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The exchange of energy for an inviscid gravity current which is released from a lock
and then propagates over a horizontal boundary is considered. Attention is focused
on effects due to stratification in the ambient. The investigation uses both a one-layer
shallow-water model and Navier–Stokes finite-difference simulations. There is good
agreement between these two approaches for the energy of the dense fluid (the current).
The results indicate that with respect to the behaviour of energy as a function of
time we can distinguish between: (a) currents propagating at supercritical speed (with
respect to the fastest internal wave in the ambient), including a nose propagating into
an unstratified ambient; and (b) currents propagating at subcritical speed, including
the strongest effective stratification for which the density at the base of the ambient is
equal to that of the current. The stratification enhances the accumulation of potential
energy in the ambient and reduces the energy decay (dissipation) of the two-fluid
system. The interaction of the internal waves with the head of the current in the
subcritical case has no significant influence on the energy balance of the current.

1. Introduction
Gravity currents occur whenever fluid of one density flows primarily horizontally

into fluid of a different density. Many such situations arise in both industrial
and natural settings, as reviewed by Simpson (1997) and Huppert (2000). Various
important features of these processes have now been fairly well investigated. Our
aim here is primarily to elucidate the energy flow during the propagation of high-
Reynolds-number currents, such as those resulting from the instantaneous release
of a finite volume of constant density in a rectangular two-dimensional geometry.
We are particularly interested in effects due to a stratified ambient. Applications of
our work include areas such as oceanography, atmospheric winds and environmental
control. For example, submarine wakes in oceans, contrails in the atmosphere, and
the crests of lee waves in air streams over a mountain are typically regions of ‘mixed’
fluid whose density difference from the ambient produces a driving force of the type
considered here, see Wu (1969).

The study of gravity currents and intrusions into a stratified ambient has made
significant progress in the last few years. Earlier works aimed at the elucidation of the
high-Reynolds-number motion of a fixed volume of fluid released from a lock were
concerned mostly with intrusions at the level of neutral buoyancy (Wu 1969; Kao
1976; Manins 1976; Amen & Maxworthy 1980; Faust & Plate 1984; de Rooij 1999).
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(Related investigations concerning the waves produced in the ambient were presented
by Schooley & Hughes 1972; Maxworthy 1980, 1983; Flynn & Sutherland 2004, but
this phenomenon is beyond the scope of the present work.) The pertinent theoretical
interpretations, based on box models with adjustable parameters, turned out to have a
quite restricted range of applicability. For example, Faust & Plate (1984) on the basis
of careful comparisons with their experimental data, concluded that ‘intrusions into a
linearly stratified environment behave very differently from theoretical calculations’. A
turning point came with the work of Maxworthy et al. (2002), herein referred to as M.
They considered the propagation of a saline current released from behind a lock over
a horizontal bottom into a linearly stratified saline ambient in a rectangular container
whose upper boundary was open to the atmosphere. The density of the current, ρc,
was larger than, or equal to, that of the ambient at the bottom, ρb (the ‘intrusion’
corresponds to the particular case ρc = ρb). The investigation was a combination of
laboratory and numerical experiments. M observed that the speed of propagation is
time independent for a significant period after release (following a short adjustment
interval). They obtained a quite general empirical data correlation for this slumping
velocity as a function of two governing dimensional parameters: S (which expresses
the strength of the stratification defined by (2.2)) and H (which expresses the depth
ratio of the ambient to the lock). M also provide data on the ‘criticality’ of the speed
(with respect to the fastest internal wave in the ambient) and the position where the
first significant wave–nose interaction is observed. Motivated by the lack of theoretical
interpretation of the careful observations of M, Ungarish & Huppert (2002, 2004) and
Ungarish (2005a) developed and verified the corresponding one-layer inviscid shallow-
water (SW) formulation. This theory is based on rigorous volume and momentum
balances, which are reduced to a hyperbolic system of equations for the thickness
h and velocity u of the current as functions of x (horizontal distance) and t (time),
amenable to realistic initial and boundary conditions, without using any adjustable
parameters. It provides reliable theoretical interpretations of the observations of M.
Indeed, the theory shows that: (a) the governing parameters are S and H ; (b) the
solution on the characteristics of the hyperbolic SW system yield initial propagation
with constant velocity, at values in excellent agreement with measurements; and
(c) the super- and subcritical speed of propagation as functions of the governing
parameters S and H , and the occurrence of the first wave–nose interaction can be
predicted. Moreover, extensions of this SW formulation to axisymmetric and rotating
currents were developed and the parameters which govern the stratification–Coriolis
interactions were derived. Extensions to the flow of intrusions were presented by
Ungarish (2005b). The new results are in very good agreement with the measurements
of Faust & Plate (1984), thus resolving the theory–experiment incompatibility dilemma
pointed out by these authors. The new results also clarified the previously overlooked
differences between intrusions released from behind a rectangular lock (Amen &
Maxworthy 1980; de Rooij 1999) and a cylinder lock (Wu 1969), and proved that
the propagation of an intrusion is always subcritical in a linearly stratified ambient
(the last result strengthens an earlier approximate deduction by Flynn & Sutherland
2004). The propagation proportional to t1/2, indicated by the experiments of Wu,
turns out to be a similarity solution of the SW balances. Ungarish (2006) generalized
the nose Froude and dissipation analysis of Benjamin (1968) to a linearly stratified
ambient, and showed that the classical unstratified results are fully recovered in the
limit S → 0. The useful insights gained by these studies and the good agreements
with available experimental data provide motivation for deriving further results and
verifications in the framework of the SW formulation.
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Figure 1. Schematic description of the system: (a) the geometry; and (b) the density profiles
in the current (solid line) and ambient (dashed line).

