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Newtonian viscous gravity currents propagating along horizontal and inclined
channels with semicircular and V-shaped boundaries are examined. Similarity
solutions are obtained from the governing mathematical equations and compared
with closely matching data from laboratory experiments in which the propagation of
glycerine along different channels was recorded. Geological applications of the results
are discussed briefly.

1. Introduction
Gravity currents are flows driven by gravity due to horizontal differences in density

between two fluids. Examples include oil spreading over water, honey spreading over
toast and sea breezes spreading over land. Seafloor turbidity currents, lahars, and lava
flows are further examples, all of geological relevance (Simpson 1997; Huppert 2006).

Here, we consider the propagation and evolution of low-Reynolds-number
flows. In previous publications, two-dimensional viscous gravity currents flowing
axisymmetrically above a horizontal surface (Huppert 1982a), down a slope (Huppert
1982b) and over a deep porous medium (Acton, Huppert & Worster 2001) have been
studied analytically and the results tested experimentally. Numerous variations exist
on this general theme. For example, Mei & Yuhi (2001) studied numerically the flow
of a Bingham fluid in a sloping confined channel, while Lister (1992) determined the
flow of a Newtonian fluid on an inclined plane from a point or line source. In this
paper, we consider viscous flows along confined channels of different cross-sectional
shapes to investigate the influence of bottom boundaries on the flow features. The
main motivations of our study are to develop and understand the underlying structure
of solutions, test them experimentally, and apply them to problems including lava
flows propagating down confined channels. Of particular interest is the extent to
which boundary shapes affect the flow rate and velocity profile of the propagating
viscous fluid. Our aim is to explore how different confining boundaries give rise to
different propagation rates and forms of gravity currents.

We consider the flow along smooth channels with uniform cross-section, neglecting
surface tension effects (large Bond number). Two cross-sectional shapes are
considered: semicircular and V-shaped boundaries. In the next section we set up
a theoretical framework and derive mathematical solutions. Similarity solutions for
the propagating distance as functions of time are obtained for the two boundary
shapes. With an instantaneous release of a fixed volume of fluid into a semicircular
cross-section, the propagating distance scales as t1/4 for non-inclined and t3/7 for
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Figure 1. Sketch of a cross-section of an arbitrary channel.

inclined channels, regardless of the angle of inclination. For V-shaped boundaries,
the distance scales as t2/7 for non-inclined and t1/2 for inclined channels, again
independent of the angle of inclination. These scalings hold independently of the
angle at the vertex. We note that the results significantly differ from two-dimensional
and axisymmetric geometries in the horizontal, where propagation distance scales
like t1/5 and t1/8 respectively (Huppert 1982a). Two-dimensional flows down a slope
propagate like t1/3 (Huppert 1982b). All these results are summarized in table 1 in
§ 2. In § 3, the theoretical results are found to be in close agreement with data from
laboratory experiments. We conclude by discussing implications of our results for
geological applications.

2. Theory
2.1. Geometrical set-up

Consider a low-Reynolds-number flow of a viscous, incompressible, Newtonian fluid
of kinematic viscosity ν and uniform density ρ initially at rest at one closed end of an
arbitrary channel of cross-section y = d(x), with respect to mutually perpendicular
Cartesian axes, with x across the channel, y normal to the slope and z along the
channel. The channel makes an angle β with the horizontal and the fluid is released
at time t = 0. A short time after the release, a thin layer of viscous fluid propagates
slowly along the channel. We treat the width of the fluid at the top 2W (z, t) and
the fluid height h(z, t) as slowly varying functions of z only. The length scale in
the x-direction is very small compared to that in the z-direction once the fluid has
propagated sufficiently to occupy the width of the channel, so h is independent of x

as shown in the sketch of a typical cross-section in figure 1.
We begin by computing the hydrostatic pressure p in the current as

p = p0 + ρg(h − y) cosβ, (2.1)

where p = p0 is the constant atmosperic pressure on the free surface y = h. The fluid
has non-zero velocity component only in the z-direction, denoted by u.

