to leading
order, mixes the liquid within the pore space so that it becomes spatially uniform.
Guided by our experimental observations, we assume that the convective circulation
provides an efficient mechanism of recharging the interface with liquid from the lower
layer, thereby maintaining a relatively sharp interface with pure liquid above it, and
negligible dissolution below it. Furthermore, we assume that there is negligible change
in temperature across the dissolving interface, and therefore negligible convective heat
flux associated with the compositional convection in the lower layer. The increased
concentration of the liquid in the porous layer leads to re-precipitation with an
associated increase in the solid fraction, φ. The heat released by this crystallization
leads to a gradual increase in the temperature of the lower layer, which is assumed
to occur at a sufficiently slow rate that the crystals and interstitial liquid remain in a
state of thermal and compositional equilibrium. The equilibrium temperature T and
concentration C of the liquid in this porous medium is then governed by the liquidus
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Figure 9. The temperature data from an array of eight thermistors at different heights in
Expt 3c plotted against (a) time, and (b) height at selected times.

relationship, which is modelled by the linear approximation

C = C∗ + mT, (3.1)

where C∗ and m are constant (figure 1).
The mathematical description of these processes involves the conservation of mass

and heat, coupled with the assumption that the heat flux supplied to the top of the
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crystal pile is used entirely to dissolve the uppermost crystals, while their resultant
recrystallization throughout the porous layer below accounts for its thermal evolution.
As the interface descends it leaves behind a gravitationally stable concentration profile
denoted by CT (z) with respect to a vertical z-axis, such that

CT [h(t)] = C(t), (3.2)

where h(t) is the thickness of the lower porous layer. As indicated by the requirement
of the phase diagram (figure 1), CT (z) is a monotonically decreasing function and
so the upper clear layer, in which the temperature increases with height, is stably
stratified. A sketch of the vertical profiles is presented in figure 10, and of the evolution
on a phase diagram in figure 11, which shows how the temperature and concentration
of the interstitial fluid are linked by the liquids; and both increase with time.
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Global conservation of solute requires that

[ρsCsφ + ρlC(1 − φ)]h +

∫ H

h

ρlCT (z) dz = M ′
s, (3.3)

where ρ denotes density, with the subscripts s and l indicating values attributable to
the solid and liquid respectively, Cs is the solid concentration, which we assume to
remain constant and is equal to 1 in our experiments with aqueous solutions, and
M ′

s is the total mass of solute per unit horizontal area. While ρl changes slightly
with both temperature and concentration, for simplicity we will make an extended
Boussinesq approximation and consider it to remain constant.

Denoting the total amount of solute in the lower layer by Ψ , so that

Ψ = [ρsCsφ + ρlC(1 − φ)] h, (3.4)

we can differentiate (3.3) and use (3.2) to obtain

δΨ = ρlCδh. (3.5)

This relationship indicates that as the interface descends, the change of total solute
in the lower layer occurs as a result of a flux of solute through the interface which
is directly proportional to the concentration in the lower layer and the change in
position of the interface. Now substituting β = ρsCs − ρlC into (3.4) and using (3.5),
we obtain, after a little rearrangement,

δβ

β
=

1

h(1 − φ)
δ(φh). (3.6)

Conservation of heat requires that the heat flux supplied to the upper boundary,
say Q, is given by

Q = −ρsφL
dh

dt
+ ρcph

dT

dt
− ρsLh

dφ

dt
, (3.7)

where L is the latent heat associated with the phase change, ρcp = (ρcp)sφ+(ρcp)l(1−
φ), and the three terms on the right-hand side of (3.7) represent respectively: the latent
heat required for dissolution at the interface; the increase in specific heat of the crystal
pile; and the latent heat released in the crystal pile associated with the solidification
which results as a consequence of the compositional convection driven by melting at
the interface. No consideration is given in this general theory to heat taken up by the
Perspex walls in the experiment, an aspect which will be evaluated when comparing
the experimental data to the theoretical predictions.