The behaviour of the energy of the current has not been addressed directly in these
investigations. This is an important issue for understanding the interaction between the
current and the ambient and the behaviour of various natural hazards. In particular,
it is important to clarify: the influence of stratification on the behaviour of the energy
of the current; and whether the one-layer SW model, which neglects motion in the
ambient, reproduces well the energy budgets of the current. The object of this paper
is to study these questions. The investigation is based on a combination of SW and
Navier–Stokes (NS) solutions for a two-dimensional (rectangular) geometry.

The system under consideration is sketched in figure 1: a deep layer of ambient
fluid, of density ρa(z), lies above a horizontal surface at z =0. Gravity acts in the
negative z-direction. In the rectangular case the system is bounded by vertical, smooth,
impermeable surfaces and the current propagates in the x-direction. At time t = 0 a
given volume of homogeneous fluid of density ρc � ρa(0) ≡ ρb and kinematic viscosity
ν, initially at rest in a rectangular box of height h0 and length x0, is instantaneously
released into the ambient fluid. A two-dimensional current starts to spread. We assume
that the Reynolds number of the horizontal flow, Re, defined below, is large, and
hence viscous effects can be neglected. (For example, in the experiments of M, Re
was estimated as typically 103. After a significant spread of the current, when both its
thickness and the velocity are reduced, viscous forces become important. This phase
is outside the scope of the present work.)

A related work, on the energy budgets of gravity currents which propagate into
a homogeneous ambient, was recently presented by Necker et al. (2005). This is a
careful numerical investigation, based on a high-resolution code. However, their focus
was different from the present one: most attention was devoted to the effects of
particle-driven currents, but the study did not consider SW models and stratified
ambients.

The structure of the paper is as follows. In § 2 the energy balances are developed,
first in the SW model and then in the NS formulation. A criterion for the validity of
the inviscid assumption is also introduced. In § 3 we present results and comparisons
of the SW and NS calculations for typical configurations. We show that, overall,
the SW model captures well the features of the energy transfers. In § 4 we present
some concluding remarks about the effects of stratification. In particular, we note
the difference between supercritical currents (including currents propagating into a
non-stratified ambient) and subcritical currents. We also claim that the stratification
of the ambient enhances the potential (wave) energy accumulation, and hence reduces
the viscous dissipation (which acts on a reduced amount of kinetic energy).



366 M. Ungarish and H. E. Huppert

2. Formulations
The configuration is sketched in figure 1. We use an {x, y, z} Cartesian coordinate

system with corresponding {u, v, w} velocity components, assuming that the flow does
not depend on the coordinate y and that v ≡ 0.

Initially, the height of the propagating current is h0, its length is x0 and its density
ρc. The height of the ambient fluid is H (dimensional). The ambient fluid is stably
stratified: the density at the top (usually, an open boundary) is ρo, and it increases
linearly with depth by the increment �ρ to the value ρb at the bottom. We consider
situations with ρb � ρc.