We proceed by substituting (2.1) into the Stokes equation (Batchelor 1967)

0 = −∇p + F + µ∇2u, (2.2)

where µ is the dynamic viscosity, and F the body force per unit volume, to obtain
the governing differential equation for u

∂2u

∂x2
+

∂2u

∂y2
= −M, (2.3)

where M , which is dependent on the inclination angle β , is given by

M = −g

ν

∂h

∂z
(β = 0), M =

g

ν
sin β (β �= 0). (2.4a, b)
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The apparent discontinuity at β = 0 is due to (2.4b) only being valid if the angle of
the incline is not too small, so that the current is driven by the component of gravity
down the slope, rather than by the slope of the free surface. The formal condition for
that is |∂h/∂z| � tan β .

There are two boundary conditions. First, the fluid does not slip on the rigid
surface y = d . Secondly, the tangential stress vanishes on the free surface y = h.
Mathematically, these become

u = 0 (y = d), ∂u/∂y = 0 (y = h). (2.5a, b)

When the length scale of fluid height h is much smaller than that of width W ,
the first term in (2.3) can be neglected and it suffices to deal with the modified
equation ∂2u/∂y2 = −M , which with the boundary conditions (2.5a, b) admits the
unique solution

u = 1
2
M(2h − d − y)(y − d). (2.6)

This neglect of the x-derivative is valid when the bottom boundary is semicircular, but
not when it is V-shaped. We consider the two problems separately, with a semicircular
cross-section in § 2.2 and a V-shaped boundary in § 2.3.

Once the velocity profile is determined, we derive a partial differential equation
from the local continuity equation (Acheson 1990)

∂A

∂t
+

∂Q

∂z
= 0, (2.7)

where the cross-sectional area occupied by the flow if d(x) is an even function of x is

A(z, t) = 2

∫ W (z,t)

0

[h(z, t) − d(x)] dx (2.8)

and the downstream volume flux is

Q(z, t) = 2

∫ W (z,t)

0

dx

∫ h(z,t)

d(x)

u(x, y, z, t) dy. (2.9)

Differentiating the definition of A with respect to t , we can rewrite (2.7) as

2W
∂h

∂t
+

∂Q

∂z
= 0. (2.10)

An additional boundary condition is the global continuity equation∫ zN (t)

0

A dz = V, (2.11)

where zN (t) is the length of the current at time t and V is the released volume of fluid.
In the horizontal case, we also impose the condition h

[
zN (t), t

]
= 0, that the height

of the current vanishes at the front z = zN (Huppert 1982a). In the inclined situation,
the order of the governing differential equation is lower and no boundary condition is
specified at the front of the current whose position is determined by (2.11) (Huppert
1982b).

An immediate question is whether there is a similarity solution to (2.3)–(2.11).
The argument against the existence of a similarity solution is that, in contrast to the
previous flows studied (Huppert 1982a, b, 2006), there is the added length scale of the
channel. The argument in favour is that the depth of the current h − d is generally
very much smaller than W and so the additional length scale introduced should be
irrelevant. The second argument is correct.
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2.2. Semicircular cross-section

For semicircular cross-section with radius of curvature a, we have d = a − (a2 −x2)1/2.
The length scale x is much smaller than a so d � x2/2a, and the velocity profile from
(2.6) is

u =
M

2

(
2h − x2

2a
− y

)(
y − x2

2a

)
. (2.12)

A simple check reassures us that the condition of the second term dominating the
first in (2.3) is equivalent to −3x2/a2 + 2h/a � 1 which is consistent with |x|, h � a

in thin layer flows.
The volume flux Q over the cross-sectional area A = 4

3
(2ah3)1/2 is obtained as

Q =

∫
A

u dx dy =
32

√
2

105
Ma1/2h7/2. (2.13)

Expressions for Q and A are substituted into the local continuity equation (2.7) to
obtain

h1/2 ∂h

∂t
+

16

105

∂

∂z

(
Mh7/2

)
= 0. (2.14)

In the non-inclined case β = 0, we choose a similarity variable

η =

(
70νa

3gV 2

)1/4

zt−1/4 (2.15)

and seek a similarity solution h(z, t) of the form

h = η
2/3
N

(
945νV 2

512gat

)1/6

φ(w), (2.16)

where w = η/ηN , ηN being a dimensionless constant corresponding to the value of η

at the end point of the current, and the various numerical prefactors in (2.15) and
(2.16) have been chosen to simplify the resulting differential equations and subsidiary
conditions. It is immediately seen from (2.15) that zN increases like t1/4.