The assumption that the convection in the lower layer is driven entirely by the
compositional difference reflects the fact that the lines of constant density in the
liquid region of the phase diagram shown in figure 11 have a much larger gradient
than the liquidus. The effects of composition thus overwhelm those of temperature
in determining the density difference to which the convection responds. This fact
suggests equating separately the left-hand side with the first term on the right-hand
side and the last two terms. This procedure leads to the relationships

Q = −ρsφL
dh

dt
, (3.8)

which governs the rate of dissolution at the interface, and

ρcph
dT

dt
= ρsLh

dφ

dt
, (3.9)
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which describes the conservation of heat in the lower layer. Thus, in the model the
heat flux from the upper boundary melts crystals at the top of the porous medium
(3.8); and the interior heat is redistributed without further loss or addition (3.9).
Equation (3.9) can be integrated using the initial conditions to obtain

φ − φ0 = (ρcp/ρsL)(T − T0). (3.10)

It is now convenient to introduce dimensionless variables in order to simplify the
algebraic manipulation and to clarify the key physical controls on the system. We
define a dimensionless temperature

θ = (T − T0)/(TW − T0), (3.11)

which has initial value 0 and always lies between 0 and 1. In terms of θ , it follows
from (3.1) that

C = C0(1 + γ θ), (3.12)

where

γ = m(TW − T0)/C0 (3.13)

represents the change in concentration associated with heating the interstitial liquid
from the initial temperature to that at the boundary compared to the initial
concentration of the liquid. It also follows from (3.10) that

φ = φ0(1 + Λθ), (3.14)

where

Λ =
ρcp

ρsLφ0

(TW − T0) (3.15)

is an inverse Stefan number and represents the ratio of the thermal energy input at
the top of the layer to that required to dissolve all the crystals. It will generally take
a value below unity. For Expts 2, Λ ≈ 0.3.

Substituting (3.12) and (3.14) into (3.6) and re-arranging, we obtain[
[Γ (1 − φ0) + Λφ0] − 2Γ Λφ0θ

φ0(1 − Γ θ)(1 + Λθ)

]
δθ = −δy

y
(3.16)

with

θ(y = 1) = 0, (3.17)

where y = h/H is the dimensionless depth of the lower crystal pile, and

Γ =
ρlC0γ

ρsCs − ρlC0

(3.18)

represents the ratio, evaluated in density units, of the change in concentration
associated with heating the crystal pile from its initial temperature to the temperature
at the upper boundary and the initial difference in concentration between solid
crystals and interstitial liquid. For small values of Γ , a small amount of dissolution
is sufficient to raise the concentration of the interstitial liquid to that corresponding
to saturated liquid at the temperature of the upper boundary. For large values of Γ ,
a relatively large amount of dissolution is required. For Expts 2, Γ ≈ 0.1.

Equations (3.16) and (3.17) can be solved by the method of partial fractions to
obtain a relationship between y and θ which depends on the dimensionless parameters
Γ , Λ and φ0 and is, because of the flux condition (3.5), independent of M ′

s . The
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Figure 12. The regime diagram for the form of solutions (3.19) and (3.46). For (3.19), the
relationship valid without non-reactive particles, Λ∗ = φ0Λ/(1 − φ0), while for (3.46), which
includes the influence of non-reactive particles Λ∗ = φ0Λ̃/(1 − φ0 − χ0). The four + symbols
correspond to values used in figure 13. The three × symbols correspond to experimental values.

requisite relationship is

y = (1 − Γ θ)p1/(1 + Λθ)p2, (3.19)

where

p1 =
[
(1 − φ0)φ

−1
0 − ΛΓ −1

] /(
1 + ΛΓ −1

)
and p2 = 1 +

[
φ0(1 + ΛΓ −1)

]−1
.

(3.20a, b)

For the parameter ranges of general relevance here, the relationship (3.19) can
take one of the three different forms, appropriate to the regions evaluated in the
Appendix and depicted in figure 12. In region I, given by Γ <min{1, Λφ0[φ0(2Λ +
1) − 1]−1}, which contains Expts 2, as θ increases from 0 to 1, y decreases from 1
to yc ≡ (1 − Γ )p1/(1 + Λ)p2 . Typical curves are graphed in figure 13. In region II,
given by Γ > max{1, φ0(1 − φ0)