It is convenient to use ρo as the reference density and to introduce the reduced
density differences and ratios between them (Ungarish & Huppert 2002):

ε =
ρc − ρo

ρo

, εb =
ρb − ρo

ρo

=
�ρ

ρo

(2.1)

and

S = εb/ε, (2.2)

from which it follows that

ρc = ρo(1 + ε), ρa = ρb −�ρ

H
z = ρo

[
1 + εS

(
1 − z

H

)]
. (2.3)

S represents the magnitude of the stratification in the ambient fluid, and we consider
only 0 � S � 1. The homogeneous ambient is recovered by setting S = 0. We also
define the reference reduced gravity,

g′ = εg, (2.4)

where g is the gravitational acceleration.
We recall that the buoyancy frequency is defined by

N2 = g
�ρ

ρoH
= g′ S

H
(2.5)

and that the leading, or mode one, linear internal wave in a closed two-dimensional
channel propagates with velocity (Baines 1995)

uW = ±NH

π
. (2.6)

It is convenient for purposes of interpretation to keep in mind the following picture,
also sketched in figure 1(b): S = 0 corresponds to a homogeneous ambient of density
ρo and a current of fluid of density ρc. For 0 <S < 1 the density of the ambient is
stratified (increases linearly) from the same ρo at the top to a larger density at the
bottom. The extreme situation S =1 is achieved when the density of the ambient at
the base matches that of the current.

2.1. SW model

We shall use a one-layer approximation which omits the motion in the ambient. This
is the simplest shallow-water model. In fact, the propagation of the current at the
bottom is bound to produce a return flow in the ambient above. Experimental and
numerical results (Wu 1969; M; Ungarish & Huppert 2004; Ungarish 2005b) show
that this flow has a quite complex z-dependence. Therefore, in contrast with the
unstratified case, the flow field in the stratified ambient cannot be directly expressed
by averaged variables. A reliable two-layer model for the stratified configuration
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is still lacking. Thus, although the one-layer model contains a bold simplification,
at present it is the only available framework of governing equations for analytical
investigation. Previous studies indicated that it captures well many of the important
features of the flow, and we therefore claim that it makes sense to use it for energy
calculations.

To be specific, we assume that in the ambient fluid domain u = v = w = 0 and hence
the fluid is in purely hydrostatic balance and maintains the initial density ρa(z) given
by (2.3). Motion is assumed to take place in the lower layer only, 0 � x � xN (t) and
0 � z � h(x, t), see figure 1. As in the classical inviscid shallow-water analysis of a
gravity current in a homogeneous ambient, we argue that the predominant vertical
momentum balance in the current is hydrostatic and that viscous effects in the
horizontal momentum balance are negligibly small (the quantitative criteria will be
specified later in § 2.1.2). Hence the motion is governed by a balance between pressure
and inertia forces in this horizontal direction. As in the situation with a homogeneous
ambient, an order-of-magnitude analysis indicates that the perturbation of the upper
free surface introduced by the flow can be neglected when ε � 1, as assumed here.

A relationship between the pressure fields and the height h(x, t) can be obtained.
The hydrostatic balances are ∂pi/∂z = −ρig, where i = a or c, and in the motionless
ambient the pressure does not depend on x. Use of (2.3) then yields

pa(z, t) = −ρo

[
1 + εS

(
1 − 1

2

z

H

)]
gz + C (2.7)

and

pc(x, z, t) = −ρo(1 + ε)gz + f (x, t), (2.8)

where C is a constant. Pressure continuity between the ambient and the current on
the interface z = h(x, t) determines the function f (x, t) of (2.8) and we obtain, after
some algebra,

pc(x, z, t) = −ρo(1 + ε)gz + ρog
′
[
h − S

(
h − 1

2

h2

H

)]
+ C, (2.9)

and consequently
∂pc

∂x
= ρog

′ ∂h

∂x

[
1 − S

(
1 − h

H

)]
. (2.10)

The fact that ∂pc/∂x is not a function of z makes the SW equations for the stratified
case a straightforward extension of the homogeneous situation. Indeed, the motion
in the layer of dense fluid can be expressed by two dependent variables: the
thickness of the layer, h(x, t), and the (z-averaged) longitudinal velocity, u(x, t).
In this approximation, the vertical velocity in the layer is negligibly small compared
with u (formally, the ratio is of the order of magnitude of (h0/x0)

2). The equations of
motion will be presented in § 2.1.2.

2.1.1. Energy

We now consider the energy in the dense-fluid domain. In the SW framework the
significant speed of motion is represented by the z-independent average horizontal
velocity, and hence the kinetic energy of the current (denoted by subscript c) is simply

Kc(t) =
1

2
ρc

∫ xN (t)

0

u2(x, t)h(x, t) dx. (2.11)

The vertical displacement of the dense fluid particles is resisted by the hydrostatic
pressure of the embedding ambient fluid. The resulting buoyancy acceleration is



368 M. Ungarish and H. E. Huppert

[ρc − ρa(z)]g and the corresponding work needed to move a unit volume from the
bottom to some z, in the present linear ρa(z), is g[(ρc − ρb)z + (1/2)�ρ z2/H ]. The
potential energy of the current is therefore

Pc(t) = g

∫ xN (t)

0

dx

∫ h(x,t)

0

[
(ρc−ρb)z+

1

2

�ρ

H
z2

]
dz = g

∫ xN (t)

0

[
1

2
(ρc−ρb)h

2+
1

6

�ρ

H
h3

]
dx.