To evaluate ηN explicitly, and the corresponding structure of the flow, we substitute
(2.15) and (2.16) into (2.14) and (2.11) to obtain(

φ′φ7/2
)′

+ 1
2
φ1/2

(
1
3
φ + 1

2
wφ′) = 0 (2.17)

and

ηN =

(∫ 1

0

φ3/2(w) dw

)−1/2

, (2.18)

alongside the boundary condition φ(1) = 0. The solutions are found by direct
integration to be φ(w) = [ 1

4
(1 − w2)]1/3 and ηN = 2

√
2/π. Hence, the fluid height

is given by

h =
1

4

[
105ν

(
z2

N − z2
)/

g
]1/3

t−1/3 where zN = 2

(
6gV 2

35π2νa

)1/4

t1/4. (2.19a, b)

In the inclined case, the governing differential equation becomes

∂h

∂t
+

8g sin β

15ν
h2 ∂h

∂z
= 0. (2.20)
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Figure 2. The geometry and boundary conditions in the (a) (x,y)- and (b) (X,Y )-planes.

From the results for the flow down a two-dimensional slope (Huppert 1982b), it
follows immediately that the solution for h(z, t) is

h =

(
15ν

8g sinβ

)1/2

z1/2t−1/2 (0 < z < zN ) (2.21)

with zN evaluated from the constraint (2.11) given by

zN =
1

2

(
3(7V )4g3 sin3 β

(5ν)3(2a)2

)1/7

t3/7. (2.22)

We deduce that along an inclined channel, zN scales like t3/7, and the dependence on
the inclination angle β only appears in the pre-multiplicative factor. It is interesting
that the form of the free surface height (2.21) is independent of the scale of the
constraining boundary, a, and of V , both of which only enter the rate of propagation
of the current as represented by (2.22).

2.3. V-shaped boundary

Consider now a V-shaped boundary with sidewalls meeting at an angle 2θ at the
vertex, so that the bottom boundary is given by d = |x|/ tan θ . Neglecting one of the
left-hand-side terms in the differential equation (2.3) is only suitable for special cases,
namely for θ close to 0 or π/2, so a different method is needed for general θ . With
reference to figure 2(a), we satisfy the boundary condition of zero vertical gradient at
the free surface y =h by determining the symmetric solution of the governing equation
in the diamond geometry shown after imposing u =0 on the whole boundary. The
differential equation is then more easily solved in terms of new coordinates (sketched
in figure 2b)

X =
1

h

(
y +

x

m

)
− 1, Y =

1

h

(
y − x

m

)
− 1, (2.23a, b)

where m = tan θ . The differential equation (2.3) becomes

(m2 + 1)

(
∂2u

∂X2
+

∂2u

∂Y 2

)
+ 2(m2 − 1)

∂2u

∂X∂Y
= −Mm2h2. (2.24)

We posit a solution in the form

u =

∞∑
i=0

∞∑
j=0

aij cos λiX cos λjY, λi = π
(

1
2

+ i
)
, i ∈ �. (2.25)
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which ensures that all boundary conditions are immediately satisfied. To determine the
scalar coefficients aij , we substitute the form of u into (2.24), and use the orthogonality
of the cosine function, to determine that

aij =
(−1)i+j4Mm2h2

(1 + m2)λiλj

(
λ2

i + λ2
j

) . (2.26)

The volume flux Q across the cross-sectional area A = mh2 is found to be Q = KMh4,
where K , a scalar constant that only depends on the vertex angle θ , is given by