−1Λ ≡ Λ∗}, as y decreases from 1 to 0, θ increases
from 0 to Γ −1. A typical curve is graphed in figure 13. In region III, given by
Λ >max{(1 − φ0)φ

−1
0 Γ (2Γ − 1)−1, (1 − φ0)φ

−1
0 Γ }, y decreases from 1 to yc while θ

increases from 0 to θ∗ ≡ (2Γ )−1 + (1 − φ0)(2Λφ0)
−1, and then, unphysically, increases

to infinity as θ increases to Γ −1, as marked in figure 13.
The unphysical result that y can increase with increasing θ is due to the fact that we

have not yet taken into account that as φ increases to 1 (a totally solid lower layer),
the compositional convection can no longer be maintained and the model needs to
be changed. The convection will cease somewhat before φ = 1, but for simplicity, and
to bring out the fundamental principles, we take φ = 1 as the criterion of change
over. From (3.14), φ = 1 when

θ = (1 − φ0)/(φ0Λ) = Λ−1
∗ ≡ θ1. (3.21a, b, c)

There are thus three possible endpoints for θ from the model as stated: (a) θ = Γ −1,
for which y = 0 and the whole system eventually becomes liquid; (b) θ = 1, for which
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y = yc and the system evolves to a uniform temperature TW with a liquid upper layer
and a partially solid lower layer; or (c) θ = θ1, and the system clogs up in finite time.

The conditions under which each of (a), (b) or (c) is selected is determined by the
relative values of Γ −1, θ1 and 1. Since θ is constrained to be less than or equal to 1,
for Γ < 1 either Λ∗ > 1, in which case θ1 < 1 and (c) describes the final state of the
model, or Λ∗ < 1, in which case (b) describes the final state. For Γ > 1 either Λ∗ >Γ ,
in which case the final state is again (c), or Λ∗ <Γ , in which case the final state is
(a). These three possibilities are depicted in figure 14.

Beyond this final state of the model, in case (a), if the temperature TW at the
boundary continues to be maintained, the liquid layer gradually warms up to the
uniform temperature TW by conduction. Case (b) already describes the final (uniform
temperature) situation. In case (c) either both the liquid and solid warm up to the
uniform temperature by conduction, or, if TW exceeds the melting temperature of the
pure solid, it melts to lead to a liquid layer at uniform temperature TW .

If either θ or both Λ and Γ are small, it follows from direct expansion of (3.19)
that

y = 1 −
[
Λ + Γ (1 − φ0)φ

−1
0

]
θ + O(Λ2θ2, Γ 2θ2), (3.22)

that is, to first order in the smallness of either θ or Γ and Λ, y is linear in θ .
This approximation is compared with the full solutions in figure 13, from where it
is seen that there is excellent agreement between the exact solution and the linear
approximation for at least 0.75 � y � 1.

We now complete the calculations by examining the temporal evolution due to the
input heat flux, Q. We make the simplifying assumption that the interface descends
sufficiently slowly that the stable upper fluid layer remains in conductive equilibrium.
Formally, this assumption requires that ḣ � κl/(H −h), which is associated with a large
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Figure 14. The final state of the model (cf. figure 12) allowing for the lower porous medium
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value of the Stefan number (small Λ), as possibly first shown in Turner, Huppert &
Sparks (1986) and used to good effect frequently thereafter. With this assumption,
the detailed solution of the parabolic heat conduction equation is not needed to
determine the flux supplied to the dissolving interface, which is given simply by the
relationship

Q = (ρcpκ)l(TW − T )/(H − h). (3.23)

Inserting this into (3.8) and using (3.11) and (3.14), we obtain

dy

dτ
= − (1 − θ)

(1 − y)(1 + Λθ)
. (3.24)

y(τ = 0) = 1, (3.25)

where the dimensionless time is defined for convenience by τ = (ρcpκ)lΛt/(ρcpH 2).
The solution to (3.24) and (3.25) can be expressed as

τ (y) =

∫ 1

y

(1 − y)(1 + Λθ)

1 − θ
dy, (3.26)

where θ is given by the inverse of (3.19). For θ � 1, which corresponds to τ � 1, the
terms in θ in (3.26) can be neglected, and thus