(2.12)

Initially, at t = 0, we have h = h0, xN = x0 and u =0. Consequently, Kc(0) = 0 and,
using (2.1)–(2.4), we obtain

Pc(0) =

(
1

2
ρox0h

2
0g

′
) [

1 − S +
1

3

S

H/h0

]
. (2.13)

This indicates that energy in the problem under investigation is conveniently scaled
with (1/2)ρox0h

2
0g

′, as is done in (2.14) below. For a particular system it is convenient
to refer the energy to Pc(0), as is done in § § 3 and 4.

2.1.2. Governing SW equations

It is convenient to scale the dimensional variables (denoted here by asterisks) as
follows:

{x∗, z∗, h∗, H ∗, t∗, u∗, E∗} =
{
x0x, h0z, h0h, h0H, T t, Uu, 1

2
ρoU

2h0x0E
}
, (2.14)

where

U = (h0g
′)1/2 and T = x0/U. (2.15)

Here h0 and x0 are the initial height and length of the current, U is a typical inertial
velocity of propagation of the nose of the current and T is a typical time period
for longitudinal propagation over a typical distance x0. The variable E denotes the
energy (per unit width y). Note that the horizontal and vertical lengths are scaled
differently, which removes the initial aspect ratio h0/x0 from the SW analysis in the
homogeneous circumstances (Ungarish & Huppert 1999), and this applies also to the
stratified case considered here. A representative Reynolds number of the current is
defined as Re = Uh0/ν, where ν is the kinematic viscosity, assumed constant in the
system.

The relevant volume and momentum balances have been developed and verified in
previous investigations (Ungarish & Huppert 2002, 2004; Ungarish 2005a). Here we
briefly mention the equations used in the present work.

In conservation form the continuity and momentum equations can be written as

∂h

∂t
+

∂

∂x
(uh) = 0, (2.16)

and

∂

∂t
(uh) +

∂

∂x

[
u2h +

1

2
(1 − S)h2 +

1

3
S

h3

H

]
= 0. (2.17)

Following the standard procedure, we calculate the speeds of propagation of the
characteristics

λ± = u ±
[
h

(
1 − S + S

h

H

)]1/2

. (2.18)
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On dx/dt = λ±, the dependent variables satisfy[
1 − S + S(h/H )

h

]1/2

dh ± du = 0. (2.19)

The initial conditions are zero velocity and unit dimensionless height and length
at t = 0. Also, the velocity at x = 0 is zero, and an additional condition is needed at
the nose x = xN (t). As in previous investigations (Ungarish & Huppert 2002, 2004;
Ungarish 2005a), we write

uN = Fr h
1/2
N

[
1 − S

(
1 − 1

2

hN

H

)]1/2

. (2.20)

Here the Froude ‘number’ Fr expresses the ratio of the velocity of propagation of the
nose, uN , to the effective pressure head (per unit mass) at the nose whose thickness
is hN . The term in the square brackets of (2.20) is equal to 1 in the non-stratified
case (S = 0), and smaller than 1 for S > 0. This term indicates the explicit slow-down
of the head due to stratification effects. We argue that the effective Fr is a function
of hN/H only, and the practical numerical value is approximated well by the simple
semi-empirical correlation of Huppert & Simpson (1980):

Fr =

{
1.19 (0 � hN/H � 0.075)

0.5(hN/H )−1/3 (0.075 � hN/H � 1).
(2.21)

We adopt (2.21) as a prototype correlation in the following, but it will be evident
that the essence of the analysis and conclusions are not affected by the details of the
functional form of Fr(hN/H ).

The importance of the viscous friction to the motion of the current increases with
time and distance of propagation. Even for quite large values of Re, the inviscid SW
formulation may become invalid at moderate values of xN . This tendency is enhanced
by stratification. To monitor this effect, we use the previous results for u and h to
estimate the time-dependent ratio of global inertial, FI , to viscous, FV , effects. Since
the inertia per unit volume is represented well by ρcuux , and the viscous force per
unit area is expected to be proportional to ρoνu/h we obtain, in dimensionless form,

FI

FV

≈ Re
h0

x0

∫ xN (t)

0

uuxh dx∫ xN (t)

0

(u/h) dx

= Re
h0

x0

θ(t). (2.22)

The function θ(t) is expected to be of the order of unity at the beginning of the
propagation and decay to quite small values. This function can be easily calculated
from the SW results for u(x, t) and h(x, t), but can also be estimated analytically
using box-model considerations.