K =
4m3

1 + m2

∞∑
i=0

∞∑
j=0

1

λ2
i λ

2
j

(
λ2

i + λ2
j

) � 0.137m3

1 + m2
. (2.27a, b)

In the non-inclined case β = 0, we derive

2mh
∂h

∂t
− Kg

ν

∂

∂z

(
h4 ∂h

∂z

)
= 0 (2.28)

from the local continuity condition (2.7). The global continuity equation (2.11) gives∫ zN (t)

0

mh2 dz = V. (2.29)

By dimensional analysis of (2.28) and (2.29), or otherwise, we choose a suitable
similarity variable

ζ =

(
4m5ν2

K2g2V 3

)1/7

zt−2/7. (2.30)

Thus, the propagation distance zN scales like t2/7 and is given by

zN = ζN

(
K2g2V 3

4m5ν2

)1/7

t2/7, (2.31)

where ζN is a scalar constant to be determined.
To obtain exact solutions, it is natural to seek a similarity solution h of the form

h = ζ
2/3
N

(
2νV 2

Kmgt

)1/7

φ(s), (2.32)

where the new independent variable s = ζ/ζN is a scaled similarity variable which
varies between 0 and 1. Substituting (2.32) into (2.28), we obtain

φ(φ + 2sφ′) + 7(φ4φ′)′ = 0 (2.33)

from the local continuity equation (2.7) with boundary condition φ(1) = 0, and

ζN =

(∫ 1

0

φ2 ds

)−3/7

(2.34)

from the global continuity equation (2.11). The solution φ = [ 3
14

(1 − s2)]1/3 is found

analytically from which ζN = (14/3)2/7[B(1/2, 5/3)/2]−3/7 ≈ 1.768, where B(x, y) is the
beta function. Note that in each of the horizontally spreading cases investigated
within a constrained boundary, the structure function of the height h is of the form
(1 − s2)1/3, for a suitable variable s with 0 <s < 1 but that the pre-multiplicative
factors vary from situation to situation, as do the rates of propagation.
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Geometry Axisymmetric Two-dimensional Semi-circular V-shaped

Slope horizontal horizontal inclined horizontal inclined horizontal inclined

δ 1/8 1/5 1/3 1/4 3/7 2/7 1/2
Reference Ha Ha Hb tp tp tp tp

Table 1. Summary of different set-ups of viscous gravity currents and their rate of propagation,
where δ denotes the power of time proportional to the propagation distance. References Ha,
Hb and tp refer to Huppert (1982a), Huppert (1982b) and this paper respectively.

0 1 2 3 4 5 6 7 8 9 10
0.20
0.25
0.30

n

δ

Figure 3. Plot of δ against n, where the propagation distance scales as t δ along a horizontal
channel with shape y = a|x/a|n.

In the inclined case, the local continuity equation (2.7) becomes

m
∂h

∂t
+

2Kg sinβ

ν

∂h

∂z
h2 = 0 (2.35)

and the global continuity equation (2.29) remains the same as in the non-inclined
case. The same technique is used to find a suitable similarity variable and to derive
the solution

h =

(
mν

2Kg sinβ

)1/2

z1/2t−1/2, zN =

(
4KgV sinβ

m2ν

)1/2

t1/2. (2.36a, b)

A summary of the propagation rates for different set ups is given in table 1. John
Lister, on seeing a first draft of this paper, set a question for Part III students in
Cambridge that nicely generalizes the results. When a fixed volume is released at
the origin at t = 0 and spreads along a long straight horizontal channel with the
shape y = a|x/a|n, where n= 1, 2 and ∞ correspond to V-shaped, semicircular and
flat-bottomed set-ups respectively, the propagation distance zN scales like t (n+1)/(3n+4)

for 0 <n � 1 and t (n+1)/(5n+2) for n � 1, determined by using (2.7)–(2.11) and scaling
arguments. The different expressions arise because the more rapid variation occurs
in the fluid width for 0 <n< 1 and in the fluid depth for n> 1. The exponent, as a
function of n, has a maximum at n= 1 as shown in figure 3.