τ = 1
2
(1 − y)2[1 + O(θ)], (3.27a)

or

1 − y = (2τ )1/2 + O(τ ). (3.27b)

It then follows using (3.22) that

θ =
[
Λ + Γ (1 − φ0)φ

−1
0

]−1
(2τ )1/2 + O(τ ). (3.27c)

Numerical solutions of (3.26) for representative parameters in regions I, II and III
are displayed in figure 15 along with the approximations (3.27). It is seen that the
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approximations agree well with the numerical solutions (and act as an independent
check on them) for sufficiently small values of τ . For region I, as typified by the curves
that make up figure 15(a), θ → 1 and y → yc as τ → ∞. For region II (figure 15b),

θ = θ∗, h = 0 for τ > τ∗ ≡
∫ 1

0
(1 − y)(1 + Λθ)(1 − θ)−1 dy. For region III (figure 15c),
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dθ/dτ → ∞ as τ approaches a finite value, say τIII , while θ and h are undefined for
τ > τIII .

The total mass of solid per unit horizontal area, M, in the lower layer at any time
is given by M = ρsφh. Non-dimensionalizing M by its initial value M0 = ρsφ0H to
determine the fractional mass of solid, fs , and using (3.14), we may write

fs = (1 + Λθ)y = 1 −
[

Γ (1 − φo)

Λφ0 + Γ (1 − φo)

]
(2τ )1/2 + O(τ ), (3.28a, b)

which is also graphed on figure 15.
These theoretical results can now be compared to the experimental data. But first,

the heat taken up by the Perspex sidewalls of the tank must be included in the
calculation. Conservation of heat in the lower layer, to replace (3.9), then becomes

(ρcp)eff
dT

dt
= ρsL

dφ

dt
, (3.29)

where the effective heat capacity (ρcp)eff is given by

(ρcp)eff = [Wρcp + d(ρcp)P ]/W (3.30a)

= ρcp + 1.1(ρcp)P (3.30b)

in terms of the half-width of the layer W , the thickness of the Perspex walls d and the
heat capacity of the Perspex (ρcp)P as in table 2. The only change to the calculation
already presented is the introduction of an effective value of Λ, Λeff , defined by

Λeff =
(ρcp)eff
ρsLφ0

(TW − T0) (3.31)

(cf. (3.15)). (The heat flux Q delivered to the descending interface is unchanged, as
is the timescale, which is determined by the dissolution.) For Expts 2, Γ ≈ 0.13,
Λ ≈ 0.3 and φ0 ≈ 0.44. Figure 15(a) graphs y, θ and fs as functions of τ for these
values. Figure 16 presents these curves in dimensional form over the timescale of
the experiments for Λeff = 0.46 and includes the experimental data. The agreement
between the two is seen to be very good. From (3.27b), a ≈ H (2t/ts)

1/2 where
the timescale ts = ρcpH 2/[(ρcpκ)lΛ] = 57 300 min, that is, with t in minutes a =
0.23t1/2, where the theoretical premultiplicative constant of 0.23 agrees well with the
experimental value of 0.22 presented in table 3.

3.2. Solid crystals plus non-reactive solid in saturated solution

The analysis proceeds in a way that is similar to that in § 3.1. A layer, of height H ,
is comprised initially of a homogeneous mixture of solid crystals, of volume fraction
φ0, saturated interstitial liquid of mass concentration C0, and a non-reactive solid, of
volume fraction χ0, all at temperature T0. At time t = 0 the top of the layer is suddenly
brought to temperature TW (> T0) and maintained thereafter at that temperature. As
depicted in figure 3(c), this results in the formation of a layer of thickness a of clear
fluid of concentration CT (z), beneath which there is a layer that extends to a depth b

below the top and is made up of clear fluid of concentration CT (z) and non-reactive
solid of volume fraction χ1, the (given) close packing fraction of the solid. Below
this lies a layer of thickness h(t) = H − b of solid crystals with volume fraction φ,
saturated liquid of concentration C(t) and non-reactive solid of volume fraction χ0.
The function CT (z) is a continuous function of z in the upper two layers and merges
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at−1/2 (cm min−1/2) bt−1/2 (cm min−1/2)

Expt expt theory expt theory

2b 0.22 0.23 – –
3c 0.14 0.14 0.26 0.28
4 0.10 0.10 0.37 0.43

Table 3. Comparisons between the experimentally determined values of at−1/2 and bt−1/2,
both in cm min−1/2, with the theoretical predictions.

continuously with C(t) in the lowest layer, so that, as in (3.2),

CT [h(t)] = C(t). (3.32)

A sketch of the temperature, concentration and non-reactive solid fraction is presented
in figure 17.