Assuming that the current is a box of height hN (t), and accordingly ux = uN/xN ,
we obtain θ ≈ uNh2

Nx−1
N . The value of uN is estimated from (2.20)–(2.21) as (a)

[(1 − S)hN ]1/2 for S not close to 1; and (b) hN/H 1/2 for S ≈ 1. Finally, we use the
volume conservation hN = 1/xN (t). This yields

θ ≈
{

(1 − S)1/2x
−7/2
N (S not close to 1)

H −1/2x−4
N (S ≈ 1).

(2.23)
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Using these results we can estimate the importance of the viscous terms, and also
the limit of validity of the inviscid assumption, for a real gravity current with given
Re and h0/x0. The inviscid theory is expected to be relevant for, roughly, FI/FV > 3.
The transition from inertial to viscous dominance is not a clear-cut experimental
observation because is occurs over a distance of several dimensionless units. The
cases discussed in this study are in the inertia-dominated regime.

2.2. Navier–Stokes considerations

We consider, again, a two-dimensional rectangular domain, with gravity acting in the
negative z-direction. The velocity is v = ux̂+w ẑ. We employ the following dimensional
balance equations:
1. conservation of volume

∇ · v = 0; (2.24)

2. momentum balance

ρ
Dv

Dt
= −∇p − (ρ − ρb)gẑ + µ∇2v, (2.25)

where p is the pressure reduced with ρbgz and µ is the dynamic viscosity coefficient,
assumed constant and equal for both fluids;
3. density transport

Dρ

Dt
= 0. (2.26)

In the numerical computations a small diffusion term, κ∇2ρ, was added to the right-
hand side of (2.26). This was done for smoothing purposes, but its effect on the results
is within the bounds of the numerical truncation errors.

For energy considerations, we multiply the horizontal and vertical components of
(2.25) by u and w, respectively and add the results. After some algebra and use of
(2.24), we obtain

ρ
D

Dt

[
1

2
(u2 + w2)

]
= −∇ · pv − (ρ − ρb)gw + Φ, (2.27)

where Φ is the dissipation function (= 2µeij eij , where eij = (1/2)(∂ui/∂xj + ∂uj/∂xi)).
Consider the integral of (2.27) over the volume Ω of the two-fluid system. For

simplicity, we consider a closed rectangular domain 0 � x � xw, 0 � z � H . This
domain Ω is the union of Ωc (for the current) and Ωa (for the ambient fluid). Within
the Boussinesq approximation O(ε) error bounds, the slightly varying ρ on the left-
hand side can be replaced by the constant ρo. The integrated left-hand side term thus
yields the rate of change of the total kinetic energy, defined straightforwardly by

Ki(t) = ρo

∫
Ωi

1

2
(u2 + w2) dV, (2.28)

where i is a for the ambient, c for the current, and there is no subscript for the
whole system. On the right-hand side, the integrated contribution of the pressure
term vanishes on account of the boundary conditions. The effect of the dissipation
term on the time-dependent energy behaviour of the system enters via

D(t) =

∫ t

0

dt

∫
Ω

Φ dV. (2.29)

The integral of the second term on the right-hand side of (2.27), which represents
the work of the buoyancy force, can be manipulated into an informative form as
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follows. To this end, we introduce the vertical upward displacement η(x, z, t) of a
particle of density ρ in the ambient fluid, from its initial position in the linear density
profile. The conservation of density of the particle, combined with (2.3), yields

η(x, z, t) = z − [ρb − ρ(x, z, t)]
H

�ρ
. (2.30)

Consequently,∫
Ω

g(ρ − ρb)w dV = g

∫
Ωc

(
ρc − ρb +

�ρ

H
z − �ρ

H
z

)
w dV

+ g

∫
Ωa

[
ρb − �ρ

H
(z − η) − ρb

]
w dV

=
D

Dt

[
g

∫
Ωc

[
(ρc − ρb)z +

1

2

�ρ

H
z2

]
dV

]

+
D

Dt

[
ρo N2

∫
Ωa

1

2
η2 dV

]
− g

�ρ

H

∫
Ω

zw dV, (2.31)

where (2.5) was also used. The last term on the right-hand side vanishes because of
the velocity boundary conditions. The first and second terms represent the rate of
change of the potential energy of the current and ambient, respectively.

Hereafter, dimensionless variables are used unless stated otherwise. The scaling is
provided by (2.14); in particular, the energy is scaled with (1/2)ρox0h

2
0g

′ and η with
h0.