3. Experimental investigations
To test the theoretical results, we conducted a series of laboratory experiments in

which a constant volume of glycerine was released from one closed end of a long
container inclined at different angles to the horizontal, with either a semicircular or
V-shaped boundary. The volumes of glycerine used were sufficiently large to minimize
any effects of surface tension.

In the set-up with semicircular cross-section, a plastic gutter of length 2 m and
radius of curvature 5.8 cm was supported on a solid wooden base and braced by
aluminium angle bars to prevent it from bending or distorting. For the non-inclined
case, thin sheets of cardboard were inserted where necessary underneath the wooden
base to obtain an absolutely horizontal channel as indicated by a spirit level. For
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Figure 4. Comparison between theory (solid line) and experimental data of non-dimensional
distance as a function of non-dimensional time along a semicircular surface that is
(a) horizontal and (b) inclined at an angle of 7◦.

Figure 5. Photograph from the top of the gravity current propagating 95 cm from right to
left along a horizontal semicircular channel, 47 s after 341 cm3 of glycerine with a viscosity
of 3.22 cm2 s−1 was released. The solid white line marks the fluid boundary as predicted by
theory.

the inclined case, the wooden base was lifted up at one end and then firmly fixed to
obtain an inclination angle of 7◦, 15◦ or 61◦.

Before each experimental run, the exact quantity of fluid to be used was implicitly
derived by weighing the mass and using the known value of 1.260 g cm−3 for the
density of glycerine, reasonably independent of its purity. The viscosity of the glycerine
was measured accurately to within 1 mm2 s−1 using an U-tube viscometer. This was
necessary because of sensitivity to purity and temperature fluctuations between runs.

A lock gate, consisting of a circular disk of radius 5.4 cm with a sponge layer
of 1 cm thickness glued onto the rim to fit it inside the gutter, was used to retain
the liquid at one closed end of the gutter before it was quickly released. Test runs
revealed that initial procedures have litte effect on the resultant flow, as is expected
for situations described by similarity solutions, so the liquid was quickly poured into
one end without using the lock gate in some experimental runs.

The propagating distance from the closed end of the channel was recorded at
regular 5 s intervals after the time of release of the glycerine. The foremost position
of the propagating gravity current was directly marked on the channel alongside
the current to within 1 mm. Photographs were taken from approximately 50 cm
above the propagating current. In figure 4, scaled non-dimensional distance is plotted
against non-dimensional time on logarithmic axes and compared with the theoretical
curve, for both non-inclined and inclined cases. The data show a very satisfactory
collapse and close agreement with the theory, confirming the t1/4 (non-inclined) and
t3/7 (inclined) power-law relationship as well the validity of the pre-multiplicative
scaling factors of (2.19b) and (2.22). Figure 5 shows a snapshot of the fluid boundary
47 s after release, upon which we have superposed the theoretical curve of width W

W (z) =

[
105νR3

8gt
(zN (t)2 − z2)

]1/6

, (3.1)
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Figure 6. Comparison between theory (solid line) and experimental data of non-dimensional
distance as a function of non-dimensional time along a V-shaped boundary that is
(a) horizontal and (b) inclined at an angle of 7◦.

which is derived from (2.19a), where zN (t) is given by (2.19b). Although capillarity
effects possibly play a role at the front of the current, where the surface tension
influences the thin layer of the slowly propagating nose, as suggested by the
discrepancy seen near the front in figure 5, they do not affect our results for the
overall shape or the propagation rate, as shown by the very close agreement in
figures 4 and 5.

No instability was observed at the front of the current at any time in any of
our experiments. Unlike the two-dimensional flows down a slope in which numerous
extended regions of fluid developed (Huppert 1982b), the fluid did not break up in
any of our experimental runs. This may be due to the rapid diminishing of the fluid
width W , as given by (3.1), at the front as z → zN , becoming identically zero at
z = zN . Even at large angles of inclination, which might favour an instability, the
possible resultant wavelength is greater than the flow width.