Conservation of non-reactive solid can be written as

(b − a)χ1 = bχ0 (3.33)
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Figure 17. A sketch of the vertical profiles of (a) temperature and (b) concentration for the
situation when non-reactive particles are included.

from which it follows that the thickness of the uppermost layer is linearly related to
that of the middle layer by

a = (χ1 − χ0)b/χ1 (3.34)

where χ10 is a constant. Global conservation of solute requires that

[ρsCsφ + ρlC(1 − φ − χ0)]h +

∫ h+

h

ρl(1 − χ1)CT (z) dz +

∫ H

h+

ρlCT (z) dz = M ′
s, (3.35)

where h+ = h + b − a is the combined thickness of the lowest and middle layers.
Denoting the total amount of solute in the lowermost layer by Ψb, so that

Ψb = [ρsCsφ + ρlC(1 − φ − χ0)] h, (3.36)

we can differentiate (3.35) and use (3.32) to obtain

δΨb = ρlχ1CT [h+(t)] δh+ + ρl(1 − χ1)C(t)δh. (3.37)

While formally correct, (3.37) is difficult to handle because of the appearance on
the right-hand side of the unknown CT [h+(t)]. However, since the right-hand side
represents the total flux of solute through the lower interface, we can express (3.37)
in analogy with (3.5) as

δΨb = ρl(1 − χ1)Cδh, (3.38)

which circumvents the appearance of CT [h+(t)]. Introducing β = ρsCs −ρlC into (3.36)
and using (3.38), we obtain

h(φ + χ0 − 1)δβ + βδ(φh) − ρl(χ1 − χ0)Cδh = 0 (3.39)

as the counterpart of (3.6).
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Conservation of heat in the lower layer requires

ρ̃cph
dT

dt
= ρsLh

dφ

dt
, (3.40)

where the average denoted by a tilde is defined by

ρ̃cp = (ρcp)sφ + (ρcp)bχ + (ρcp)l(1 − φ − χ) (3.41)

and the subscript b indicates a value attributable to the non-reactive solid (modelled by
ballotini in the experiments). Integrating (3.40) with the appropriate initial conditions
and introducing the non-dimensional θ defined by (3.11), we find that

φ = φ0(1 + Λ̃θ), (3.42)

in terms of the augmented inverse Stefan number

Λ̃ =
ρ̃cp

ρsLφ0

(TW − T0), (3.43)

which for Expts 3 is approximately 0.5 and for Expt 4 approximately 1. These values
are larger than those for Expts 2 due to the lower volume fraction of crystals which
take part in the dissolution process.

Substituting (3.12), (3.42) and (3.43) into (3.39), and re-arranging the result, we
obtain [

[Γ (1 − φ0 − χ0) + Λ̃φ0] − 2Γ Λ̃φ0θ

φ0(1 − Γ θ)(1 + Λ̃θ) + ∆(1 + γ θ)

]
δθ = −δy

y
, (3.44)

where

∆ =
ρl(χ1 − χ0)C0

ρsCs − ρlC0

(3.45)

and represents the ratio, evaluated in density units, of the initial concentration of the
interstitial liquid and the initial difference in concentration between solid crystals and
interstitial liquid times the difference in volume fraction of the non-reactive solid due
to compaction.