As expected, the energy terms for the current are similar to these derived for the
SW case. In the SW approximation the contribution of w to the kinetic energy has
been discarded. According to (2.31), the second term on the right-hand side, the scaled
form of the potential energy of the ambient is

Pa(t) =
S

H

∫
Ωa

η2 dV. (2.32)

This indicates that for weak stratification (small S) most of the energy transferred
to the ambient is of kinetic type, and hence more prone to viscous dissipation. This
trend is consistent with the observation of Necker et al. (2005) that higher levels of
kinetic energy are associated with larger values of viscous dissipation.

We are concerned with the behaviour of the mechanical energies; we refer to the
sum of kinetic and potential components as total energy. The total energy of the
two-fluid system is expected to decay due to irreversible viscous dissipation.

The numerical solution of the NS formulation was obtained by using a finite-
difference code. The details are as reported in Ungarish & Huppert (2004) and here
extensions for the calculation of the energy are incorporated.

For the convenience of both numerical simulation and presentation of the results,
we introduce the density function φ(r, t) defined by

φ(x, z, t) =
ρ(x, z, t) − ρo

ρc − ρo

=
1

ε

[
ρ(r, z, t)

ρo

− 1

]
, (2.33)

where ε is the reduced density difference given by (2.1). We expect 0 � φ � 1, with
φ = 1 in the domain of the ‘pure’ dense fluid and 0 � φ � S in the domain of the
ambient fluid.
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The parameters of the numerical computation are: first, as in the SW formulation,
the values of S and the (dimensionless) depth H ; and, in addition, the values of
Re = (g′h0)

1/2h0ρo/µ, ε, the initial aspect ratio of the dense fluid h0/x0, and length
of the tank, xw (scaled with x0). (The coefficient of the artificial diffusion term which
was added on the right-hand side of the density transport was typically (10Re)−1.
The Schmidt number, ν/κ , is significantly larger in a typical two-liquid system, but
the physical diffusion process is beyond the resolution of the present computations.)

The initial conditions at t =0 are

v = 0 (0 � x � xw, 0 � z � H ) (2.34)

and

φ =

{
1 (0 � x � 1, 0 � z � 1)

S(1 − z/H ) (elsewhere).
(2.35)

The finite-difference results provide the values of u, w and φ at grid points. This
allows the calculation of the potential and kinetic energies of the current and of the
ambient. The values of ηi,j (at grid points xi, zj ) were calculated with the aid of (2.30)
and (2.33) by

ηi,j = zj + H (φi,j /S − 1). (2.36)

3. Results
We consider the influence of the stratification, S, on the energy behaviour of

the gravity current released from behind a lock in a configuration with H = 3
(dimensionless). This geometry is expected to be typical of currents in a non-shallow
ambient, and is also compatible with experimental runs 5 and 19 of M. The results
are presented in dimensionless form subject to the scaling (2.14).

The SW governing equations (2.16)–(2.17) with the appropriate boundary conditions
were solved by a two-step Lax–Wendroff method (see Morton & Mayers 1994; Press
et al. 1992). The typical grid has 200 intervals over [0, xN (t)] and a time step of
0.04. The resulting discrete values of h and u were used to calculate the energy
integrals (2.11) and (2.12) by the trapezoidal rule. The estimated numerical errors
are less than 1 %. The predicted propagation of the nose is presented in figure 2.
As expected, as the stratification parameter S increases, the speed of propagation
is reduced. Cases S = 0 and S = 0.29 are supercritical with respect to uw, and cases
S = 0.72 and S =1 are subcritical, see (2.6). Note that the configurations for S = 0.29
and S = 0.72 discussed here correspond to experimental runs 5 and 19 respectively of
M. Their super- and subcriticality has been confirmed experimentally.

Figure 3 shows the expected decay of the ratio of inertial to viscous effects. The
present inviscid approach is valid as long as θRe(h0/x0) remains large (say> 3). Thus,
for the typical value of Re(h0/x0) = 103, viscous effects may become dominant after a
propagation to about xN = 7 for small S and xN = 5 for S close to 1. We shall restrict
our analysis to these values. The constant slope of θ as a function of xN on the log-log
plot confirms the estimates (2.23). Figures 4 and 5 display the SW energy balances of
the current as functions of time and of distance for various values of the stratification
parameter S. The energies of each system are referred to the initial potential energy
Pc(0), see (2.13). In all cases, the potential energy decays monotonically, while the
kinetic energy has an initially increasing and then decreasing profile with a maximum
of about 0.3 at t ≈ 2 to 3. A similar behaviour has been observed by Necker et al.
(2005) in the context of homogeneous and particle-driven gravity currents. The
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Figure 2. SW results. The propagation of the nose as a function of time for H =3 and
various values of S.