In the set-up with a V-shaped boundary, we tested the theoretical model for the
special case with vertex angle θ = π/4. A rectangular glass container of length 1 m,
width 15 cm and height 10 cm was rotated about its long axis by 45◦ and rested onto
heavy metallic V-shaped supports at each end. These supports stood on a wooden base
so that the inclination angle could be adjusted. A lock gate was fitted towards one end
of the channel using a thin sheet of metal that could slide against the sidewalls into
the container. Glycerine was poured into the end from a beaker, which was weighed
before and after pouring to record the fluid mass. The lock gate was then quickly
lifted to allow the fluid to propagate along the container. The propagation length of
the current was again measured at 5 s intervals by marking its foremost position along
one sidewall of the container to within 1 mm. In figure 6, non-dimensional distance
is plotted against non-dimensional time on logarithmic axes, and compared with the
theoretical curve for both non-inclined and inclined results. Propagation as predicted
by the theoretical model is clearly in agreement with the experimental results.

4. Conclusion and discussion
We conclude that a variety of different mathematical relationships between

propagation distance and time can be obtained by considering different confining
boundaries, as summarized in table 1. These results are only valid for the instantaneous
release of a fixed volume of viscous fluid. Additional relationships will arise if the
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discharge rate is not constant. We are currently investigating both theoretically and
experimentally such an extension of our work.

A possible application of our results is to interpret quantitatively lava flows down
the flanks of a volcano. As in many real geological situations there are additional
effects not considered by the theory. In this case these include: a time-dependent
effusion rate; a temperature-dependent viscosity, which increases as the lava flow
propagates and cools; non-Newtionian effects; an incline of varying slope; and a
growing surface crust as discussed later. Partially because of these additional factors,
recourse has often been made to numerical models (Wadge, Young & McKendrick
1994). However, simplified analytical models, as outlined here, act as essential
foundations against which the numerical results can be checked and understood.

One of the best observed and documented lava flows is the extrusion from the
Lonquimay Volcano, Chile, which erupted almost continuously during 1989 and for
a few weeks on either side (Naranjo et al. 1992). The authors state that the length
of the lava flow down a rough incline ranging in slope from 0.7◦ to 6.3◦ decreased
exponentially with distance from the vent as a consequence of cooling and the increase
of apparent viscosity at the flow front. They determined this apparent viscosity as

µa = ρgh2
N

sin β

3v
, (4.1)

which they call the Jeffreys open channel equation, where hN is the thickness of
the flow front which moves with velocity v determined by evaluating the rate of
change of the length of the lava as a function of time. By dimensional analysis,
(4.1) must be correct; only the premultiplicative constant can depend on the shape
of the boundary. Evaluating hN ≡ h[zN (t)] from (2.21) and (2.36a) and v = żN (t)
from (2.22) and (2.36b) we find that the constant 1/3 = 0.333 in (4.1) for open
channel flow is replaced by 24/105 = 0.229 for a circular constraining geometry and
K/m = 0.137m2/(1 + m2) for a V-shaped constrainer. Our numerical alterations to
the results of Naranjo et al. (1992) make little difference, because the variaton in the
determined viscosity with distance was over four orders of magnitude. Nevertheless,
our analysis places their results on a firmer footing.

Upon completion of a close-to-final draft of this manuscript Ross Kerr kindly sent
us a copy of Kerr & Lyman (2007) which analyses the Lonquimay lava flow based on
the concept of a viscous fluid of given width flowing down an incline resisted by the
strength of the growing surface crust (rather than by internal viscous effects). Kerr &
Lyman state that the results of such a model appear to be in good agreement with
the data obtained from the Lonquimay lava flow. We look forward to the application
of their concepts to other (less well documented) lava flows, possibly incorporating
the inclusion of constraining sidewalls, as examined herein.

We are grateful to Ross Kerr, Steve Sparks and Geoff Wadge for their constructive
comments on an earlier draft and to Mark Hallworth for his experimental aid. This
research was supported by an EPSRC Summer Bursary for undergraduates in the
UK (D.T.) and a Royal Society Wolfson Research Merit Award (H.E.H.).
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