The analytic solution of (3.44) subject to (3.17) is cumbersome, and the solution is
best determined numerically. However, for our experiments ∆ ≈ 0.04 (Expts 3) and
0.02 (Expt 4) and the influence of the term proportional to ∆ is small. In the limit
∆ ≡ 0, equation (3.44) is then identical in form to (3.16) and therefore its solution and
interpretations can be taken over directly from § 3.1. The solution can thus be written
as

y = (1 − Γ θ)p3/(1 + Λ̃θ)p4, (3.46)

where

p3 =
[
(1 − φ0 − χ0)φ

−1
0 − Λ̃Γ −1

]/(
1 + Λ̃Γ −1

)
and

p4 = 1 + (1 − χ0)[φ0(1 + Λ̃Γ −1)]−1. (3.47a, b)

The similarities between (3.20) and (3.47) indicate that the solutions of (3.47) take
different forms in the different regions of figure 12 as long as the vertical axis is
interpreted as φ0Λ̃/(1 − φ0 − χ0).

If either θ or both Λ̃ and Γ are small, integration of (3.44) subject to (3.17) indicates
that

y = 1 − [Λ̃φ0 + Γ (1 − φ0 − χ0)](φ0 + ∆)−1θ + O(Λ̃2θ2, Γ 2θ2). (3.48)
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(θ → 0) approximations for Γ = 0.142, Λ̃= 0.957, φ0 = 0.148, χ0 = 0.450 and χ1 = 0.582.

Figure 18 presents curves of the numerically determined y(θ) which satisfies (3.44)
subject to (3.17), along with the asymptotic relationship (3.48) and the analytic
approximations (3.46), obtained by setting ∆ =0, for parameter values approximate
to Expt 4. These are Γ = 0.142, Λ̃ = 0.957, φ0 = 0.148, χ0 = 0.450 and χ1 = 0.582. The
agreement between the numerical solution and the two approximations is good.

By conservation of heat, the heat flux from the top of the container Q is given by
each of the relationships

Q = −ρsφL
dh

dt
(3.49)

= (ρcpκ)l(TW − TI )/a (3.50)

= (ρ̂cpκ)(TI − T )/(b − a), (3.51)

where TI (t) is the temperature at the interface between the middle and uppermost
layers (see figure 17) and a caret represents the average appropriate to the middle
layer, i.e. (ρ̂cpκ) = (ρcpκ)bχ1 + (ρcpκ)l(1 − χ1). Equation (3.49) links Q to the rate of
dissolution; (3.50) links it to the heat flux through the uppermost layer; and (3.51) to
that in the middle layer, using the approximate solution of the conduction equation,
as discussed in the paragraph preceeding (3.23).

Equating (3.50) to (3.51) and using (3.34), we can write

TI = [(ρcpκ)lTW + ρ̂cpκχ10T ]/[(ρcpκ)l + ρ̂cpκχ10] (3.52)

which, when inserted into either (3.50) or (3.51) indicates that

Q =
(ρcpκ)l ρ̂cpκ

[(ρcpκ)l + ρ̂cpκχ10]

χ1

χ0

TW − T

H − h
, (3.53)

where χ10 = (χ1 − χ0)/χ0.
Substituting (3.53) into the left-hand side of (3.49), using (3.11) and the non-

dimensionalization of y = h/H , we obtain

dy

dη
=

−(1 − θ)

(1 − y)(1 + Λ̃θ)
, (3.54)
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Figure 19. The numerically determined y(η) and θ (η) compared to their analytic (∆ ≡ 0) and
asymptotic (η → 0) approximations for the same parameter values as in figure 18.

which is to be solved in conjunction with

y(η = 0) = 1, (3.55)

where the dimensionless time η = t/tB with the timescale

tB =
[(ρcpκ)l + ρ̂cpκχ10]

(ρcpκ)l ρ̂cpκ

χ0

χ1

ρsφ0LH 2

TW − T0

. (3.56)

Using the same arguments as in § 3.1, we can write the solution of (3.54) and (3.55)
for small η as

1 − y = (2η)1/2 + O(η) (3.57)

and thus, using (3.48),

θ = (φ0 + ∆)[Λ̃φ0 + Γ (1 − φ0 − χ0)]
−1(2η)1/2 + O(η). (3.58)

Figure 19 presents, for the parameter values of Expt 4, graphs of y(η) and θ(η)
along with the asymptotic relationships (3.57) and (3.58) and the curves obtained by
integrating (3.54) and (3.55) using the analytic relationship (3.46).