t

θ

5 10 15 20 25 30
10–4

10–3

10–2

10–1

10–4

10–3

10–2

10–1

S = 0
0.29
0.72
1

1

(a) (b)

xN

2 4 6 8 10

slope –4

slope –3.5

S = 0
0.29
0.72
1

Figure 3. SW results. The coefficient θ , see (2.22), for H = 3 and various values of S: (a) as
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(2.23).
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Figure 5. SW results. The kinetic and potential energy of the current as functions of
(a) time and xN (b), for various values of S.

kinetic energy of the current develops from zero during the ‘dam-break’ phase of
the motion (Ungarish 2005a). The expansion wave which travels backward into the
bulk of stationary fluid sets this fluid into motion and increases the kinetic energy.
Then the current evolves to a rectangle of height hN , approximately; here the kinetic
energy reaches the maximum. This happens before the end of the slumping phase of
constant-velocity propagation (Huppert & Simpson 1980; Ungarish & Zemach 2005).
The ratio of kinetic to potential energy becomes close to 1 at a quite advanced stage
of propagation (t ≈ 20), when the potential energy has decayed to about 10% of its
initial value.

Interesting and unexpected is the fact that the behaviour of energy decay as a
function of the distance of propagation xN is quite insensitive to the value of S for
S < 0.7 (say). The case S = 1 (i.e. ρc = ρb, the strongest stratification in the present
framework) displays a different behaviour with xN to the other cases: the total energy
of the current, Ec = Pc + Kc, decays faster, and the maximum of the kinetic energy is
attained after a shorter propagation. An interpretation is as follows. The total energy
of the current decreases with time because of the work of pushing the nose against
the ambient pressure. An estimate gives dEc/ dx ≈ −u2

NhN . Using (2.20) and (2.13)
we find that: (a) for S not close to 1, [dEc/ dx)/Pc(0)] ≈ −h2

N ; and (b) for S ≈ 1,
[dEc/ dx)/Pc(0)] ≈ −(3/2)h3

N . These approximations explain the collapse of the curves
S = 0, 0.29, 0.72, as opposed to the faster decay curve S = 1, in figure 5. The maximum
kinetic energy is attained, as explained above, close to the end of the slumping phase.
Since the slumping distance is significantly shorter for the case S = 1, the maximum
of kinetic energy occurs at a smaller xN compared to the other cases.

The corresponding NS computations were performed on grids of 320×200 intervals.
In these simulations H = 3 and h0/x0 = 0.25, xw = 8, Re = 9.62 × 103 and the values
of S were 0, 0.29, 0.72 and 1. The values of ε were 0.115, 0.115, 0.0804, 0.115, respec-
tively. These parameters were chosen so that the second and third cases reproduce
experimental runs 5 and 19 of M. We verified numerically that variations of several
percent in the small parameter ε have an insignificant effect on the results (but this
must be taken into account in the scaling g′, of course). This is as expected for a
Boussinesq system.

The propagation of the current is considered for the time (or distance) during which
the influence of the wall at xw = 8 can be neglected and during which the inertia effects
are dominant (i.e. Re(h0/x0)θ > 3). In contrast to the SW model, whose numerical
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Figure 6. NS results. Density contour lines at various times for S = 0.29. The solid circle
marks the ‘nose’ of the current, defined as the foremost forward point of the dense fluid.
(a) t = 2, (b) t = 4, (c) t = 6.

solution required insignificant computer resources and the analysis of the data was
straightforward, the NS simulation required significant CPU-time and storage space,
and a serious effort to process the data.

Typical flow-field results of the NS simulations are shown in figures 6 and 7. We
see that the shape of the current is very complex in the region of the nose, but the tail
domain is fairly simple. The stronger stratification (figure 7) reduces the height of the
head compared to the case of weaker stratification (figure 6). The isopycnals of the
ambient fluid are displaced considerably above the head of the current. For S = 0.72
(typical for subcritical currents) a strong wave–head interaction occurs (see also M and
Ungarish & Huppert 2004). This is further elucidated in figure 8. We see that at t ≈ 12
the velocity of propagation enters a state of strong deceleration, which practically
brings the nose to rest at t ≈ 14. However, at t ≈ 16 the original speed is recovered.
This behaviour has been recorded in the experiments of M, and it is reproduced well
by our numerical code. The SW theory does not capture this effect. The behaviour
displayed by these figures gives rise to searching questions in the context of the
present investigation: is the simplified SW theory able to capture the energy balances;
what happens to the energy of the current in the special stage of interaction with the
ambient; and, moreover, is the SW energy balance valid after this occurrence?