For Expt 3c, Γ =0.135, Λ̃ = 0.481, φ0 = 0.275, χ0 = 0.293 and χ1 = 0.582. Thus
tB =30 000 min, while for Expt 4, using the parameter values listed above,
tB =14 200 min. Using these parameters, (3.34) and the asymptotic relarionship (3.57),
we can calculate the theoretically predicted values for at−1/2 and bt−1/2 compiled in
table 3. The agreement between these values and the experimentally determined values
is seen to be very good, except for the somewhat higher theoretical value for bt−1/2

of Expt 4. Looking back over our experimental notes, we ascribe this difference to an
inadvertantly somewhat loose packing of the crystals near the top of this experiment.
figure 20 plots the experimentally determined mean temperature of the lower layer
and the heights of the two interfaces for Expt 3c as functions of time and compares
these to the theoetically predicted results.

4. Summary and discussion
This study was aimed at investigating what happens when a homogeneous porous

medium consisting of crystals, saturated liquid and non-reactive particles is heated
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Figure 20. Graphs of (a) T − T0 and (b) a and b as functions of time for parameter values
relevant to Expt 3c, determined numerically (solid curves) and experimentally (dashed curve
and circles). The displayed experimental temperature is the mean of readings taken within the
lowest layer. The error bars correspond to ± 0.1 ◦C.

uniformly from above. Laboratory experiments were conducted with a matrix of
KNO3 crystals and non-reactive glass ballotini, bathed in saturated aqueous KNO3.
The initially homogeneous medium evolved into a stratified three-layer system. The
uppermost layer consisted of clear aqueous KNO3; the middle layer consisted of
closely packed ballotini bathed in aqueous KNO3; and the lower layer was made up
of a porous medium of KNO3 crystals, ballotini and saturated aqueous KNO3, in
which the volume fraction of KNO3 crystals had increased compared to its initial
value at the expense of the aqueous phase. This three-layer system was the result of
the heat flux supplied at the top of the system being transported freely through the
two upper layers and dissolving KNO3 crystals at the upper boundary of the lower
layer. The resulting heavy melt drives compositional convection, which redistributes
enriched aqueous KNO3 uniformly throughout the lower layer, where it recrystallizes
to restore chemical equilibrium. The crystallization and associated release of latent
heat leads to a gradual increase in both the temperature and solid fraction of the
lower layer.

We built a one-dimensional mathematical model to describe the evolution of the
system averaged in the horizontal plane. The model was based on the following
assumptions. The entire heat flux from the top of the system was used to dissolve
the crystals at the interface between the lowermost and middle layers; the interstitial
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aqueous KNO3 was in thermodynamic equilibrium with the surrounding crystals;
it was well mixed and hence spatially uniform in temperature and concentration;
and there was no transport of solute in the upper region due to either diffusion
or advection. The results are dependent on two non-dimensional parameters: Λ̃,
an augmented inverse Stefan number, and Γ , a concentration change due to the
dissolution of KNO3. There was very good agreement between our theoretical
predictions and laboratory data on the horizontally averaged interface positions
and, after allowance for heat transfer down the sidewalls of the experimental tank,
the temperature in the lower layer as functions of time.

One of the results of the mathematical model is the evaluation of a timescale for
the evolution of the system. Detailed expressions for this are given in the previous
section; here we present an expression in which, for simplicity, we assign identical
values to solid and liquid for each of the physical parameters. The time scale, τs , is
then given by

τs =

[
φ0L

cp(TW − T0)

]
H 2

κ
, (4.1)

which is the product of a porous-medium Stefan number and a conductive timescale.
For our experiments, of duration of order 10 h, τs ≈ 1000 h. Thus the experiments
capture only the beginnings of the evolution, but the agreement between theoretical
results and experimental data over this time lends confidence to the validity of the
model for longer times. However, it might be suggested that at later times, when the
supply of heat is less, an increasing fraction of this heat may diffuse into the reactive
porous layer rather than be used entirely for producing relatively heavy melt, leading
to vigorous compositional convection. Nevertheless the agreement between the model
and the experiments over the initial period is encouraging.

Fluid interaction with reactive porous media occurs in a variety of geological
situations, including, for example, the migration of acidic groundwater through
permeable limestones, groundwater circulation through soluble evaporite deposits
and the economically important concentration of ore minerals by the scavenging
action of hydrothermal systems (Phillips 1991). An immediate application of the
present study is an elucidation of the complexities of cumulate layering observed in
many plutonic igneous intrusions, such as on Rum (NW Scotland).

Cumulate rocks are considered to form as assemblages of loosely packed crystals
settling on the floor of large basaltic magma chambers. They invariably show phase
layering, defined by abrupt changes in the modal proportions of their constituent
mineral grains. Layered cumulate sequences also frequently display cyclic repetition
of phase assemblages, which are interpretted as the successive accumulation of crystals
settling from discrete batches of new hot magma emplaced above the cumulate pile
following periodic chamber replenishment events (Huppert & Sparks 1980). Our
investigations reveal that the juxtaposition of relatively hot primitive magma above
an existing porous cumulate pile may result in extensive redistribution of selected
mineral phases by compositionally driven convection, and could either generate
layering within an initially homogeneous cumulate, or substantially modify a pre-
existing layered structure. Our model envisages that the replenished hot magma acts
simply as a heat source, and is not involved in any density-driven exchange flow
itself. Using geologically appropriate values of the physical parameters in equation
(4.1), we estimate that, independent of the details of the phase diagram, the timescale
for such effects typically varies from months for a cumulate body of order 1 m deep
to decades for one 10 m deep, and is therefore entirely reasonable within the context
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of cooling magma intrusions. We plan to expand the geological consequences of this
research in a forthcoming paper.
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Appendix. The various forms of y(θ)

Consider

y(θ) = (1 − Γ θ)p1/(1 + Λθ)p2, (A 1)

where

p1 =
[
(1 − φ0)φ

−1
0 − ΛΓ −1

]
/(1+ΛΓ −1) and p2 = 1+[φ0(1+ΛΓ −1)]−1. (A 2a, b)

as derived in § 3.1, under the stipulation that both y and θ lie between 0 and 1
inclusive and each of Γ , Λ and p2 � 0. From (3.16), (A 1) satisfies

dy

dθ
= − 2Γ Λ(θ∗ − θ)y

(1 − Γ θ)(1 + Λθ)
(A 3a)

= −2Γ Λ(θ∗ − θ)(1 − Γ θ)p1−1(1 + Λθ)−p2−1 (A 3b)

= −2Γ Λθ∗ (θ = 0), (A 4)

where

θ∗ = 1
2
[(1 − φ0)(Λφ0)

−1 + Γ −1] > 0, (A 5a, b)

and (A 4) indicates that y(0) has a negative slope at θ = 0. Comparing (A 2a) with
(A 5), we find that p1 and θ∗ − Γ −1 are both positive or negative together.

For positive p1, from (A 1), (A 3b) and (A 5), y(θ) monotonically decreases until
y = 0 when θ = Γ −1, which is less than θ∗, as is sketched in figure 13. This form of
y(θ) for Γ > 1 makes up region II of figure 12. If Γ < 1, then θ has increased to unity,
the maximum allowable, at y = yc ≡ (1 − Γ )p1/(1 + Λ)p2 . This form of y(θ) makes up
region Ia. Both regions Ia and II require p1 to be positive, i.e. Λ < Γ (1 − φ0)φ

−1
0 with

the boundary dividing them given by Γ = 1, as depicted in figure 12.
For negative p1, as is clear from (A 1), y(θ) can never be zero. As θ increases

from 0, y decreases (as indicated by (A 3b)) until at θ = θ∗, dy/dθ = 0. For θ > θ∗, y(θ)
increases monotonically to infinity at Γ −1. Because of the increase in y, corresponding
to an ascent of the interface, this part of the curve is not relevant to the physical
situation being considered. The physically appropriate part of the curve ends: either
at θ = 1 at y = yc (if θ∗ > 1), which is depicted in figure 13 and makes up region Ib
and contains Expts 3; or at θ = θ∗ (if θ∗ < 1), as sketched in figure 13 and makes
up region III. Both regions Ia and III require p1 < 0, or Λ > Γ (1 − φ)φ−1

0 with their
dividing boundary given by θ∗ = 1 or Λ =(1 − φ)φ−1

0 Γ/(2Γ − 1).
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