A major object of the present investigation was the verification of the SW energy
behaviours against the corresponding NS results. The pertinent comparison is shown
in figure 9. We observe that the SW and NS results are fairly close for a significant
period of propagation. Eventually, the NS results decay more quickly to zero than
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the SW predictions. This is a result of viscous effects, which are not included in
the SW model. For weak stratifications, shortly after release, the potential and total
energy of the current as predicted by the NS simulations are slightly larger than those
determined by the SW results. This can be attributed to the initial adjustment motion
of the head which is incompatible with the SW assumptions. We conclude that, overall,
the NS computations confirm the energy predictions of the simplified SW model. This
strengthens confidence in the insights derived into the effects of stratification.

Additionally, an interesting outcome is that the wave–nose interaction in the
subcritical current has no significant effect on the energy exchange. This is illustrated
by the configuration for S = 0.72. The NS simulations show clearly a change of
behaviour of xN (t) in the time interval 10 to 14, see figure 8. However, the
corresponding graphs of energy as a function of time, produced by the same NS
simulations, do not display a change of behaviour during this time interval. An
interpretation is as follows. The interaction occurs when the kinetic energy of the
current is already low (see figure 5) and the head is relatively shallow. In these
circumstances, a relatively small increase of the velocity of the main bulk which
follows the head is able to recover the energy lost by the head during the deceleration
phase. Afterward, this process is reversed and the head regains its velocity. This is an
encouraging result regarding the predictive ability of the SW model. This model does
not detect the interaction, and hence it could be argued that its predictions become
invalid after this occurrence. However, we found that the energy balances of a real
current are also unaffected by this interaction. Thus, the prediction of energy as a
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function of time by this model remains valid for a longer period of time than could
be anticipated for a subcritical propagation.

Figures 10 and 11 provide information on the total mechanical energy (kinetic
plus potential) of the two-fluid system and of the energies of the ambient, obtained
from the NS computations. Evidently, the total (mechanical) energy is not conserved
because of irreversible viscous dissipation. We note that stratification hinders the
decay of the total mechanical energy. This is consistent with the observation of M
that the interface of the current becomes smoother when stratification increases. An
interpretation can be inferred from the behaviour of the kinetic and potential energies
in the ambient. The stratification enhances the ability of the ambient to accumulate
potential energy. Thus, as S increases, the ratio of kinetic to potential energy in
the ambient is reduced. For S = 0.72 the ratio of potential to kinetic energies in the
ambient is typically 1, while for S = 0.29 the ratio is typically 0.5. This reduces the
velocity differences in the ambient field and hence also the viscous dissipative friction.

Considering the behaviour of the total mechanical energy of the system as a
function of time, we notice a striking similarity between the supercritical currents
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S = 0 and S =0.29, on one hand, and between the subcritical currents S = 0.72 and
S = 1, on the other hand.

4. Concluding remarks
The shallow-water analysis presented here, which neglects motion in the ambient,

seems to capture well the energy exchange of the gravity current in the inertia-
dominated stage of propagation. In particular, this approach is able to elucidate by
comparatively simple means the effects of stratification on the energy balances of
the gravity current. This indicates that for sufficiently deep currents (H � 3 say), the
motion in the ambient has little influence on the energetic behaviour of the dense
fluid. In other words, the ambient reacts to, rather than interacts with, the motion of
the dense fluid.

We found that super- and subcritical currents differ in their energetic behaviour.
The latter group maintains the total energy for a longer dimensionless time.

The propagation of the subcritical current is subject to interactions of the head
with the waves, during which the velocity of the head decreases significantly and then
increases. However, the NS simulations (which detect this effect well) indicate that
no significant counterpart effect occurs in the energy exchange behaviour. The SW
model provides valid energy results as a function of time during this problematic
stage, in spite of the fact that it does not incorporate the interaction effect.

The major limitation of the SW energy balances used in our investigation is imposed
by the neglected viscous friction. This effect cannot be easily incorporated into the
analysis. We have presented a criterion for estimating the limit of validity of the
inviscid approach, but the understanding of the energy exchanges thereafter requires
a special investigation. This topic is left for future work.

The present results are for a rectangular two-dimensional geometry. We expect that
the main insights are valid for more general cases, but the details must be worked out.
For example, an extension to axisymmetric configurations is an interesting topic. In
this case, a slumping phase with constant velocity of propagation does not develop,
and this may affect the behaviour of the kinetic energy of the current. Moreover,
divergent geometry is expected to bring viscous forces into play at an earlier stage of
propagation. This topic is also left for future work.

The research was supported by EPSRC. The research of H. E. H. is supported by
a Royal Society Wolfson Merit Award.
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